Fuzzy b-Normed Spaces Are Fuzzy Normable*

Salvador Romaguera[†]

Received 17 June 2024

Abstract

We introduce the notion of fuzzy b-normed space as a generalization of the concept of fuzzy normed space and also as a fuzzy counterpart of the classical concept of quasi-normed space in the sense of Hyers and Bourgin. We show that every fuzzy b-normed space is fuzzy normable and deduce that every fuzzy b-Banach space admits the structure of a fuzzy Banach space. These facts reveal striking differences with what happens in classical analysis, where there are emblematic examples of quasi-Banach spaces that are not normable.

1 Introduction and Preliminaries

Throughout this paper by \mathbb{R} , \mathbb{R}^+ and \mathbb{N} we will denote the set of real numbers, the set of non-negative real numbers and the set of positive integer numbers, respectively. Our notation and terminology is standard. All topologies are assumed to be Hausdorff. As usual, we will say that a topological space (X, τ) is metrizable if there is a metric on X whose induced topology agrees with τ . In this case, we will say that τ is a metrizable topology.

A classical and fundamental theorem in Functional Analysis, due to Kolmogorov [12], states that a topological vector space is normable if and only if it is locally bounded and locally convex. This result admits a nice extension that can be formulated as follows: a topological vector space is quasi-normable if and only if it is locally bounded ([3, p. 445], [10, p. 77], [13, p. 159], [11, p. 245]). Therefore, the spaces $l^p(\mathbb{R})$ and $L^p([0,1])$, 0 , yield classical examples of quasi-normed spaces that are not normable. An interesting reminder on the origins of quasi-normed spaces may be found in [19, p. 66].

Let us recall ([3, 4, 10, 11, 19]) that a quasi-norm on a (real) vector space X is a function $\|.\|: X \to \mathbb{R}^+$ that satisfies the following conditions for all $x, y \in X$ and $\lambda \in \mathbb{R}$:

- (qn0) ||x|| = 0 if and only if $x = \theta$;
- $(qn1) \|\lambda x\| = |\lambda| \|x\|;$
- (qn2) there is a constant $K \ge 1$ such that $||x + y|| \le K(||x|| + ||y||)$.

A quasi-normed space is a pair $(X, \|.\|)$ such that X is a (real) vector space and $\|.\|$ is a quasi-norm on X.

It is clear that each norm is a quasi-norm and, hence, each normed space is a quasi-normed space.

The so-called b-metric spaces, as defined and examined by Czerwik in [5, 6], constitute the expected metric extension of the notion of a quasi-normed space.

Let X be a (non-empty) set. We say that a function $d: X \times X \to \mathbb{R}^+$ is a b-metric on X if it satisfies the following conditions for all $x, y, z \in X$:

- (bm0) d(x,y) = 0 if and only if x = y;
- $(bm1) \ d(x,y) = d(y,x);$

^{*}Mathematics Subject Classifications: 54A40, 46B25.

[†]Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain

S. Romaguera 425

(bm2) there is a constant $K \ge 1$ such that $d(x,y) \le K(d(x,z) + d(z,y))$.

By a b-metric space we mean a pair (X, d) such that X is a (non-empty) set and d is a b-metric on X. Obviously, every metric (space) is a b-metric (space).

The *b*-metric spaces are called quasi-metric spaces by several authors (see [1, 8, 18]). However, since in the realm of general topology the term quasi-metric is used from many time ago to refer a function $d: X \times X \to \mathbb{R}^+$ satisfying conditions (bm0) and (bm2) with K = 1 (see [27]), we prefer to use the terms *b*-metric and *b*-metric space instead of quasi-metric and quasi-metric space, respectively.

It is well known that, as in the metric case, each b-metric d on X induces a topology τ_d on X defined as follows:

$$\tau_d := \{ A \subseteq X : \text{for any } x \in A \text{ there is } \varepsilon > 0 \text{ such that } B_d(x, \varepsilon) \subseteq A \},$$

```
where B_d(x,\varepsilon) := \{ y \in X : d(x,y) < \varepsilon \} for all x \in X and \varepsilon > 0.
```

Of course, the set $B_d(x,\varepsilon)$ is τ_d -open if d is a metric on X. However, Paluszyński and Stempak presented in [18, p. 4310] an example of a b-metric space (X,d) for which there exist $x \in X$ and $\varepsilon > 0$ such that the set $B_d(x,\varepsilon)$ is not τ_d -open.

