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Abstract

We introduce the notion of fuzzy b-normed space as a generalization of the concept of fuzzy normed
space and also as a fuzzy counterpart of the classical concept of quasi-normed space in the sense of Hyers
and Bourgin. We show that every fuzzy b-normed space is fuzzy normable and deduce that every fuzzy
b-Banach space admits the structure of a fuzzy Banach space. These facts reveal striking differences with
what happens in classical analysis, where there are emblematic examples of quasi-Banach spaces that are
not normable.

1 Introduction and Preliminaries

Throughout this paper by R, R™ and N we will denote the set of real numbers, the set of non-negative real
numbers and the set of positive integer numbers, respectively. Our notation and terminology is standard. All
topologies are assumed to be Hausdorff. As usual, we will say that a topological space (X, 7) is metrizable if
there is a metric on X whose induced topology agrees with 7. In this case, we will say that 7 is a metrizable
topology.

A classical and fundamental theorem in Functional Analysis, due to Kolmogorov [12], states that a
topological vector space is normable if and only if it is locally bounded and locally convex. This result
admits a nice extension that can be formulated as follows: a topological vector space is quasi-normable if
and only if it is locally bounded ([3, p. 445], [10, p. 77], [13, p. 159], [11, p. 245]). Therefore, the spaces
IP(R) and LP([0,1]), 0 < p < 1, yield classical examples of quasi-normed spaces that are not normable. An
interesting reminder on the origins of quasi-normed spaces may be found in [19, p. 66].

Let us recall ([3, 4, 10, 11, 19]) that a quasi-norm on a (real) vector space X is a function |.|| : X — R*
that satisfies the following conditions for all z,y € X and A € R:

(qn0) ||z|| = 0 if and only if x = 6;
(and) [[Az[| = [Al{l];
(qn2) there is a constant K > 1 such that ||z + y|| < K(||z| + ||ly])-

A quasi-normed space is a pair (X, ||.||) such that X is a (real) vector space and ||.|| is a quasi-norm on
X.

It is clear that each norm is a quasi-norm and, hence, each normed space is a quasi-normed space.

The so-called b-metric spaces, as defined and examined by Czerwik in [5, 6], constitute the expected
metric extension of the notion of a quasi-normed space.

Let X be a (non-empty) set. We say that a function d : X x X — R™ is a b-metric on X if it satisfies
the following conditions for all x,y, 2z € X:

(bm0) d(x,y) =0 if and only if z = y;
(bml) d(z,y) = d(y, );
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(bm2) there is a constant K > 1 such that d(z,y) < K(d(z, z) + d(z,9)).

By a b-metric space we mean a pair (X,d) such that X is a (non-empty) set and d is a b-metric on X.
Obviously, every metric (space) is a b-metric (space).

The b-metric spaces are called quasi-metric spaces by several authors (see [1, 8, 18]). However, since
in the realm of general topology the term quasi-metric is used from many time ago to refer a function
d: X x X — RT satisfying conditions (bm0) and (bm2) with K = 1 (see [27]), we prefer to use the terms
b-metric and b-metric space instead of quasi-metric and quasi-metric space, respectively.

It is well known that, as in the metric case, each b-metric d on X induces a topology 74 on X defined as
follows:
T4 :={A C X : for any = € A there is € > 0 such that By(z,e) C A},

where By(z,¢) :={y € X :d(z,y) < e} forall z € X and € > 0.

Of course, the set Bg(x,¢€) is T4-open if d is a metric on X. However, Paluszynski and Stempak presented
in [18, p. 4310] an example of a b-metric space (X, d) for which there exist € X and € > 0 such that the
set Bg(z,¢) is not T4-open.

It is also well known ([1, 8, 15, 18]) that the topology induced by any b-metric is metrizable. If || - || is
a quasi-norm on X, then the function dj.| : X x X — R* given by d.|(z,y) = ||y — z|| is a b-metric on X
and (X, Td. H) is a topologlcal vector space. In the sequel, the topology 74, will be simply denoted by 7).
and it will be called the topology induced by || - ||. A quasi-Banach space is a quasi-normed space (X, ||.||)
such that the b-metric space (X, dj.|) is complete.

