National Tsing Hua University
 Complex Analysis - Exam 4

Instructor: Hsuan-Yi Liao

Spring, 2022

Name: \qquad
Student ID: \qquad

- This exam contains 10 pages (including this cover page) and 9 questions.
- Total of points is 25 .
- Write down your computation or arguments in details unless otherwise stated.
- In this exam, assume
$-\mathfrak{s}=$ your student ID;
$-\tilde{\mathfrak{s}}=2+\mid$ (the last digit of your student ID) $-5 \mid$.
For example, if your student ID is 66666 , then $\mathfrak{s}=66666$ and $\tilde{\mathfrak{s}}=3$.
- Plug numbers into the parameters \mathfrak{s} and $\tilde{\mathfrak{s}}$ in your answers.

Distribution of Marks

Question	Points	Score
1	3	
2	3	
3	3	
4	3	
5	3	
6	3	
7	3	
8	2	
9	2	
Total:	25	

1. (3 points) Show that there are no analytic functions $f=u+i v$ with $u(x, y)=x^{2}+y^{2}$.
2. (3 points) Prove that a nonconstant entire function cannot satisfy the two equations
i. $f(z+1)=f(z)$
ii. $f(z+i)=f(z)$
for all z.
3. Find the Laurent expansion for
(a) (1 point) $\frac{1}{z^{4}+z^{2}}$ about $z=0$
(b) (2 points) $\frac{1}{z^{2}-4}$ about $z=2$.
4. (3 points) Find the number of zeros (counting multiplicities) of $f(z)=z^{4}-5 z+1$ in $1 \leq|z| \leq 2$
5. (3 points) Evaluate the integral $\int_{0}^{\infty} \frac{1}{\sqrt[3]{x}(1+x)} d x$.
6. (3 points) Show that

$$
\sum_{n=0}^{\infty}\binom{2 n}{n} x^{n}=\frac{1}{\sqrt{1-4 x}}
$$

as long as $|x|<\frac{1}{4}$.
7. (3 points) Let R be a simply connected domain and assume $z_{1}, z_{2} \in R$. Show that there exists a conformal mapping of R onto itself, taking z_{1} to z_{2}. (Consider two cases: $R \neq \mathbb{C}$ and $R=\mathbb{C}$.)
8. (2 points) Evaluate the integral

$$
\int_{0}^{2 \pi} \frac{1}{1+\tilde{\mathfrak{s}}+\tilde{\mathfrak{s}} \sin x} d x
$$

9. (2 points) Let $R \subset \mathbb{C}$ be the open set

$$
R=\{z \in \mathbb{C}:|z-1|<1 \text { and }|z-i|<1\} .
$$

Find a conformal mapping f from R onto the unit disk U with the property

$$
f\left(\frac{1}{\mathfrak{s}}+\frac{i}{\mathfrak{s}}\right)=0 .
$$

