pf of Excision Thm 2.20:
Low U= {A, B}, and c: C.W \(\sigma C.W). In the proof of Prop 2.21, the author constructed
a drain map $P: G(X) \rightarrow C^{2}(X)$ and a chain homotopy $D: C.(X) \rightarrow C_{-+}(X)$ s.t.
(i) $\partial D + D \partial = id - \epsilon P$ (ii) $P \epsilon = id$
CA) PCC(CA)) & C(A) DCC(A)) & C(A)
So the maps D. P descend to CU(X)/C(A), COX/C(A) site is hold.
> The inclusion CUX/CCA) \hookrightarrow COX/CCA) is a hor gai.
Also note that the map $G(B)/G(A \cap B) \rightarrow C^{(1)}(X)/C(A)$ also induces
an isomorphism on hamalogy because both are the free ab go governated by
the singular simplexes $\sigma: \Delta'' \longrightarrow B$ sit, $\sigma(\Delta'') \not\in A$
So we have
Hn (B, AAB) = Hn (COXX) = Hn(X, A) #
Recall
In Thm 2,13, we consider a space X together with a nonempty closed subspace A
that is a deformation retract of some ubol in X.
Such a pair (X, A) is called a good pair in the book.
Prop 2:22
For good pairs (X,A) , the quotient map $g:(X,A) \to (X/A, A/A)$ induces
isomorphisms $g_*: H_n(X,A) \longrightarrow H_n(X/A, A/A) \cong \widehat{H}_n(X/A) \Rightarrow n$
E
Let V be a hold of A in X that deformation retracts onto A. We have a commutative
diagram Hn (X,A) \$\frac{\phi}{2} \cdot \cdot \cdot \frac{\phi}{2} \cdot
diagram $ \begin{array}{cccccccccccccccccccccccccccccccccc$
Note:
o(X,V,A) induces a long exact seg.
$\cdots \rightarrow H_n(V,A) \rightarrow H_n(X,A) \xrightarrow{\Phi} H_n(X,V) \rightarrow H_{n-1}(V,A) \rightarrow \cdots$
0 (X, V, A) induces a long exact seg. $\cdots \rightarrow H_n(V, A) \rightarrow H_n(X, A) \xrightarrow{\Phi} H_n(X, V) \rightarrow H_{n-1}(V, A) \rightarrow \cdots$ $0 \text{ because } (V, A) \simeq (A, A) \text{ (Prop 2.19)}$
⇒ ¢ is an iso

```
De
     @ Similarly, 16 is also an isa
    3 By Excision Thun, of and & are iso.
      D &x is an iso because it's induced by the homeomorphism
                                 (X \land A, V \land A) \xrightarrow{g} (X \land A \land A \land Y \land A \land A)
   Therefore, 8 \star = \psi \psi \psi \psi \psi \psi is an iso.
                                                                                                                                                                                                                                                                                      H
  Summary of the proof of Thin 2,13:
   Recoll that for a good pair (X.A.), we wonted to prove I an exact seg.
                      \cdots \rightarrow \widetilde{H}_{n}(A) \rightarrow \widetilde{H}_{n}(X) \rightarrow \widetilde{H}_{n}(X) \rightarrow \widetilde{H}_{n}(A) \rightarrow \widetilde{H}_{n}(A) \rightarrow \cdots
    Step 1: short exact seg of cres induces a long exact seg of homology groups Revolu
       \Rightarrow \exists long exact seg of relative homology \cdots \rightarrow \widetilde{H}_n(A) \rightarrow \widetilde{H}_n(A) \rightarrow \widetilde{H}_n(A) \rightarrow \widetilde{H}_n(A) \rightarrow \cdots
     Stap: Prone Excision Than 2.20 and use it to show Prop 2.22: for a good pair (X-A)
                                          Hn(X,A) (= Hn(X,A) because A++) = Hn(X/A)
                                                                                                                                    Apply Thousand to (x,A) = (D, 2D)
  Thm 2, 26
   If nonempty open subsets U \subseteq \mathbb{R}^m and V \subseteq \mathbb{R}^n are homeomorphic. Then m = n
      pt for rell,
       opplying excision than to Z = U^c, A = \mathbb{R}^m - \{x\}, X = \mathbb{R}^m, we have
                                       HK(U, U{x}) = HK(IRM, IRM-{x})
    By the long exact sog. of CIRM, IRM (8x3), we have some
                   H_{\kappa}(\mathbb{R}^{m},\mathbb{R}^{m}\{x\}) \stackrel{\sim}{=} \stackrel{\sim}{H_{\kappa-1}}(\mathbb{R}^{m}\{x\}) \stackrel{\sim}{=} \stackrel{\sim}{H_{\kappa-1}}(\mathbb{S}^{m-1}) \stackrel{\sim}{=} H_{\kappa-1}(\mathbb{S}^{m-1}) \stackrel{\sim}{=} H_{\kappa-1}(\mathbb{S}^{m}(\mathbb{S}^{m-1})) \stackrel{\sim}{=} H_{\kappa-1}(\mathbb{S}^{m}(\mathbb{S}^{m-1})) \stackrel{\sim}{=} H_{\kappa-1}(\mathbb{S}^{m-1}) \stackrel{\sim}{=} H_{\kappa-1}(\mathbb{S}^{m
   Similarly, HK(V, V, [4]) = { & k=n for yeV
    A homeomorphism h: U \rightarrow V induces (U, U \in x_3) \xrightarrow{\cong} (V, V \in k_{x_3})
                                      H_k(U,U) \sim H_k(V,V) \sim M=N
```

