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Abstract

In this paper, we shall obtain the estimates for the number of zeros of a polynomial whose intermediate
coeffi cients satisfy monotonicity condition. Our results besides generalizing the result due to Mohammad
[8] also provide some interesting results as special cases.

1 Introduction

In the vast landscape of mathematics, polynomials stand as pillars of exploration and understanding. They
weave through algebra, calculus, and beyond, shaping the foundation of countless mathematical concepts
and applications. Among the many fascinating aspects of polynomials lies the investigation of their roots,
the values at which they equal zero. This exploration leads us to the intriguing concept of bounds on the
number of zeros a polynomial can possess within a given interval. The study of polynomial roots dates back
centuries, with roots deeply embedded in the history of mathematics. Notably, mathematicians like Ren
Descartes and Isaac Newton laid crucial groundwork in understanding the behavior of polynomial roots.
Over time, the exploration of these roots evolved, culminating in fundamental theorems that shed light on
the bounds of their distribution. One such theorem is the Fundamental Theorem of Algebra (for reference
see [9]), a cornerstone result that asserts every non-constant polynomial with complex coeffi cients has at
least one complex root. Although the theorem guarantees the existence of as many zeros of a polynomial
as its degree, there is no method for finding these zeros when the degree exceeds four. So, the problem of
locating at least the regions which contain all or some zeros of a polynomial gain importance in the theory of
polynomials. In this direction, Cauchy [3] proved an interesting result known as Cauchy’s Classical Theorem
which states that all the zeros of a polynomial P (z) = a0 + a1z + a2z

2 + ...+ anz
n, an 6= 0 lie in

|z| < 1 + max
0≤j≤n−1

∣∣∣∣ ajan
∣∣∣∣ .

In the literature, there exists several results concerning the bounds for the zeros of polynomials and related
topics (for references see [1], [2], [7], [10] and [11]). One such elegant result that give the location of the zeros
of a polynomial with restricted coeffi cients is known as Eneström-Kakeya Theorem [7] which states :

Theorem 1 If P (z) =
∑n
j=0 ajz

j is a polynomial of degree n such that an ≥ an−1 ≥ ... ≥ a1 ≥ a0 > 0, then
P (z) has all its zeros in |z| ≤ 1.

Later on Joyall et al. [6] extended Theorem 1 by relaxing the condition of non-negativity and proved the
following result.

Theorem 2 If P (z) =
∑n
j=0 ajz

j is a polynomial of degree n such that an ≥ an−1 ≥ ... ≥ a1 ≥ a0, then
P (z) has all its zeros in

|z| ≤ |an| − a0 + |a0||an|
.
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There exists several extensions and generalizations of Theorem 1. However the following result concerning
the number of zeros of a polynomial in a closed disk can be found in Tichmarsh’s book, see[12].

Theorem 3 Let F (z) be analytic in |z| ≤ R such that |F (z)| ≤ M in |z| ≤ R and F (0) 6= 0. Then for
0 < δ < 1, the number of zeros of F (z) in the disk |z| ≤ Rδ does not exceed

1

log 1δ
log

M

|F (0)| .

Mohammad [8] proved the special case of Theorem 3 by imposing a restriction on the coeffi cients of a
polynomial similar to that of Eneström-Kakeya Theorem by establishing

Theorem 4 Let P (z) =
∑n
j=0 ajz

j bea polynomial of degree n such that an ≥ an−1 ≥ ... ≥ a1 ≥ a0 > 0.

Then the number of zeros of P (z) in |z| ≤ 1
2 does not exceed

1 +
1

log 2
log

an
a0
.

Dewan [4] extended Theorem 4 to the polynomials with complex coeffi cients and proved the following
results:

Theorem 5 Let P (z) =
∑n
j=0 ajz

j be a polynomial of degree n with complex coeffi cients such that for some
real β, |argaj − β| ≤ α ≤ π

2 for all j = 0, 1, 2, ..., n and |an| ≥ |an−1| ≥ ... ≥ |a1| ≥ |a0| > 0. Then the
number of zeros of P (z) in |z| ≤ 1

2 does not exceed

1 +
1

log 2
log
|an|(1 + cosα+ sinα) + 2 sinα

∑n−1
j=0 |aj |

|a0|
.

