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Abstract

We introduce the notion of fuzzy b-normed space as a generalization of the concept of fuzzy normed
space and also as a fuzzy counterpart of the classical concept of quasi-normed space in the sense of Hyers
and Bourgin. We show that every fuzzy b-normed space is fuzzy normable and deduce that every fuzzy
b-Banach space admits the structure of a fuzzy Banach space. These facts reveal striking differences with
what happens in classical analysis, where there are emblematic examples of quasi-Banach spaces that are
not normable.

1 Introduction and Preliminaries

Throughout this paper by R, R+ and N we will denote the set of real numbers, the set of non-negative real
numbers and the set of positive integer numbers, respectively. Our notation and terminology is standard. All
topologies are assumed to be Hausdorff. As usual, we will say that a topological space (X, τ) is metrizable if
there is a metric on X whose induced topology agrees with τ . In this case, we will say that τ is a metrizable
topology.

A classical and fundamental theorem in Functional Analysis, due to Kolmogorov [12], states that a
topological vector space is normable if and only if it is locally bounded and locally convex. This result
admits a nice extension that can be formulated as follows: a topological vector space is quasi-normable if
and only if it is locally bounded ([3, p. 445], [10, p. 77], [13, p. 159], [11, p. 245]). Therefore, the spaces
lp(R) and Lp([0, 1]), 0 < p < 1, yield classical examples of quasi-normed spaces that are not normable. An
interesting reminder on the origins of quasi-normed spaces may be found in [19, p. 66].

Let us recall ([3, 4, 10, 11, 19]) that a quasi-norm on a (real) vector space X is a function ‖.‖ : X → R+
that satisfies the following conditions for all x, y ∈ X and λ ∈ R:

(qn0) ‖x‖ = 0 if and only if x = θ;

(qn1) ‖λx‖ = |λ| ‖x‖;

(qn2) there is a constant K ≥ 1 such that ‖x+ y‖ ≤ K(‖x‖+ ‖y‖).

A quasi-normed space is a pair (X, ‖.‖) such that X is a (real) vector space and ‖.‖ is a quasi-norm on
X.

It is clear that each norm is a quasi-norm and, hence, each normed space is a quasi-normed space.

The so-called b-metric spaces, as defined and examined by Czerwik in [5, 6], constitute the expected
metric extension of the notion of a quasi-normed space.

Let X be a (non-empty) set. We say that a function d : X ×X → R+ is a b-metric on X if it satisfies
the following conditions for all x, y, z ∈ X:

(bm0) d(x, y) = 0 if and only if x = y;

(bm1) d(x, y) = d(y, x);
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(bm2) there is a constant K ≥ 1 such that d(x, y) ≤ K(d(x, z) + d(z, y)).

By a b-metric space we mean a pair (X, d) such that X is a (non-empty) set and d is a b-metric on X.
Obviously, every metric (space) is a b-metric (space).

The b-metric spaces are called quasi-metric spaces by several authors (see [1, 8, 18]). However, since
in the realm of general topology the term quasi-metric is used from many time ago to refer a function
d : X ×X → R+ satisfying conditions (bm0) and (bm2) with K = 1 (see [27]), we prefer to use the terms
b-metric and b-metric space instead of quasi-metric and quasi-metric space, respectively.

It is well known that, as in the metric case, each b-metric d on X induces a topology τd on X defined as
follows:

τd := {A ⊆ X : for any x ∈ A there is ε > 0 such that Bd(x, ε) ⊆ A} ,

where Bd(x, ε) := {y ∈ X : d(x, y) < ε} for all x ∈ X and ε > 0.

Of course, the set Bd(x, ε) is τd-open if d is a metric on X. However, Paluszyński and Stempak presented
in [18, p. 4310] an example of a b-metric space (X, d) for which there exist x ∈ X and ε > 0 such that the
set Bd(x, ε) is not τd-open.

It is also well known ([1, 8, 15, 18]) that the topology induced by any b-metric is metrizable. If ‖ · ‖ is
a quasi-norm on X, then the function d‖·‖ : X ×X → R+ given by d‖·‖(x, y) = ‖y − x‖ is a b-metric on X
and (X, τd‖·‖) is a topological vector space. In the sequel, the topology τd‖·‖ will be simply denoted by τ‖·‖
and it will be called the topology induced by ‖ · ‖. A quasi-Banach space is a quasi-normed space (X, ‖.‖)
such that the b-metric space (X, d‖·‖) is complete.

