Complex Analysis — Homework 11

- 1. Find a conformal mapping f from S onto T, where
 - (a) $S = \{z = x + iy : -2 < x < 1\};$ T = D(0; 1);
 - (b) S = T = the upper half plane; f(-2) = -1, f(0) = 0 and f(2) = 2;
 - (c) $S = \{re^{i\theta} : r > 0, \ 0 < \theta < \pi/4\}; \quad T = \{x + iy : 0 < y < 1\};$
 - (d) S = D(0; 1) [0, 1]; T = D(0; 1).
 - (Notation: $[0,1] = \{z = x + iy : 0 \le x \le 1, y = 0\} \subset \mathbb{C}.$)
- 2. What is the image of the upper half plane under a mapping of the form

$$f(z) = \frac{az+b}{cz+d}, \quad a, b, c, d \text{ real}; \qquad ad-bc < 0?$$

- 3. Find a formula for all the automorphisms of the first quadrant.
- 4. Given a conformal mapping f of R onto the unit disc U and $z_0 \in R$, find a conformal mapping g of R onto U with $g(z_0) = 0$ and $g'(z_0) > 0$.
- 5. Let R be a simply connected domain and assume $z_1, z_2 \in R$. Show that there exists a conformal mapping of R onto itself, taking z_1 to z_2 . (Consider two cases: $R \neq \mathbb{C}$ and $R = \mathbb{C}$.)
- 6. Let $R \subset \mathbb{C}$ be the open set

$$R = \{ z \in \mathbb{C} : |z - 1| < 1 \text{ and } |z - i| < 1 \}.$$

Find a conformal mapping from R onto the unit disk U.