Theorem 6 Let P (z) =
∑n
j=0 ajz

j is a polynomial of degree n with complex coeffi cients. If Re(ai) =
αi, Im(ai) = βi, i = 0, 1, ..., n are such that αn ≥ αn−1 ≥ ... ≥ α1 ≥ α0 > 0, then the number of zeros of
P (z) in |z| ≤ 1

2 does not exceed

1 +
1

log 2
log

αn +
∑n
j=0 |βj |
|a0|

.

2 Main Results

In this paper, we present the generalization of Theorems 4, 5 and 6 by relaxing the condition of monotonicity
for extreme co-effi cients. In fact, we prove

Theorem 7 Let P (z) =
∑n
j=0 ajz

j , a0 6= 0 be a polynomial of degree n such that for some positive integer
p and a non-negative integer q with p ≥ q, ap ≥ ap−1 ≥ ... ≥ aq+1 ≥ aq. Then for 0 < δ < 1, the number of
zeros of P (z) in |z| ≤ δ does not exceed

1

log 1δ
log
|an|+Mp +Mq + ap − aq + |a0|

|a0|
,

where

Mp =

n∑
j=p+1

|aj − aj−1| and Mq =

q∑
j=1

|aj − aj−1|.

Remark 1 If a0 > 0, then for p = n, q = 0 and δ = 1
2 , Theorem 7 reduces to Theorem 4 due to Mohammad

[8] and if we take q = 0 in Theorem 7, then we get the following result.
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Corollary 1 Let P (z) =
∑n
j=0 ajz

j , a0 6= 0 be a polynomial of degree n such that for some positive integer
0 < p ≤ n, ap ≥ ap−1 ≥ ... ≥ a1 ≥ a0. Then for 0 < δ < 1, the number of zeros of P (z) in |z| ≤ δ does not
exceed

1

log 1δ
log
|an|+Mp + ap − a0 + |a0|

|a0|
,

where

Mp =

n∑
j=p+1

|aj − aj−1|.

If we choose p = n in Theorem 7, we obtain the following result.

Corollary 2 Let P (z) =
∑n
j=0 ajz

j , a0 6= 0 be a polynomial of degree n such that for a non-negative integer
q, an ≥ an−1 ≥ ... ≥ aq+1 ≥ aq. Then for 0 < δ < 1, the number of zeros of P (z) in |z| ≤ δ does not exceed

1

log 1δ
log
|an|+ an − aq + |a0|+Mq

|a0|
,

where

Mq =

q∑
j=1

|aj − aj−1|.

Next we extend Theorem 7 to the polynomials with complex coeffi cients and present the following results.

Theorem 8 Let P (z) =
∑n
j=0 ajz

j , a0 6= 0 be a polynomial of degree n with complex coeffi cients. If
Re(ai) = αi and Im(ai) = βi, i = 0, 1, ..., n are such that for some positive integer p and a non-negative
integer q with p ≥ q, αp ≥ αp−1 ≥ ... ≥ αq+1 ≥ αq. Then for 0 < δ < 1, the number of zeros of P (z) in
|z| ≤ δ does not exceed

1

log 1δ
log
|αn|+Mp +Mq + αp − αq + |α0|+ 2

∑n
j=0 |βj |

|a0|
,

where

Mp =

n∑
j=p+1

|αj − αj−1| and Mq =

q∑
j=1

|αj − αj−1|.

Remark 2 Setting α0 > 0, then for p = n, q = 0 and δ = 1
2 , Theorem 8 reduces to Theorem 6 due to Dewan

[4] and for q = 0, it yields the following.

