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Abstract

This paper deals with the extension of ordinary inequalities on polynomial to integral inequalities for
the polar derivative of the polynomial having s-fold zero at the origin and remaining zeros in
|z| ≥ k, k ≥ 1.

1 Introduction

Let p(z) =
∑n
j=0 ajz

j be a polynomial of degree n. We define

‖p‖r =
{
1

2π

∫ 2π

0

|p(eiθ)|rdθ
} 1
r

, 0 < r <∞. (1)

If we let r →∞ in the above equality and make use of the well-known fact from analysis [12] that

lim
r→∞

{
1

2π

∫ 2π

0

|p(eiθ)|rdθ
} 1
r

= max
|z|=1

|p(z)|,

we can suitably denote
‖p‖∞ = max

|z|=1
|p(z)|.

A famous result due to Bernstein [13] states that if p(z) is a polynomial of degree n, then

‖p′‖∞ ≤ n‖p‖∞. (2)

Inequality (2) can be obtained by letting r →∞ in the inequality

‖p′‖r ≤ n‖p‖r, r > 0. (3)

Inequality (3) for r ≥ 1 is due to Zygmund [15]. Arestov [1] proved that (3) remains valid for 0 < r < 1 as
well.
If we restrict ourselves to the class of polynomials having no zero in |z| < 1, then inequality (2) and (3)

can be respectively improved by

‖p′‖∞ ≤
n

2
‖p‖∞, (4)
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‖p′‖r ≤
n

‖1 + z‖r
‖p‖r, r > 0. (5)

Inequality (4) was conjectured by Erdös and later verified by Lax [7] whereas, inequality (5) was proved by
de-Bruijn [4] for r ≥ 1 and by Rahman and Schmeisser [11] for 0 < r < 1.
As a generalization of (4), Malik [8] proved that if p(z) does not vanish in |z| < k, k ≥ 1, then

‖p′‖∞ ≤
n

1 + k
‖p‖∞. (6)

Under the same hypothesis of the polynomial p(z), Govil and Rahman [6] extended inequality (6) to Lr

setting by showing that

‖p′‖r ≤
n

‖z + k‖r
‖p‖r, r ≥ 1. (7)

Chan and Malik [2] considered the lacunary polynomial p(z) = a0 +
∑n
j=µ ajz

j , 1 ≤ µ ≤ n, and proved an
extension of inequality (6) as

‖p′‖∞ ≤
n

1 + kµ
‖p‖∞. (8)

With the same assumptions of the polynomial p(z), inequality (8) was improved by Pukhta [10], and proved

‖p′‖∞ ≤
n

1 + kµ

{
‖p‖∞ − min

|z|=k
|p(z)|

}
. (9)

Singh and Shah [14, Theorem 2.3] proved a generalization and improvement of (9) which Chanam et al.
[3] recently pointed out some missing part in it while trying to obtain the integral setting of the corrected
form of the above result due to Singh and Shah.

Theorem 1 Let p(z) = zs
(
a0 +

∑n
j=µ ajz

j
)
, 1 ≤ µ ≤ n − s, 0 ≤ s ≤ n − 1, be a polynomial of degree n

having s-fold zero at the origin and remaining n− s zeros in |z| ≥ k, k ≥ 1, then

max
|z|=1

|p′(z)| ≤
[

1

(n− s)
(
|a0| − m

ks

)
(1 + kµ+1) + µ|aµ|(kµ+1 + k2µ)

]
×
[
(n− s)2

(
|a0| −

m

ks

)
+ (n− s)µ|aµ|kµ+1

+s(n− s)
(
|a0| −

m

ks

)
(1 + kµ+1) + sµ|aµ|(kµ+1 + k2µ)

]
max
|z|=1

|p(z)|

− 1
ks

(n− s)2
(
|a0| − m

ks

)
+ (n− s)µ|aµ|kµ+1

(n− s)
(
|a0| − m

ks

)
(1 + kµ+1) + µ|aµ|(kµ+1 + k2µ)

min
|z|=k

|p(z)|. (10)

For a polynomial p(z) of degree n, we now define the polar derivative of p(z) with respect to a real or
complex number α as

Dαp(z) = np(z) + (α− z)p′(z).

This polynomial Dαp(z) is of degree at most n − 1 and it generalizes the ordinary derivative p′(z) in the
sense that

lim
α→∞

Dαp(z)

α
= p′(z),

uniformly with respect to z for |z| ≤ R, R > 0.
Over the past four decades, many different authors produced a large number of different versions and

generalizations of the above inequalities by involving the comparison of the polar derivative Dαp(z) with
various choices of p(z), α and other parameters.
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2 Lemmas

For the proof of the theorem, we require the following lemmas.