A topological vector space (X, τ) is (quasi-)normable provided that there is a (quasi-)norm ‖.‖ on X such
that τ = τ‖.‖.

In this note we introduce the notions of fuzzy b-normed space and fuzzy b-Banach space as generalizations
of the concepts of fuzzy normed space and fuzzy Banach space, respectively, and also as fuzzy counterparts
of the concepts of quasi-normed space and quasi-Banach space. In contrast to what happens with respect to
the normability of quasi-normal spaces, we will observe that every fuzzy b-normed space is fuzzy normable
and deduce that every fuzzy b-Banach space admits the structure of a fuzzy Banach space.

2 Fuzzy b-Normed Spaces

We start this section with the following well-known but fundamental notion to our study.

According to [25], a binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous t-norm if ∗ satisfies the
following conditions: (i) ∗ is associative and commutative; (ii) ∗ is continuous; (iii) a ∗ 1 = a for every
a ∈ [0, 1]; (iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, with a, b, c, d ∈ [0, 1].
Let us recall that for each continuous t-norm ∗ it follows ∗ ≤ ∧, where ∧ denotes the minimum continuous

t-norm, i.e., a ∧ b = min{a, b} for all a, b ∈ [0, 1].
In [17] (see also [9, 23, 24, 26, 28]), Nădăban introduced the following concepts as natural b-metric

generalizations of the classical notions of fuzzy metric and fuzzy metric space as given by Kramosil and
Michálek ([14]).

A fuzzy b-metric on a (non-empty) set X is a pair (M, ∗) such that ∗ is a continuous t-norm and M is a
fuzzy set in X ×X × R+ satisfying the following conditions for all x, y, z ∈ X:

(fbm0) M(x, y, 0) = 0;

(fbm1) M(x, y, t) = 1 for all t > 0 if and only if x = y;

(fbm2) M(x, y, t) =M(y, x, t), for all t > 0;

(fbm3) the function M(x, y,_) : R+ → [0, 1] is left continuous;
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(fbm4) there is a constant K ≥ 1 such that M(x, y,K(t+ s)) ≥M(x, z, t) ∗M(z, y, s), for all t, s > 0.

A fuzzy b-metric space is a triple (X,M, ∗) such that X is a (non-empty) set and (M, ∗) is a fuzzy b-metric
on X. If K = 1 we have the notions of fuzzy metric and fuzzy metric space in the sense of Kramosil and
Michálek ([14]).
Similarly to the case of fuzzy metric spaces each fuzzy b-metric (M, ∗) on a set X induces a topology

τ (M,∗) defined as follows:

τ (M,∗) := {A ⊆ X : for any x ∈ A there are ε ∈ (0, 1) and t > 0 such that BM (x, ε, t) ⊆ A},

where BM (x, ε, t) := {y ∈ X :M(x, y, t) > 1− ε} for all x ∈ X, ε ∈ (0, 1) and t > 0.

Remark 1 Given a fuzzy b-metric space (X,M, ∗), we get that a sequence (xn)n in X is τ (M,∗)-convergent
to x ∈ X if and only if for each t > 0, limn→∞M(x, xn, t) = 1.

Remark 2 It is well known that if (X,M, ∗) is a fuzzy metric space, then each ball BM (x, ε, t) is a τ (M,∗)-
open set. This fact does not hold for fuzzy b-metric spaces in general (see, e.g., [21, Example 5]).

Remark 3 In [21, Theorem 1] it was shown that every fuzzy b-metric space (X,M, ∗) is metrizable, i.e.,
there is a metric d on X such that τ (M,∗) = τd, where by τd we denote the topology induced by d.

Let us recall that a fuzzy b-metric space (X,M, ∗) is complete provided that every Cauchy sequence in
X is τ (M,∗)-convergent, where a sequence (xn)n in X is said to be a Cauchy sequence if for each ε ∈ (0, 1)
and t > 0 there exists an nε,t ∈ N such that M(xn, xm, t) > 1− ε for all n,m ≥ nε,t.
The following is a typical example of a fuzzy b-metric space (see, e.g., [17, 23, 26]).

Example 1 Let (X, d) be a b-metric space with constant K. Denote by Md the fuzzy set in X × X × R+
given by Md(x, y, 0) = 0 and

Md(x, y, t) =
t

t+ d(x, y)
,

for all t > 0. Then, for each continuous t-norm ∗, (X,Md, ∗) is a fuzzy b-metric space with constant K such
that τ (Md,∗) = τd. Furthermore, (X,Md, ∗) is complete if and only if (X, d) is complete.