Corollary 3 Let P (z) =
∑n
j=0 ajz

j , a0 6= 0 be a polynomial of degree n with complex coeffi cients. If
Re(ai) = αi, Im(ai) = βi, i = 0, 1, ..., n are such that for some positive integer p, αp ≥ αp−1 ≥ ... ≥ α1 ≥ α0,
then for 0 < δ < 1, the number of zeros of P (z) in |z| ≤ δ does not exceed

1

log 1δ
log
|αn|+Mp + αp − α0 + |α0|+ 2

∑n
j=0 |βj |

|a0|
,

where

Mp =

n∑
j=p+1

|αj − αj−1|.

If we put p = n in Theorem 8 , then we acquire the following result.
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Corollary 4 Let P (z) =
∑n
j=0 ajz

j , a0 6= 0 be a polynomial of degree n with complex coeffi cients. If Re(ai) =
αi, Im(ai) = βi, i = 0, 1, ..., n are such that for some non-negative integer q, αn ≥ αn−1 ≥ ... ≥ αq+1 ≥ αq,
then for 0 < δ < 1, the number of zeros of P (z) in |z| ≤ δ does not exceed

1

log 1δ
log
|αn|+Mq + αn − αq + |α0|+ 2

∑n
j=0 |βj |

|a0|
,

where

Mq =

q∑
j=1

|αj − αj−1|.

Theorem 9 Let P (z) =
∑n
j=0 ajz

j , a0 6= 0 be a polynomial of degree n with complex coeffi cients such that
for some real β and for some integers p and q with 0 ≤ q < p ≤ n, | arg ai − β| ≤ α ≤ π

2 , q ≤ i ≤ p we have

|ap| ≥ |ap−1| ≥ ... ≥ |aq+1| ≥ |aq|.

Then for 0 < δ < 1, the number of zeros of P (z) in |z| ≤ δ does not exceed

1

log 1δ
log
|an|+Mp + |ap|(cosα+ sinα) + 2 sinα

∑p−1
j=q |aj | − |aq|(cosα+ sinα) + |a0|+Mq

|a0|
,

where

Mp =

n∑
j=p+1

|aj − aj−1| and Mq =

q∑
j=1

|aj − aj−1|.

Remark 3 If a0 > 0, then for p = n, q = 0 and δ = 1
2 , Theorem 9 reduces to Theorem 5 due to Dewan [4]

and on taking q = 0 in Theorem 9, we produce following result :

Corollary 5 Let P (z) =
∑n
j=0 ajz

j , a0 6= 0 be a polynomial of degree n with complex coeffi cients such that
for some real β, | arg ai − β| ≤ α ≤ π

2 , 0 ≤ i ≤ p and satisfies |ap| ≥ |ap−1| ≥ ... ≥ |a1| ≥ |a0|, p ≥ 0. Then
for 0 < δ < 1, the number of zeros of P (z) in |z| ≤ δ does not exceed

1

log 1δ
log
|an|+Mp + |ap|(cosα+ sinα) + 2 sinα

∑p−1
j=0 |aj | − |a0|(cosα+ sinα) + |a0|

|a0|
,

where

Mp =

n∑
j=p+1

|aj − aj−1|.

If p = n in Theorem 9 , then we attain the following result.

Corollary 6 Let P (z) =
∑n
j=0 ajz

j , a0 6= 0 be a polynomial of degree n with complex coeffi cients such that
for some real β, | arg ai − β| ≤ α ≤ π

2 , q ≤ i ≤ n and satisfies |an| ≥ |an−1| ≥ ... ≥ |aq+1| ≥ |aq|, q ≥ 0.
Then for 0 < δ < 1, the number of zeros of P (z) in |z| ≤ δ does not exceed

1

log 1δ
log
|an|+ |an|(cosα+ sinα) + 2 sinα

∑n−1
j=q |aj | − |aq|(cosα+ sinα) + |a0|+Mq

|a0|
,

where

Mq =

q∑
j=1

|aj − aj−1|.
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3 Lemmas

For the proofs of the Theorems stated above, we need the following lemma due to Govil and Rehman [5].