A topological vector space (X, 7) is (quasi-)normable provided that there is a (quasi-)norm ||.|| on X such
that 7 =7 .

In this note we introduce the notions of fuzzy b-normed space and fuzzy b-Banach space as generalizations
of the concepts of fuzzy normed space and fuzzy Banach space, respectively, and also as fuzzy counterparts
of the concepts of quasi-normed space and quasi-Banach space. In contrast to what happens with respect to
the normability of quasi-normal spaces, we will observe that every fuzzy b-normed space is fuzzy normable
and deduce that every fuzzy b-Banach space admits the structure of a fuzzy Banach space.

2 Fuzzy 0-Normed Spaces

We start this section with the following well-known but fundamental notion to our study.

According to [25], a binary operation x : [0,1] x [0,1] — [0,1] is a continuous t-norm if * satisfies the
following conditions: (i) * is associative and commutative; (ii) * is continuous; (iii) @ * 1 = a for every
a € [0,1]; (iv) axb < ¢+ d whenever a < ¢ and b < d, with a,b,¢,d € [0, 1].

Let us recall that for each continuous t-norm * it follows * < A, where A denotes the minimum continuous
t-norm, i.e., a A b = min{a, b} for all a,b € [0, 1].

n [17] (see also [9, 23, 24, 26, 28]), Niad&ban introduced the following concepts as natural b-metric
generalizations of the classical notions of fuzzy metric and fuzzy metric space as given by Kramosil and
Michalek ([14]).

A fuzzy b-metric on a (non-empty) set X is a pair (M, *) such that * is a continuous t-norm and M is a
fuzzy set in X x X x RT satisfying the following conditions for all z,y,2 € X:

fbm0) M (z,y,0) = 0;

M(z,y,t) =1 for all t > 0 if and only if z = y;

fbm?2

)
)
) M(x,y,t) = M(y,x,t), for all t > 0;
)

fbm3) the function M(z,y, ): Rt — [0, 1] is left continuous;
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(fbm4) there is a constant K > 1 such that M (z,y, K(t + s)) > M(x, z,t) * M(z,y,s), for all t,s > 0.

A fuzzy b-metric space is a triple (X, M, ) such that X is a (non-empty) set and (M, %) is a fuzzy b-metric
on X. If K =1 we have the notions of fuzzy metric and fuzzy metric space in the sense of Kramosil and
Michélek ([14]).

Similarly to the case of fuzzy metric spaces each fuzzy b-metric (M, *) on a set X induces a topology
T (M%) defined as follows:

T(m) = {A C X : for any x € A there are ¢ € (0,1) and ¢ > 0 such that By (z,¢,t) C A},
where By (z,e,t) :={y € X : M(z,y,t) >1 —¢e} forallz € X, e € (0,1) and ¢ > 0.

Remark 1 Given a fuzzy b-metric space (X, M, ), we get that a sequence (x,), in X is T (a4 -convergent
to x € X if and only if for each t > 0, lim,_ . M(x,z,,t) = 1.

Remark 2 It is well known that if (X, M, x) is a fuzzy metric space, then each ball Bys(x,€,t) is a T(pr ) -
open set. This fact does not hold for fuzzy b-metric spaces in general (see, e.g., [21, Example 5]).

Remark 3 In [21, Theorem 1] it was shown that every fuzzy b-metric space (X, M, x) is metrizable, i.e.,
there is a metric d on X such that Ty = Ta, where by T4 we denote the topology induced by d.

Let us recall that a fuzzy b-metric space (X, M, x) is complete provided that every Cauchy sequence in
X is T(a1,4)-convergent, where a sequence (), in X is said to be a Cauchy sequence if for each ¢ € (0,1)
and t > 0 there exists an n.; € N such that M (2, Zp,,t) > 1 — ¢ for all n,m > n. .

