Complex Analysis - Homework 10

1. Let N be a positive integer, C_{N} be the union of $\left\{z \in \mathbb{C}: \operatorname{Re} z= \pm\left(N+\frac{1}{2}\right),-\left(N+\frac{1}{2}\right) \leq \operatorname{Im} z \leq\left(N+\frac{1}{2}\right)\right\}$ and $\left\{z \in \mathbb{C}: \operatorname{Im} z= \pm\left(N+\frac{1}{2}\right),-\left(N+\frac{1}{2}\right) \leq \operatorname{Re} z \leq\left(N+\frac{1}{2}\right)\right\}$. Show that

$$
|\cot \pi z|<2, \quad \forall z \in C_{N}
$$

2. Evaluate
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$,
(b) $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$,
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}+1}$.
3. Show that

$$
\sum_{n=0}^{\infty}\binom{2 n}{n} x^{n}=\frac{1}{\sqrt{1-4 x}}
$$

as long as $|x|<\frac{1}{4}$.
4. Let $f: \mathbb{C} \rightarrow \mathbb{C}, f(z)=z^{2}$. Show that
(a) f is not locally $1-1$ at 0 ;
(b) f is not $1-1$ in $\mathbb{C}-\{0\}$;
(c) f is locally $1-1$ in $\mathbb{C}-\{0\}$.
5. Let R be a simply connected domain which is not equal to \mathbb{C}. Show that there exists no conformal mapping of \mathbb{C} onto R.
6. Find the image of the circle $|z|=1$ under the mappings
(a) $\omega=\frac{1}{z}$,
(b) $\omega=\frac{1}{z-1}$,
(c) $\omega=\frac{1}{z-2}$.
7. Let f be a bijective conformal mapping from the unit disc to the unit disc. Use Schwarz Lemma to show that if $f(0)=0$ and $f^{\prime}(0)>0$, then f is the identity map $f(z) \equiv z$.
8. Let

$$
f(z)=\frac{a z+b}{c z+d}, \quad g(z)=\frac{s z+t}{u z+v}
$$

with $a d-b c \neq 0, s v-t u \neq 0$.
(a) Compute $f(g(z))$ for $z \neq-d / c$.
(b) Find s, t, u, v such that $f(g(z))=z$ and $g(f(z))=z$.
(c) Show that f is a conformal mapping from $\mathbb{C}-\{-d / c\}$ onto $\mathbb{C}-\{a / c\}$.
(d) Show that

$$
\left\{\frac{a z+b}{c z+d}: a d-b c \neq 0\right\}
$$

is a group under composition.