Lemma 1 If p(z) is a polynomial of degree n having no zero in |z| < k, k > 0, then

|p(z)| ≥ m for |z| ≤ k, (11)

where m = min|z|=k |p(z)|.

This lemma is due to Gardner et al. [5].

Lemma 2 The function

f(x) = kt+1

{
t
n
|at|
x kt−1 + 1

t
n
|at|
x kt+1 + 1

}
,

where t = 1, 2, 3, ... and k ≥ 1, is a non-decreasing function of x > 0.

Lemma 2 is due to Gardner et al. [5].

Lemma 3 If p(z) = zs
(
a0 +

∑n−s
j=µ ajz

j
)
, 1 ≤ µ ≤ n− s, 0 ≤ s ≤ n− 1, is a polynomial of degree n having

s-fold zero at the origin and remaining n− s zeros in |z| ≥ k, k ≥ 1, then for every real or complex number
λ with |λ| < 1,

A′ = kµ+1


µ
n−s

|aµ|
|a0−λmks |

kµ−1 + 1

µ
n−s

|aµ|
|a0−λmks |

kµ+1 + 1

 ≥ kµ+1


µ
n−s

|aµ|
|a0|−|λ| mks

kµ−1 + 1

µ
n−s

|aµ|
|a0|−|λ| mks

kµ+1 + 1

 = A, (12)

where m is defined in Lemma 1.

Proof. Since φ(z) = p(z)
zs = a0 +

∑n−s
j=µ ajz

j has no zero in |z| < k, k ≥ 1, by Lemma 1, we have

|φ(z)| ≥ min
|z|=k

|φ(z)| for |z| ≤ k

= min
|z|=k

{
|p(z)|
|z|s

}
≥ 1

ks
min
|z|=k

|p(z)|

=
m

ks
, (13)

where m = min|z|=k |p(z)|. In particular, (13) gives for z = 0 that

|a0| ≥
m

ks
. (14)

Now, for m > 0 ∣∣∣a0 − λm
ks

∣∣∣ ≥ ∣∣∣|a0| − |λ|m
ks

∣∣∣ = |a0| − |λ|m
ks

> 0. (15)

Applying Lemma 2 to (15), we have the required conclusion of Lemma 3.

Lemma 4 For k ≥ 1, µ = 1, 2, 3, ...,

A = kµ+1


µ
n−s

|aµ|
|a0|−|λ| mks

kµ−1 + 1

µ
n−s

|aµ|
|a0|−|λ| mks

kµ+1 + 1

 ≥ 1, (16)

where m is defined in Lemma 1.
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Proof. Since k ≥ 1 and µ = 1, 2, 3, ...,
kµ ≥ 1,

which is equivalent to
kµ − k ≥ 1− kµ+1. (17)

Also
µ

n− s
|aµ|

|a0| − |λ|mks
kµ > 0. (18)

Since L.H.S of (18) is > 0 and L.H.S of (17) is ≥ 0, whereas its R.H.S is ≤ 0, we have

µ

n− s
|aµ|

|a0| − |λ|mks
kµ(kµ − k) ≥ 1− kµ+1,

from which the claim of Lemma 4 follows.

Lemma 5 If p(z) = a0 +
∑n
j=µ ajz

j , 1 ≤ µ ≤ n is a polynomial of degree n having no zeros in |z| < k,
k ≥ 1, then for any complex number α with |α| ≥ 1 and for r > 0,

{∫ 2π

0

|Dαp(e
iθ)|rdθ

} 1
r

≤ n{|α|+A(µ)}Cr{A(µ)}
{∫ 2π

0

|p(eiθ)|rdθ
} 1
r

, (19)

where

A(µ) = kµ+1

 (
µ
n )
|aµ|
|a0| k

µ−1 + 1

(µn )
|aµ|
|a0| k

µ+1 + 1


and

Cr{A(µ)} =
{
1

2π

∫ 2π

0

|A(µ) + eiβ |rdβ
}−1

r

.

The above lemma is due to Mir and Ahmad [9, Corollary 1].

Lemma 6 If a ≥ 1, b ≥ c ≥ 1 and γ > 0, then

a+ b

‖b+ z‖r
≤ a+ c

‖c+ z‖r
.