Lemma 1 If for some real β, | argαi − β| ≤ α ≤ π
2 and |ai| ≥ |ai−1| for i = 0, 1, 2, ..., n, then

|ai − ai−1| ≤ (|ai| − |ai−1|) cosα+ (|ai|+ |ai−1|) sinα.

4 Proofs of Theorems

Proof of Theorem 7. Consider the polynomial

F (z) = (1− z)P (z) = (1− z)(anzn + an−1zn−1 + an−2zn−2 + ...+ ap+1zp+1

+apz
p + ...+ aq+1z

q+1 + aqz
q + aq−1z

q−1 + ...+ a1z + a0)

= −anzn+1 + (an − an−1)zn + (an−1 − an−2)zn−1 + ...+ (ap+1 − ap)zp+1

+(ap − ap−1)zp + ...+ (aq+1 − aq)zq+1 + (aq − aq−1)zq

+(aq−1 − aq−2)zq−1 + ...+ (a1 − a0)z + a0.

This gives for |z| ≤ 1

|F (z)| ≤ |an|+ |an − an−1|+ |an−1 − an−2|+ ...+ |ap+1 − ap|
+|ap − ap−1|+ ...+ |aq+1 − aq|+ |aq − aq−1|
+|aq−1 − aq−2|+ ...+ |a1 − a0|+ |a0|. (1)

Now by hypothesis ap ≥ ap−1 ≥ ... ≥ aq+1 ≥ aq, p ≥ q, using in inequality (1), we get,

|F (z)| ≤|an|+ |an − an−1|+ |an−1 − an−2|+ ...+ |ap+1 − ap|
+ (ap − ap−1) + (ap−1 − ap−2) + (ap−2 − ap−3)...+ (aq+1 − aq)
+ |aq − aq−1|+ |aq−1 − aq−2|+ ...+ |a1 − a0|+ |a0|.

This implies for |z| ≤ 1
|F (z)| ≤ |an|+Mp + ap − aq +Mq + |a0| =M.

Since F (z) is analytic in |z| ≤ 1 with |F (z)| ≤M for |z| ≤ 1 and F (0) = a0. Therefore applying Theorem 3
to the polynomial F (z), it follows that the number of zeros of F (z) in |z| ≤ δ does not exceed

1

log 1δ
log

M

|F (0)| .

As the number of zeros of P (z) in |z| ≤ δ is equal to number of zeros of F (z) in |z| ≤ δ. Hence the number
of P (z) in |z| ≤ δ does not exceed

1

log 1δ
log

M

|a0|
.

That proves Theorem 7.
Proof of Theorem 8. Define a polynomial T (z) by

T (z) = (1− z)P (z) = (1− z)
n∑
j=0

ajz
j = −anzn+1 +

n∑
j=1

(aj − aj−1)zj + a0.
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Therefore for |z| ≤ 1, we have

|T (z)| ≤ |an|+
n∑
j=1

|aj − aj−1|+ |a0|

≤ |αn|+ |βn|+ |α0|+ |β0|+
n∑
j=1

{
|αj − αj−1|+ |βj − |βj−1|

}
= |αn|+ |βn|+ |α0|+ |β0|+

n∑
j=1

|αj − αj−1|+
n∑
j=1

|βj − βj−1|,

or equivalently

|T (z)| ≤ |αn|+ |βn|+ |α0|+ |β0|+
n∑

j=p+1

|αj − αj−1|+
p∑

j=q+1

|αj − αj−1|

+

q∑
j=1

|αj − αj−1|+
n∑
j=1

(|βj |+ |βj−1|). (2)

By hypothesis, we have for given p and q, p ≥ q, αp ≥ αp−1 ≥ · · · ≥ αq+1 ≥ αq. Therefore inequality (2)
becomes

|T (z)| ≤ |αn|+ |α0|+Mp +Mq + 2

n∑
j=o

|βj |

+(αp − αp−1) + (αp−1 − αp−2) + · · ·+ (αq+1 − αq)

= |αn|+Mp + αp − αq +Mq + 2

n∑
j=0

|βj |+ |α0|.