It is also well known ([1, 8, 15, 18]) that the topology induced by any b-metric is metrizable. If $\|\cdot\|$ is a quasi-norm on X, then the function $d_{\|\cdot\|}: X \times X \to \mathbb{R}^+$ given by $d_{\|\cdot\|}(x,y) = \|y-x\|$ is a b-metric on X and $(X, \tau_{d_{\|\cdot\|}})$ is a topological vector space. In the sequel, the topology $\tau_{d_{\|\cdot\|}}$ will be simply denoted by $\tau_{\|\cdot\|}$ and it will be called the topology induced by $\|\cdot\|$. A quasi-Banach space is a quasi-normed space $(X, \|\cdot\|)$ such that the b-metric space $(X, d_{\|\cdot\|})$ is complete.

A topological vector space (X, τ) is (quasi-)normable provided that there is a (quasi-)norm $\|.\|$ on X such that $\tau = \tau_{\|.\|}$.

In this note we introduce the notions of fuzzy b-normed space and fuzzy b-Banach space as generalizations of the concepts of fuzzy normed space and fuzzy Banach space, respectively, and also as fuzzy counterparts of the concepts of quasi-normed space and quasi-Banach space. In contrast to what happens with respect to the normability of quasi-normal spaces, we will observe that every fuzzy b-normed space is fuzzy normable and deduce that every fuzzy b-Banach space admits the structure of a fuzzy Banach space.

2 Fuzzy b-Normed Spaces

We start this section with the following well-known but fundamental notion to our study.

According to [25], a binary operation $*: [0,1] \times [0,1] \to [0,1]$ is a continuous t-norm if * satisfies the following conditions: (i) * is associative and commutative; (ii) * is continuous; (iii) a*1=a for every $a \in [0,1]$; (iv) $a*b \leq c*d$ whenever $a \leq c$ and $b \leq d$, with $a,b,c,d \in [0,1]$.

Let us recall that for each continuous t-norm * it follows $* \le \land$, where \land denotes the minimum continuous t-norm, i.e., $a \land b = \min\{a, b\}$ for all $a, b \in [0, 1]$.

In [17] (see also [9, 23, 24, 26, 28]), Nădăban introduced the following concepts as natural *b*-metric generalizations of the classical notions of fuzzy metric and fuzzy metric space as given by Kramosil and Michálek ([14]).

A fuzzy b-metric on a (non-empty) set X is a pair (M,*) such that * is a continuous t-norm and M is a fuzzy set in $X \times X \times \mathbb{R}^+$ satisfying the following conditions for all $x, y, z \in X$:

```
(fbm0) M(x, y, 0) = 0;
```

(fbm1) M(x, y, t) = 1 for all t > 0 if and only if x = y;

(fbm2)
$$M(x, y, t) = M(y, x, t)$$
, for all $t > 0$;

(fbm3) the function $M(x,y,): \mathbb{R}^+ \to [0,1]$ is left continuous;

(fbm4) there is a constant $K \ge 1$ such that $M(x, y, K(t+s)) \ge M(x, z, t) * M(z, y, s)$, for all t, s > 0.

A fuzzy b-metric space is a triple (X, M, *) such that X is a (non-empty) set and (M, *) is a fuzzy b-metric on X. If K = 1 we have the notions of fuzzy metric and fuzzy metric space in the sense of Kramosil and Michálek ([14]).

Similarly to the case of fuzzy metric spaces each fuzzy b-metric (M,*) on a set X induces a topology $\tau_{(M,*)}$ defined as follows:

$$\tau_{(M,*)} := \{ A \subseteq X : \text{for any } x \in A \text{ there are } \varepsilon \in (0,1) \text{ and } t > 0 \text{ such that } B_M(x,\varepsilon,t) \subseteq A \},$$

where $B_M(x,\varepsilon,t) := \{y \in X : M(x,y,t) > 1-\varepsilon\}$ for all $x \in X$, $\varepsilon \in (0,1)$ and t > 0.

