Complex Analysis - Homework 1

1. Prove that the complex numbers form a field.
2. Read Section 1.4 and review the relevant concepts.
3. Express in the form $a+b i$:
(a) $\frac{1}{6+2 i}$
(b) $\frac{(2+i)(3+2 i)}{1-i}$
(c) $\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{4}$
4. Let $z, z_{1}, z_{2} \in \mathbb{C}$. Prove the following:
(a) $\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$.
(b) $\overline{z_{1} \cdot z_{2}}=\overline{z_{1}} \cdot \overline{z_{2}}$.
(c) $\overline{P(z)}=P(\bar{z})$, for any polynomial P with real coefficients.
(d) $\overline{\bar{z}}=z$.
(e) $\overline{z^{n}}=\bar{z}^{n}$.
(f) $|z|^{2}=\bar{z} \cdot z$.
(g) max $\{|\operatorname{Re} z|,|\operatorname{Im} z|\} \leq|z| \leq|\operatorname{Re} z|+|\operatorname{Im} z|$. When do the equalities hold?
5. Suppose P is a polynomial with real coefficients. Show that $P(z)=0$ if and only if $P(\bar{z})=0$.
6. Let $\Sigma=\left\{(\xi, \eta, \zeta) \in \mathbb{R}^{3}: \xi^{2}+\eta^{2}+\left(\zeta-\frac{1}{2}\right)^{2}=\frac{1}{4}\right\}$, and let $\pi: \Sigma \backslash\{(0,0,1)\} \rightarrow \mathbb{C}$ be the stereographic projection. Suppose $S \subset \Sigma$. Prove or disprove
(a) S is a circle which contains $(0,0,1)$ if and only if $\pi(S \backslash\{(0,0,1)\})$ is a line in \mathbb{C}.
(b) S is a circle which doesn't contain $(0,0,1)$ if and only if $\pi(S)$ is a circle in \mathbb{C}.
7. Prove Proposition 2.5.
8. Prove that the composition of complex differentiable functions is complex differentiable.
9. Suppose f is analytic in a region (i.e. open connected set) U and $f^{\prime} \equiv 0$ in U. Show that f is constant.
10. Show that there are no analytic functions $f=u+i v$ with $u(x, y)=x^{2}+y^{2}$.