Notwolfty (p. 127) Propo De of Propo For a map $f: (X,A) \rightarrow (Y,B)$, the diagram I induces "a mor of short exact segul ix 0 + C(A) -> C(X) -> C(X) -> C(X) -> C きつ どう むり 0+C(B) -> C(D-) C(C)(D)+0 \rightarrow $H_n(B) \xrightarrow{i_*} H_n(Y) \xrightarrow{\vec{J}_*} H_n(Y,B) \xrightarrow{\Rightarrow} H_{n-1}(B) \rightarrow \cdots$ By Rop (D) O is ok . W Commutes Prople (alg. ver) Suppose $\alpha: (A, \mathcal{A}) \to (A', \mathcal{A}')$, $\beta: (B, \mathcal{B}') \to (B', \mathcal{B}')$, $\sigma: (C, \mathcal{B}') \to (C', \mathcal{B}')$ Form a mor of short exact seg of Cx'', i.e. all the maps commute (see β 127) $\longrightarrow H_n(A') \longrightarrow H_n(B') \longrightarrow H_n(C') \longrightarrow H_{n-1}(A') \longrightarrow \cdots$ commutes. pf: exer (diagram chasing) Propil For a map $f:(X,A) \to (Y,B)$ of good poins, the diagram $\cdots \rightarrow \widetilde{H}_{n}(A) \longrightarrow \widetilde{H}_{n}(X) \longrightarrow \widetilde{H}_{n}(X) \longrightarrow \widetilde{H}_{n-1}(A) \longrightarrow \cdots$ fx fx fx $\longrightarrow \hat{H}_{n}(B) \longrightarrow \hat{H}_{n}(Y) \longrightarrow \hat{H}_{n}(Y/B) \longrightarrow \hat{H}_{n}(B) \longrightarrow \cdots$ Commutes DE. it follows from the commutativity of the diagram By Propto,

#

Eilenberg-Steenrod axioms

From Wikipedia, the free encyclopedia

In mathematics, specifically in algebraic topology, the **Eilenberg–Steenrod axioms** are properties that homology theories of topological spaces have in common. The quintessential example of a homology theory satisfying the axioms is singular homology, developed by Samuel Eilenberg and Norman Steenrod.

One can define a homology theory as a sequence of functors satisfying the Eilenberg–Steenrod axioms. The axiomatic approach, which was developed in 1945, allows one to prove results, such as the Mayer–Vietoris sequence, that are common to all homology theories satisfying the axioms.^[1]

If one omits the dimension axiom (described below), then the remaining axioms define what is called an extraordinary homology theory. Extraordinary cohomology theories first arose in K-theory and cobordism.

Contents [hide]

- 1 Formal definition
- 2 Consequences
- 3 Dimension axiom
- 4 See also
- 5 Notes
- 6 References

Formal definition [edit source]

The Eilenberg–Steenrod axioms apply to a sequence of functors H_n from the category of pairs (X,A) of topological spaces to the category of abelian groups, together with a natural transformation $\partial: H_i(X,A) \to H_{i-1}(A)$ called the **boundary map** (here $H_{i-1}(A)$ is a shorthand for $H_{i-1}(A,\emptyset)$). The axioms are:

- 1. **Homotopy**: Homotopic maps induce the same map in homology. That is, if $g:(X,A) \to (Y,B)$ is homotopic to $h:(X,A) \to (Y,B)$, then their induced homomorphisms are the same.
- 2. **Excision**: If (X, A) is a pair and U is a subset of A such that the closure of U is contained in the interior of A, then the inclusion map $i: (X \setminus U, A \setminus U) \to (X, A)$ induces an isomorphism in homology.
- 3. **Dimension**: Let *P* be the one-point space; then $H_n(P) = 0$ for all $n \neq 0$.
- 4. Additivity: If $X=\coprod_{\alpha}X_{\alpha}$, the disjoint union of a family of topological spaces X_{α} , then $H_{n}(X)\cong\bigoplus_{\alpha}H_{n}(X_{\alpha})$.
- 5. **Exactness**: Each pair (X, A) induces a long exact sequence in homology, via the inclusions $i:A \to X$ and $j:X \to (X,A): \cdots \to H_n(A) \overset{i_*}{\longrightarrow} H_n(X) \overset{j_*}{\longrightarrow} H_n(X,A) \overset{\partial}{\longrightarrow} H_{n-1}(A) \to \cdots.$

If P is the one point space, then $H_0(P)$ is called the **coefficient group**. For example, singular homology (taken with integer coefficients, as is most common) has as coefficients the integers.

Consequences [edit source]

Some facts about homology groups can be derived directly from the axioms, such as the fact that homotopically equivalent spaces have isomorphic homology groups.

The homology of some relatively simple spaces, such as n-spheres, can be calculated directly from the axioms. From this it can be easily shown that the (n-1)-sphere is not a retract of the n-disk. This is used in a proof of the Brouwer fixed point theorem.

Dimension axiom [edit source]

A "homology-like" theory satisfying all of the Eilenberg–Steenrod axioms except the dimension axiom is called an **extraordinary homology theory** (dually, **extraordinary cohomology theory**). Important examples of these were found in the 1950s, such as topological K-theory and cobordism theory, which are extraordinary *cohomology* theories, and come with homology theories dual to them.