Remark 1 Given a fuzzy b-metric space (X, M, *), we get that a sequence $(x_n)_n$ in X is $\tau_{(M, *)}$ -convergent to $x \in X$ if and only if for each t > 0, $\lim_{n \to \infty} M(x, x_n, t) = 1$.

Remark 2 It is well known that if (X, M, *) is a fuzzy metric space, then each ball $B_M(x, \varepsilon, t)$ is a $\tau_{(M, *)}$ open set. This fact does not hold for fuzzy b-metric spaces in general (see, e.g., [21, Example 5]).

Remark 3 In [21, Theorem 1] it was shown that every fuzzy b-metric space (X, M, *) is metrizable, i.e., there is a metric d on X such that $\tau_{(M, *)} = \tau_d$, where by τ_d we denote the topology induced by d.

Let us recall that a fuzzy b-metric space (X, M, *) is complete provided that every Cauchy sequence in X is $\tau_{(M, *)}$ -convergent, where a sequence $(x_n)_n$ in X is said to be a Cauchy sequence if for each $\varepsilon \in (0, 1)$ and t > 0 there exists an $n_{\varepsilon, t} \in \mathbb{N}$ such that $M(x_n, x_m, t) > 1 - \varepsilon$ for all $n, m \ge n_{\varepsilon, t}$.

The following is a typical example of a fuzzy b-metric space (see, e.g., [17, 23, 26]).

Example 1 Let (X,d) be a b-metric space with constant K. Denote by M_d the fuzzy set in $X \times X \times \mathbb{R}^+$ given by $M_d(x,y,0) = 0$ and

$$M_d(x, y, t) = \frac{t}{t + d(x, y)},$$

for all t > 0. Then, for each continuous t-norm *, $(X, M_d, *)$ is a fuzzy b-metric space with constant K such that $\tau_{(M_d, *)} = \tau_d$. Furthermore, $(X, M_d, *)$ is complete if and only if (X, d) is complete.

Next, we introduce and discuss our fuzzy counterpart to the notion of quasi-normed space.

Definition 1 A fuzzy b-norm on a (real) vector space X is a pair (N,*) such that * is a continuous t-norm and N is a fuzzy set in $X \times \mathbb{R}^+$ satisfying the following conditions for all $x, y \in X$ and $\lambda \in \mathbb{R} \setminus \{0\}$:

- ($fbn\theta$) N(x,0) = 0;
- (fbn1) N(x,t) = 1 for all t > 0 if and only if $x = \theta$;
- (fbn2) $N(\lambda x, t) = N(x, t/|\lambda|)$, for all t > 0;
- (fbn3) the function $N(x,): \mathbb{R}^+ \to [0, 1]$ is left continuous;
- (fbn4) $\lim_{t\to\infty} N(x,t) = 1;$
- (fbn5) there is a constant $K \ge 1$ such that $N(x+y,K(t+s)) \ge N(x,t) * N(y,s)$, for all t,s>0.

A fuzzy b-normed space is a triple (X, N, *) such that X is a (real) vector space and (N, *) is a fuzzy b-norm on X. If K = 1 we have the notions of fuzzy norm and fuzzy normed space, respectively (see, e.g., [2, 7]).

Clearly, every fuzzy b-norm (N, *) on X induces a fuzzy b-metric $(M_N, *)$ on X given by $M_N(x, y, 0) = 0$, and $M_N(x, y, t) = N(y - x, t)$ for all $x, y \in X$ and t > 0.

The topology $\tau_{(M_N,*)}$ induced by $(M_N,*)$ will be simply denoted by $\tau_{(N,*)}$.

By a fuzzy b-Banach space we mean a fuzzy b-normed space (X, N, *) such that the fuzzy b-metric space $(X, M_N, *)$ is complete. Then, the notion of fuzzy Banach space is stated in the obvious manner.

Now, we give two paradigmatic examples of fuzzy b-normed spaces.