The following is a typical example of a fuzzy b-metric space (see, e.g., [17, 23, 26]).
Example 1 Let (X,d) be a b-metric space with constant K. Denote by My the fuzzy set in X x X x R
given by My(x,y,0) =0 and

Mg(z,y,t) = trdey)

for allt > 0. Then, for each continuous t-norm x, (X, Mg, *) is a fuzzy b-metric space with constant K such
that T (a0 = Ta. Furthermore, (X, My, x) is complete if and only if (X, d) is complete.

Next, we introduce and discuss our fuzzy counterpart to the notion of quasi-normed space.
Definition 1 A fuzzy b-norm on a (real) vector space X is a pair (N, ) such that % is a continuous t-norm
and N is a fuzzy set in X x RY satisfying the following conditions for all z,y € X and X € R\{0}:
(fon0) N(z,0) = 0;
(fonl) N(z,t) =1 for allt > 0 if and only if x = 6;
(fon2) N(Ax,t) = N(x,t/|\|), for all t > 0;
(fon3) the function N(xz, ):RT — [0,1] is left continuous;
(fond) lims oo N(x,t) = 1;
(fond) there is a constant K > 1 such that N(x +y, K(t+s)) > N(z,t) * N(y,s), for all t,s > 0.

A fuzzy b-normed space is a triple (X, N, *) such that X is a (real) vector space and (N, ) is a fuzzy
b-norm on X. If K =1 we have the notions of fuzzy norm and fuzzy normed space, respectively (see, e.g.,
12, 7]).

Clearly, every fuzzy b-norm (N, %) on X induces a fuzzy b-metric (My, %) on X given by My (x,y,0) = 0,
and My (z,y,t) = N(y — z,t) for all z,y € X and ¢ > 0.

The topology T(ary,«) induced by (M, *) will be simply denoted by 7 (. .)-

By a fuzzy b-Banach space we mean a fuzzy b-normed space (X, N, x) such that the fuzzy b-metric space
(X, My, *) is complete. Then, the notion of fuzzy Banach space is stated in the obvious manner.

Now, we give two paradigmatic examples of fuzzy b-normed spaces.
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Example 2 Let (X, |.||) be a quasi-normed space with constant K. Denote by N the fuzzy set in X x Rt
given by Ny (x,0) =0 for all v € X, and

t

Nyj(z,t) = e

for all z € X and t > 0. It is straightforward to check that, for any continuous t-norm *, the pair (N, *)
is a fuzzy b-norm on X with constant K, such that TN = Tl Furthermore, (X, N|.,*) is a fuzzy
b-Banach space if and only if (X, ||.||) is a quasi-Banach space.

Example 3 Let (X, |.|]) be a quasi-normed space with constant K. Denote by Ny o1 the fuzzy set in
X xR given by Ny j01(x,0) =0 for all x € X, and for all z € X and t > 0, N o1(z,t) =1 if [|z]| <t
and Ny j01(x,t) = 0 if [|x]| > t. It is straightforward to check that, for any continuous t-norm *, the pair
(N|.1,01,*) 18 a fuzzy b-norm on X with constant K, such that T(Ny .00%) = T|.|I- Furthermore, (X, Nj.j.015%)
is a fuzzy b-Banach space if and only if (X, ||.||) is a quasi-Banach space.

In the sequel, we will say that a fuzzy b-normed space (X, N, %) is fuzzy normable if there is a fuzzy norm
(N', %) on X such that 7(y ) = T(n++) on X, and we will say that a fuzzy b-Banach space (X, N, ) is fuzzy
Banach structurable if there is a fuzzy norm (N’ +’) on X such that (X, N’,«’) is a fuzzy Banach space and
T(N,x) = T(N’%") on X.

Proposition 1 Let (X, N,*) be a fuzzy b-normed space. Then, Ty ) is a metrizable topology on X .
Proof. Cousider the fuzzy b-metric space (X, My, *) and apply Remark 3. m
Proposition 2 Let (X, N,*) be a fuzzy b-normed space. Then, (X, T(n ) 15 a topological vector space.