Next, we introduce and discuss our fuzzy counterpart to the notion of quasi-normed space.

Definition 1 A fuzzy b-norm on a (real) vector space X is a pair (N, ∗) such that ∗ is a continuous t-norm
and N is a fuzzy set in X × R+ satisfying the following conditions for all x, y ∈ X and λ ∈ R\{0}:

(fbn0) N(x, 0) = 0;

(fbn1) N(x, t) = 1 for all t > 0 if and only if x = θ;

(fbn2) N(λx, t) = N(x, t/ |λ|), for all t > 0;

(fbn3) the function N(x,_) : R+ → [0, 1] is left continuous;

(fbn4) limt→∞N(x, t) = 1;

(fbn5) there is a constant K ≥ 1 such that N(x+ y,K(t+ s)) ≥ N(x, t) ∗N(y, s), for all t, s > 0.

A fuzzy b-normed space is a triple (X,N, ∗) such that X is a (real) vector space and (N, ∗) is a fuzzy
b-norm on X. If K = 1 we have the notions of fuzzy norm and fuzzy normed space, respectively (see, e.g.,
[2, 7]).
Clearly, every fuzzy b-norm (N, ∗) on X induces a fuzzy b-metric (MN , ∗) on X given byMN (x, y, 0) = 0,

and MN (x, y, t) = N(y − x, t) for all x, y ∈ X and t > 0.
The topology τ (MN ,∗) induced by (MN , ∗) will be simply denoted by τ (N,∗).
By a fuzzy b-Banach space we mean a fuzzy b-normed space (X,N, ∗) such that the fuzzy b-metric space

(X,MN , ∗) is complete. Then, the notion of fuzzy Banach space is stated in the obvious manner.
Now, we give two paradigmatic examples of fuzzy b-normed spaces.
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Example 2 Let (X, ‖.‖) be a quasi-normed space with constant K. Denote by N‖.‖ the fuzzy set in X ×R+
given by N‖.‖(x, 0) = 0 for all x ∈ X, and

N‖.‖(x, t) =
t

t+ ‖x‖ ,

for all x ∈ X and t > 0. It is straightforward to check that, for any continuous t-norm ∗, the pair (N‖.‖, ∗)
is a fuzzy b-norm on X with constant K, such that τ (N‖.‖,∗) = τ‖.‖. Furthermore, (X,N‖.‖, ∗) is a fuzzy
b-Banach space if and only if (X, ‖.‖) is a quasi-Banach space.

Example 3 Let (X, ‖.‖) be a quasi-normed space with constant K. Denote by N‖.‖,01 the fuzzy set in
X × R+ given by N‖.‖,01(x, 0) = 0 for all x ∈ X, and for all x ∈ X and t > 0, N‖.‖,01(x, t) = 1 if ‖x‖ < t
and N‖.‖,01(x, t) = 0 if ‖x‖ ≥ t. It is straightforward to check that, for any continuous t-norm ∗, the pair
(N‖.‖,01, ∗) is a fuzzy b-norm on X with constant K, such that τ (N‖.‖,01,∗) = τ‖.‖. Furthermore, (X,N‖.‖,01, ∗)
is a fuzzy b-Banach space if and only if (X, ‖.‖) is a quasi-Banach space.

In the sequel, we will say that a fuzzy b-normed space (X,N, ∗) is fuzzy normable if there is a fuzzy norm
(N ′, ∗′) on X such that τ (N,∗) = τ (N ′,∗′) on X, and we will say that a fuzzy b-Banach space (X,N, ∗) is fuzzy
Banach structurable if there is a fuzzy norm (N ′, ∗′) on X such that (X,N ′, ∗′) is a fuzzy Banach space and
τ (N,∗) = τ (N ′,∗′) on X.

Proposition 1 Let (X,N, ∗) be a fuzzy b-normed space. Then, τ (N,∗) is a metrizable topology on X.

Proof. Consider the fuzzy b-metric space (X,MN , ∗) and apply Remark 3.

Proposition 2 Let (X,N, ∗) be a fuzzy b-normed space. Then, (X, τ (N,∗)) is a topological vector space.