S. Romaguera 427

Example 2 Let $(X, \|.\|)$ be a quasi-normed space with constant K. Denote by $N_{\|.\|}$ the fuzzy set in $X \times \mathbb{R}^+$ given by $N_{\|.\|}(x,0) = 0$ for all $x \in X$, and

$$N_{\|.\|}(x,t) = \frac{t}{t + \|x\|},$$

for all $x \in X$ and t > 0. It is straightforward to check that, for any continuous t-norm *, the pair $(N_{\|\cdot\|}, *)$ is a fuzzy b-norm on X with constant K, such that $\tau_{(N_{\|\cdot\|}, *)} = \tau_{\|\cdot\|}$. Furthermore, $(X, N_{\|\cdot\|}, *)$ is a fuzzy b-Banach space if and only if $(X, \|\cdot\|)$ is a quasi-Banach space.

Example 3 Let $(X, \|.\|)$ be a quasi-normed space with constant K. Denote by $N_{\|.\|,01}$ the fuzzy set in $X \times \mathbb{R}^+$ given by $N_{\|.\|,01}(x,0) = 0$ for all $x \in X$, and for all $x \in X$ and t > 0, $N_{\|.\|,01}(x,t) = 1$ if $\|x\| < t$ and $N_{\|.\|,01}(x,t) = 0$ if $\|x\| \ge t$. It is straightforward to check that, for any continuous t-norm *, the pair $(N_{\|.\|,01},*)$ is a fuzzy b-norm on X with constant K, such that $\tau_{(N_{\|.\|,01},*)} = \tau_{\|.\|}$. Furthermore, $(X,N_{\|.\|,01},*)$ is a fuzzy b-Banach space if and only if $(X,\|.\|)$ is a quasi-Banach space.

In the sequel, we will say that a fuzzy *b*-normed space (X, N, *) is fuzzy normable if there is a fuzzy norm (N', *') on X such that $\tau_{(N, *)} = \tau_{(N', *')}$ on X, and we will say that a fuzzy *b*-Banach space (X, N, *) is fuzzy Banach structurable if there is a fuzzy norm (N', *') on X such that (X, N', *') is a fuzzy Banach space and $\tau_{(N, *)} = \tau_{(N', *')}$ on X.

Proposition 1 Let (X, N, *) be a fuzzy b-normed space. Then, $\tau_{(N, *)}$ is a metrizable topology on X.

Proof. Consider the fuzzy b-metric space $(X, M_N, *)$ and apply Remark 3.

Proposition 2 Let (X, N, *) be a fuzzy b-normed space. Then, $(X, \tau_{(N, *)})$ is a topological vector space.

Proof. Let $(\lambda_n)_n$ be a sequence of real numbers convergent to $\lambda \in \mathbb{R}$ with respect to the Euclidean metric on \mathbb{R} , and let $(x_n)_n$ be a sequence in X that $\tau_{(N,*)}$ -converges to a $x \in X$. Given $\varepsilon \in (0,1)$ and t > 0, there exist $\delta \in (0,1)$ and $n_0 \in \mathbb{N}$ such that $(1-\delta)*(1-\delta) > 1-\varepsilon$, $|\lambda_n - \lambda| < \varepsilon$, $N(x-x_n,t/2K^2(|\lambda|+\varepsilon)) > 1-\delta$, and $N(x,t/2K|\lambda_n - \lambda|) > 1-\delta$ for all $n \ge n_0$. Hence,

$$N(\lambda x - \lambda_n x_n, t) = N(\lambda x - \lambda_n x + \lambda_n x - \lambda_n x_n, t)$$

$$\geq N(\lambda x - \lambda_n x, t/2K) * N(\lambda_n x - \lambda_n x_n, t/2K)$$

$$= N(x, t/2K |\lambda_n - \lambda|) * N(x - x_n, t/2K |\lambda_n|)$$

$$\geq N(x, t/2K |\lambda_n - \lambda|) * N(x - x_n, t/2K^2(|\lambda| + \varepsilon))$$

$$\geq (1 - \delta) * (1 - \delta) > 1 - \varepsilon,$$

for all $n \ge n_0$. We conclude that $\lim_{n\to\infty} N(\lambda x - \lambda_n x_n, t) = 1$, so, by Remark 1, $(X, \tau_{(N,*)})$ is a topological vector space.

Theorem 1 Every fuzzy b-normed space is fuzzy normable.