This implies for |z| ≤ 1

|T (z)| ≤ |αn|+Mp + αp − αq +Mq + 2

n∑
j=0

|βj |+ |α0| = N.

This shows that |T (z)| ≤ N for |z| ≤ 1 . Further T (z) is analytic in |z| ≤ 1 and T (0) = a0 6= 0. Therefore
by Theorem 3, the number of zeros of T (z) in |z| ≤ δ does not exceed

1

log 1δ
log

N

|T (0)| .

Since by definition of T (z), it is clear that T (z) and P (z) have the same number of zeros in |z| ≤ δ. Hence
the number of P (z) in |z| ≤ δ does not exceed

1

log 1δ
log

N

|a0|
.

This completes the proof Theorem 8.
Proof of Theorem 9. Contemplate the polynomial

H(z) = (1− z)P (z) = (1− z)
n∑
j=0

ajz
j = −anzn+1 +

n∑
j=1

(aj − aj−1)zj + a0.



Ganie et al. 257

This gives for |z| ≤ 1

|H(z)| ≤ |an|+
n∑
j=1

|aj − aj−1|+ |a0|

≤ |an|+ |a0|+
n∑

j=p+1

(|aj − aj−1|) +
p∑

j=q+1

(|aj − aj−1|) +
q∑
j=1

(|aj − aj−1|)

= |an|+ |a0|+
n∑

j=p+1

(|aj − aj−1|) +
q∑
j=1

(|aj − aj−1|) + |ap − ap−1|+ |ap−1 − ap−2|+ ...+ |aq+1 − aq|.

Since by hypothesis, we have for p ≥ q, |ap| ≥ |ap−1| ≥ ... ≥ |aq+1| ≥ |aq|, therefore it follows by using
Lemma 1 that

|H(z)| ≤ |an|+ |a0|+Mp +Mq + [(|ap| − |aq|) cosα] + 2 sinα
p−1∑
j=q

|aj |+ |ap| sinα− |aq| sinα

= |an|+Mp +Mq + |a0|+ |ap|(cosα+ sinα) + 2 sinα
p−1∑
j=q

|aj | − |aq|(sinα+ cosα).

This implies for |z| ≤ 1

|H(z)| ≤ |an|+Mp + |ap|(cosα+ sinα) + 2 sinα
p−1∑
j=q

|aj | − |aq|(sinα+ cosα) +Mq + |a0| = R.

This shows that H(z) is analytic and |H(z)| ≤ R for |z| ≤ 1. Also by hypothesis H(0) = a0 6= 0. Therefore
involving Theorem 3, we get the number of zeros of H(z) in |z| ≤ δ does not exceed

1

log 1δ
log

R

|H(0)| .

As the number of zeros of H(z) in |z| ≤ δ is equal to number of zeros of P (z) in |z| ≤ δ. Hence the number
of P (z) in |z| ≤ δ does not exceed

1

log 1δ
log

R

|a0|
.

This proves Theorem 9.

5 Conclusion

Studying the location of zeros of a complex polynomial is a classical topic in geometric function theory. In
this context, several results can be found in the literature for the class of polynomials whose coeffi cients
satisfy certain monotonicity conditions. In this paper, we extended this classical inquiry by relaxing some
conditions related to the monotonicity on the coeffi cients of underlying polynomial. We specifically examined
how these conditions influence the zero distribution, particularly discussing the maximum number of zeros
that the polynomial in consideration can have within a particular region of complex plane. These results not
only contribute to the broader understanding of polynomial roots but also generalize many known results.
In addition to this, they provide open avenues for future research in polynomial theory.
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