Proof. Let (λn)n be a sequence of real numbers convergent to λ ∈ R with respect to th Euclidean metric
on R, and let (xn)n be a sequence in X that τ (N,∗)-converges to a x ∈ X. Given ε ∈ (0, 1) and t > 0, there
exist δ ∈ (0, 1) and n0 ∈ N such that (1− δ)∗ (1− δ) > 1− ε, |λn − λ| < ε, N(x−xn, t/2K2(|λ|+ ε)) > 1− δ,
and N(x, t/2K |λn − λ|) > 1− δ for all n ≥ n0. Hence,

N(λx− λnxn, t) = N(λx− λnx+ λnx− λnxn, t)
≥ N(λx− λnx, t/2K) ∗N(λnx− λnxn, t/2K)
= N(x, t/2K |λn − λ|) ∗N(x− xn, t/2K |λn|)
≥ N(x, t/2K |λn − λ|) ∗N(x− xn, t/2K2(|λ|+ ε))
≥ (1− δ) ∗ (1− δ) > 1− ε,

for all n ≥ n0. We conclude that limn→∞N(λx− λnxn, t) = 1, so, by Remark 1, (X, τ (N,∗)) is a topological
vector space.

Theorem 1 Every fuzzy b-normed space is fuzzy normable.

Proof. Let (X,N, ∗) be a fuzzy b-normed space. It follows from Propositions 1 and 2 that (X, τ (M,∗))
is a metrizable topological vector space. Choose, and denote by dI , any invariant metric on X satisfying
dI(0, λx) ≤ dI(0, µx) whenever λ ≤ µ, and τ (N,∗) = τdI (the existence of such metrics is guaranteed by [22,
Theorem 1.24]). Now, following [2, Theorem 8], we have that the triple (X,N ′, ·) is a fuzzy normed space
such that τ (N,∗) = τ (N ′,·), where by · we denote the product continuous t-norm, and N ′ is the fuzzy set in
X × R+ given by N ′(x, 0) = 0 for all x ∈ X, and

N ′(x, t) =
1

1 + dI(0, x/t)
, (1)

for all x ∈ X and t > 0. This finishes the proof.
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Theorem 2 Every fuzzy b-Banach space is fuzzy Banach structurable.

Proof. Let (X,N, ∗) be a fuzzy b-Banach space and let (xn)n be a Cauchy sequence in the fuzzy normed space
(X,N ′, ·) as constructed in Theorem 1. By (1), we get that (xn)n is a Cauchy sequence in the metric space
(X, dI). Choose an arbitrary ε ∈ (0, 1). Since τ (N,∗) = τdI we find a δ > 0 such that Bd(0, δ) ⊆ BMN

(0, ε, ε).
Since dI is invariant, there is n0 ∈ N such that dI(0, xn−xm) < δ for all n,m ≥ n0, soMN (xn, xm, ε) > 1−ε
for all n,m ≥ n0. Hence, there is z ∈ X such that (xn)n is τ (N,∗)-convergent to z, i.e., τ (N ′,·)-convergent
to z. We conclude that (X,N ′, ·) is a fuzzy Banach space.

Example 4 Fix p ∈ (0, 1). Let lp(R) be the vector space of all sequences x := (xn)n in R such that
∑∞

n=1 |
xn |p<∞. Then, (lp(R), ‖.‖) is a quasi-Banach space, with constant 2(1/p)−1, where

‖x‖ = (
∞∑
n=1

| xn |p)1/p,

for all x ∈ lp(R). Therefore, the triple (lp(R), N‖.‖, ∗) is a fuzzy b-Banach space such that τ‖.‖ = τ (N‖.‖,∗),
where (N‖.‖, ∗) is the fuzzy b-norm given in Example 2.

It is well known that the function dI defined on lp(R) × lp(R) by dI(x, y) =
∑∞

n=1 |xn − yn|
p for all

x, y ∈ lp(R), is a translation invariant metric on lp(R) such that dI(0, λx) ≤ dI(0, µx) whenever λ ≤ µ, and
τ‖.‖ = τdI . So, τ (N‖.‖,∗) = τdI . By applying Theorems 1 and 2, we deduce that the triple (l

p(R), N ′, ·) is
a fuzzy Banach space such that τ (N ′,·) = τ (N‖.‖,∗), where (see the proof of Theorem 1) N ′(x, 0) = 0 for all
x ∈ lp(R), and

N ′(x, t) =
1

1 + t−p
∑∞

n=1 |xn|
p ,

for all x ∈ lp(R) and t > 0.

Remark 4 It is not diffi cult to find examples of fuzzy normed spaces that are not quasi-normable. Indeed,
choose any metrizable topological vector space (X, τ) that is not locally bounded (see, e.g., [22, Example
1.44]). Then, (X, τ) is not quasi-normable but it admits the structure of a fuzzy normed space ([2, 16, 20]).
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