Proof. Let (X, N, *) be a fuzzy b-normed space. It follows from Propositions 1 and 2 that $(X, \tau_{(M, *)})$ is a metrizable topological vector space. Choose, and denote by d_I , any invariant metric on X satisfying $d_I(0, \lambda x) \leq d_I(0, \mu x)$ whenever $\lambda \leq \mu$, and $\tau_{(N, *)} = \tau_{d_I}$ (the existence of such metrics is guaranteed by [22, Theorem 1.24]). Now, following [2, Theorem 8], we have that the triple (X, N', \cdot) is a fuzzy normed space such that $\tau_{(N, *)} = \tau_{(N', \cdot)}$, where by \cdot we denote the product continuous t-norm, and N' is the fuzzy set in $X \times \mathbb{R}^+$ given by N'(x, 0) = 0 for all $x \in X$, and

$$N'(x,t) = \frac{1}{1 + d_I(0, x/t)},\tag{1}$$

for all $x \in X$ and t > 0. This finishes the proof.

Theorem 2 Every fuzzy b-Banach space is fuzzy Banach structurable.

Proof. Let (X, N, *) be a fuzzy b-Banach space and let $(x_n)_n$ be a Cauchy sequence in the fuzzy normed space (X, N', \cdot) as constructed in Theorem 1. By (1), we get that $(x_n)_n$ is a Cauchy sequence in the metric space (X, d_I) . Choose an arbitrary $\varepsilon \in (0, 1)$. Since $\tau_{(N, *)} = \tau_{d_I}$ we find a $\delta > 0$ such that $B_d(0, \delta) \subseteq B_{M_N}(0, \varepsilon, \varepsilon)$. Since d_I is invariant, there is $n_0 \in \mathbb{N}$ such that $d_I(0, x_n - x_m) < \delta$ for all $n, m \ge n_0$, so $M_N(x_n, x_m, \varepsilon) > 1 - \varepsilon$ for all $n, m \ge n_0$. Hence, there is $z \in X$ such that $(x_n)_n$ is $\tau_{(N, *)}$ -convergent to z, i.e., $\tau_{(N', \cdot)}$ -convergent to z. We conclude that (X, N', \cdot) is a fuzzy Banach space.

Example 4 Fix $p \in (0,1)$. Let $l^p(\mathbb{R})$ be the vector space of all sequences $x := (x_n)_n$ in \mathbb{R} such that $\sum_{n=1}^{\infty} |x_n|^p < \infty$. Then, $(l^p(\mathbb{R}), \|.\|)$ is a quasi-Banach space, with constant $2^{(1/p)-1}$, where

$$||x|| = (\sum_{n=1}^{\infty} |x_n|^p)^{1/p},$$

for all $x \in l^p(\mathbb{R})$. Therefore, the triple $(l^p(\mathbb{R}), N_{\|.\|}, *)$ is a fuzzy b-Banach space such that $\tau_{\|.\|} = \tau_{(N_{\|.\|}, *)}$, where $(N_{\|.\|}, *)$ is the fuzzy b-norm given in Example 2.

It is well known that the function d_I defined on $l^p(\mathbb{R}) \times l^p(\mathbb{R})$ by $d_I(x,y) = \sum_{n=1}^{\infty} |x_n - y_n|^p$ for all $x, y \in l^p(\mathbb{R})$, is a translation invariant metric on $l^p(\mathbb{R})$ such that $d_I(0, \lambda x) \leq d_I(0, \mu x)$ whenever $\lambda \leq \mu$, and $\tau_{\|.\|} = \tau_{d_I}$. So, $\tau_{(N_{\|.\|},*)} = \tau_{d_I}$. By applying Theorems 1 and 2, we deduce that the triple $(l^p(\mathbb{R}), N', \cdot)$ is a fuzzy Banach space such that $\tau_{(N',\cdot)} = \tau_{(N_{\|.\|},*)}$, where (see the proof of Theorem 1) N'(x,0) = 0 for all $x \in l^p(\mathbb{R})$, and

$$N'(x,t) = \frac{1}{1 + t^{-p} \sum_{n=1}^{\infty} |x_n|^p},$$

for all $x \in l^p(\mathbb{R})$ and t > 0.

