Complex Analysis - Homework 11

1. Find a conformal mapping f from S onto T, where
(a) $S=\{z=x+i y:-2<x<1\} ; \quad T=D(0 ; 1)$;
(b) $S=T=$ the upper half plane; $f(-2)=-1, f(0)=0$ and $f(2)=2$;
(c) $S=\left\{r e^{i \theta}: r>0,0<\theta<\pi / 4\right\} ; \quad T=\{x+i y: 0<y<1\}$;
(d) $S=D(0 ; 1)-[0,1] ; \quad T=D(0 ; 1)$.
(Notation: $[0,1]=\{z=x+i y: 0 \leq x \leq 1, y=0\} \subset \mathbb{C}$.)
2. What is the image of the upper half plane under a mapping of the form

$$
f(z)=\frac{a z+b}{c z+d}, \quad a, b, c, d \text { real; } \quad a d-b c<0 ?
$$

3. Find a formula for all the automorphisms of the first quadrant.
4. Given a conformal mapping f of R onto the unit disc U and $z_{0} \in R$, find a conformal mapping g of R onto U with $g\left(z_{0}\right)=0$ and $g^{\prime}\left(z_{0}\right)>0$.
5. Let R be a simply connected domain and assume $z_{1}, z_{2} \in R$. Show that there exists a conformal mapping of R onto itself, taking z_{1} to z_{2}. (Consider two cases: $R \neq \mathbb{C}$ and $R=\mathbb{C}$.)
6. Let $R \subset \mathbb{C}$ be the open set

$$
R=\{z \in \mathbb{C}:|z-1|<1 \text { and }|z-i|<1\} .
$$

Find a conformal mapping from R onto the unit disk U.