Proof. Let (\,), be a sequence of real numbers convergent to A € R with respect to th Euclidean metric
on R, and let (x,,), be a sequence in X that 7(y ,)-converges to a x € X. Given ¢ € (0,1) and ¢ > 0, there
exist 6 € (0,1) and ng € N such that (1—0)*(1—6) > 1—¢, |\, — A| <&, N(z—z,,t/2K?(|\| +¢)) > 1-,
and N(z,t/2K |\, — A|) > 1 — 0 for all n > ng. Hence,

Nz — A\pxn,t) = Nz — Az + A — Ay, t)
> Nz — Az, t/2K) « N(Apz — A\, t/2K)
= N(z,t/2K |Ap — A|) * N(x — x, t/2K |As])
> N(z,t/2K [Ay — A|) * N(z — 2,,t/2K2(|\| + €))
> (=) (1-8)>1-¢,

for all n > ng. We conclude that lim, .. N(Az — A,zp,t) = 1, so, by Remark 1, (X, 7(x)) is a topological
vector space. H

Theorem 1 FEvery fuzzy b-normed space is fuzzy normable.

Proof. Let (X,N,x) be a fuzzy b-normed space. It follows from Propositions 1 and 2 that (X,7(ar«))
is a metrizable topological vector space. Choose, and denote by dj, any invariant metric on X satisfying
dr(0,Ax) < dr(0, pux) whenever A < p, and 7(y ) = 74, (the existence of such metrics is guaranteed by [22,
Theorem 1.24]). Now, following [2, Theorem 8|, we have that the triple (X, N’,) is a fuzzy normed space
such that 7(x ) = T(n,.), where by - we denote the product continuous t-norm, and N’ is the fuzzy set in
X x RT given by N'(z,0) =0 for all z € X, and

N/(I,t) = m, (1)

for all x € X and ¢ > 0. This finishes the proof. m
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Theorem 2 FEvery fuzzy b-Banach space is fuzzy Banach structurable.

Proof. Let (X, N, x) be a fuzzy b-Banach space and let (z,),, be a Cauchy sequence in the fuzzy normed space
(X, N, ) as constructed in Theorem 1. By (1), we get that (z,), is a Cauchy sequence in the metric space
(X,dr). Choose an arbitrary e € (0, 1). Since 7 4) = 74, we find a 6 > 0 such that By(0,5) C By (0,¢,¢).
Since d; is invariant, there is ng € N such that d; (0, z, —x,,) < 0 for all n,m > ng, so My(zp, Tm,e) > 1—¢
for all n,m > ng. Hence, there is z € X such that (x,), is 7y .)-convergent to z, i.e., 7(y .j-convergent
to z. We conclude that (X, N’,-) is a fuzzy Banach space. m

Example 4 Fiz p € (0,1). Let IP(R) be the vector space of all sequences © := (), in R such that Y ", |
z, [P< co. Then, (IP(R), ||.||) is a quasi-Banach space, with constant 2/P)=1 where

lzll = (D 1 2a P2,

n=1

for all z € IP(R). Therefore, the triple (IP(R), Ny, *) is a fuzzy b-Banach space such that 7\ = (N | «),
where (N, %) is the fuzzy b-norm given in Evample 2.

It is well known that the function dr defined on IP(R) x IP(R) by di(z,y) = > oo, |zn — ynl|" for all
x,y € IP(R), is a translation invariant metric on IP(R) such that d;(0, \x) < dr(0, ux) whenever A < p, and
TII = Tdr- 80, T(Ny %) = Td;- By applying Theorems 1 and 2, we deduce that the triple (IP(R),N’,-) is
a fuzzy Banach space such that 7(y:.) = T(Ny. %), Where (see the proof of Theorem 1) N'(x,0) = 0 for all
x € IP(R), and

1
N'(z.t) =
(%) [ Sl

for all x € IP(R) and t > 0.

Remark 4 [t is not difficult to find examples of fuzzy normed spaces that are not quasi-normable. Indeed,
choose any metrizable topological vector space (X, T) that is not locally bounded (see, e.g., [22, FErample
1.44]). Then, (X,T) is not quasi-normable but it admits the structure of a fuzzy normed space ([2, 16, 20]).
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