Remark 4 It is not difficult to find examples of fuzzy normed spaces that are not quasi-normable. Indeed, choose any metrizable topological vector space (X,τ) that is not locally bounded (see, e.g., [22, Example 1.44]). Then, (X,τ) is not quasi-normable but it admits the structure of a fuzzy normed space ([2, 16, 20]).

Acknowledgment. The author thanks the referee for his/her constructive comments and useful suggestions.

References

- [1] H. Aimar, B. Iaffei and L. Nitti, On the Macas-Segovia metrization of quasi-metric spaces, Revista U. Mat. Argentina, 41(1998), 67–75.
- [2] C. Alegre and S. Romaguera, Characterizations of metrizable topological vector spaces and their asymmetric generalizations in terms of fuzzy (quasi-)norms, Fuzzy Sets Syst., 161(2010), 2181–2192.
- [3] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Vol. 1, Colloq. Publ. 48, Amer. Math. Soc., Providence, 2000.
- [4] D. G. Bourgin, Linear topological spaces, Amer. J. Math., 65(1943), 637–659.
- [5] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1(1993), 5-11.
- [6] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46(1998), 263–276.
- [7] I. Golet, On generalized fuzzy normed spaces and coincidence fixed point theorems, Fuzzy Sets Syst., 161(2010), 1138–1144.

S. Romaguera 429

- [8] J. Gustavsson, Metrization of quasi-metric spaces, Math. Scand., 35(1974), 56–60.
- [9] N. Hussain, P. Salimi and V. Parvaneh, Fixed point results for various contractions in parametric and fuzzy b-metric spaces, J. Nonlinear Sci. Appl., 8(2015), 719–739.
- [10] D. H. Hyers, A note on linear topological spaces, Bull. Amer. Math. Soc., 44(1938), 76–80.
- [11] N. J. Kalton, The three-space problem for locally bounded F-spaces, Compositio Math., 37(1978), 243-276.
- [12] A. N. Kolmogorov, Zur Normierbarkeit eines allgemeinen topologischen linearen Raumes, Studia Math., 5(1934) 29–33.
- [13] G. Köthe, Topological Vector Spaces I, Springer-Verlag, New York, 1969.
- [14] I. Kramosil and J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11(1975), 326–334.
- [15] R. A. Macas and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math., 33(1979), 257–270.
- [16] D. H. Muštari, The linearity of isometric mappings of random normed spaces, Kazan. Gos. Univ. Učen. Zap., 128(1968), 86–90.
- [17] S. Nădăban, Fuzzy b-metric spaces, Int. J. Comput. Commun. Control, 11(2016), 273–281.
- [18] M. Paluszyński and K. Stempak, On quasi-metric and metric spaces, Proc. Amer. Math. Soc., 137(2009), 4307–4312.
- [19] A. Pietsch, History of Banach Spaces and Linear Operators, Birkhäuser, Boston, 2007.
- [20] V. Radu, On the Relationship Between Locally K-Convex Spaces and Random Normed Spaces Over Valued Fields, Seminarul de Teoria Probabilitatilor, STPA, West University of Timisoara, Vol. 37, 1978.
- [21] S. Romaguera, Concerning fuzzy b-metric spaces, Mathematics, 11(2023), 4625.
- [22] W. Rudin, Functional Analysis, 2nd Edition, McGraw-Hill, New York, 1991.
- [23] R. Saadati, On the topology of fuzzy metric type spaces, Filomat, 29(2015), 133–141.
- [24] S. Sedghi and N. Shobe, Common fixed point theorem in b-fuzzy metric space, Nonlinear Funct. Anal. Appl., 17(2012), 349–359.
- [25] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10(1960), 314–334.
- [26] A. Šostak, Some remarks on fuzzy k-pseudometric spaces, Filomat, 32(2018), 3567–3580.
- [27] W. A. Wilson, On quasi-metric spaces, Am. J. Math., 53(1931), 675–684.
- [28] Y. Zhong and A. Šostak, A new definition of fuzzy k-pseudo metric and its induced fuzzifying structures, Iran. J. Fuzzy Syst., 18(2021), 55–66.