National Tsing Hua University Complex Analysis – Exam 4

Instructor: Hsuan-Yi Liao

Spring, 2022

Name: _____

Student ID: _____

- This exam contains 10 pages (including this cover page) and 9 questions.
- Total of points is 25.
- Write down your computation or arguments in details unless otherwise stated.
- In this exam, assume
 - $-\mathfrak{s} =$ your student ID;
 - $-\tilde{\mathfrak{s}} = 2 + \left| \text{(the last digit of your student ID)} 5 \right|.$

For example, if your student ID is 66666, then $\mathfrak{s} = 666666$ and $\tilde{\mathfrak{s}} = 3$.

• Plug numbers into the parameters $\mathfrak s$ and $\tilde \mathfrak s$ in your answers.

Distribution of Marks

Question	Points	Score
1	3	
2	3	
3	3	
4	3	
5	3	
6	3	
7	3	
8	2	
9	2	
Total:	25	

1. (3 points) Show that there are no analytic functions f = u + iv with $u(x, y) = x^2 + y^2$.

- 2. (3 points) Prove that a nonconstant entire function *cannot* satisfy the two equations
 - i. f(z + 1) = f(z)ii. f(z + i) = f(z)

for all z.

- 3. Find the Laurent expansion for
 - (a) (1 point) $\frac{1}{z^4 + z^2}$ about z = 0(b) (2 points) $\frac{1}{z^2 - 4}$ about z = 2.

4. (3 points) Find the number of zeros (counting multiplicities) of $f(z)=z^4-5z+1$ in $1\leq |z|\leq 2$

5. (3 points) Evaluate the integral $\int_0^\infty \frac{1}{\sqrt[3]{x(1+x)}} dx$.

6. (3 points) Show that

$$\sum_{n=0}^{\infty} \binom{2n}{n} x^n = \frac{1}{\sqrt{1-4x}}$$

as long as $|x| < \frac{1}{4}$.

7. (3 points) Let R be a simply connected domain and assume $z_1, z_2 \in R$. Show that there exists a conformal mapping of R onto itself, taking z_1 to z_2 . (Consider two cases: $R \neq \mathbb{C}$ and $R = \mathbb{C}$.)

8. (2 points) Evaluate the integral

$$\int_0^{2\pi} \frac{1}{1 + \tilde{\mathfrak{s}} + \tilde{\mathfrak{s}} \sin x} \, dx.$$

9. (2 points) Let $R \subset \mathbb{C}$ be the open set

$$R = \{ z \in \mathbb{C} : |z - 1| < 1 \text{ and } |z - i| < 1 \}.$$

Find a conformal mapping f from R onto the unit disk U with the property

$$f(\frac{1}{\mathfrak{s}} + \frac{i}{\mathfrak{s}}) = 0.$$