The above lemma was proved by Govil and Kumar [18].

3 Main Results

In this paper, we extend Theorem 1 to integral analogue for polar derivative. In fact, we prove

Theorem 2 Let p(z) = zs
(
a0 +

∑n
j=µ ajz

j
)
, 1 ≤ µ ≤ n − s, 0 ≤ s ≤ n − 1, be a polynomial of degree n

having s-fold zero at the origin and remaining n − s zeros in |z| ≥ k, k ≥ 1, then for every α and λ with
|α| ≥ 1 and |λ| < 1 and for all r > 0,∥∥∥∥∥zDαp(z)− sαp(z)− (n− s)

λmzs+1

ks

∥∥∥∥∥
r

≤ (n− s)(|α|+A)‖A+ z‖r

∥∥∥∥∥p(z)zs − λm

ks

∥∥∥∥∥
r

, (20)

where A is as defined in (16) and m = min|z|=k |p(z)|.
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Proof. Let p(z) = zsφ(z) where φ(z) = a0 +
∑n−s
j=µ ajz

j , 1 ≤ µ ≤ n− s and 0 ≤ s ≤ n− 1, is a polynomial
of degree n− s having all its zeros in |z| ≥ k, k ≥ 1.
In case p(z) has no zero on |z| = k, then

0 < m′ = min
|z|=k

|φ(z)|

= min
|z|=k

{
1

|z|s |p(z)|
}

≥ 1

ks
min
|z|=k

|p(z)|

=
1

ks
m,

where
m = min

|z|=k
|p(z)|,

and on |z| = k,

|φ(z)| ≥ m′ ≥ m

ks
.

For every complex number λ such that |λ| < 1, it gives that

|φ(z)| > |λ|m
ks

.

Moreover, if p(z) has a zero on |z| = k, then m′ = 0. Thus either m′ = 0 or m′ 6= 0. In any case, it follows
by Rouche’s theorem that all zeros of the polynomial ψ(z) = φ(z)− λm′ lie in |z| ≥ k, k ≥ 1.

Now,

Dαψ(z) = (n− s)ψ(z) + (α− z)ψ′(z)

= (n− s)
{
φ(z)− λm

ks

}
+ (α− z)φ′(z)

= (n− s)φ(z) + (α− z)φ′(z)− (n− s)λm
ks

= Dαφ(z)− (n− s)
λm

ks
.

Applying Lemma 5 to ψ(z), we have for every real or complex number α with |α| ≥ 1 and for each r > 0,∥∥∥∥Dαφ(z)− (n− s)
λm

ks

∥∥∥∥
r

≤ (n− s)(|α|+A
′)

‖A′ + z‖r

∥∥∥∥φ(z)− λm

ks

∥∥∥∥
r

, (21)

where

A′ = kµ+1


µ
n−s

|aµ|
|a0−λmks |

kµ−1 + 1

µ
n−s

|aµ|
|a0−λmks |

kµ+1 + 1

 .

By Lemmas 3 and 4,
A′ ≥ A ≥ 1, (22)

where

A = kµ+1


µ
n−s

|aµ|
|a0|−|λ| mks

kµ−1 + 1

µ
n−s

|aµ|
|a0|−|λ| mks

kµ+1 + 1

 .
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Using Lemma 6 with (22), we have
|α|+A′
‖z +A′‖r

≤ |α|+A
‖z +A‖r

. (23)

Since p(z) = zsφ(z), we have
Dαp(z) = zsDαφ(z) + sαz

s−1φ(z),

i.e.,
zDαp(z) = zs+1Dαφ(z) + sαp(z),

i.e.,

Dαφ(z) =
zDαp(z)− sαp(z)

zs+1
=
Dαp(z)

zs
− sα p(z)

zs+1
. (24)

Using (24) in (21), we have∥∥∥∥Dαp(z)

zs
− sα p(z)

zs+1
− (n− s)λm

ks

∥∥∥∥
r

≤ (n− s)(|α|+A
′)

‖A′ + z‖r

∥∥∥∥p(z)zs − λm

ks

∥∥∥∥
r

. (25)

Now
Dαp(z)

zs
− sα p(z)

zs+1
− (n− s)λm

ks
=

1

zs+1

{
zDαp(z)− sαp(z)− (n− s)

λmzs+1

ks

}
. (26)

Using (23) and (26) in (25), we get the desire result.

Remark 1 We are interested to examine whether inquality (20) serves as the integral setting of Theorem 1
concerning polar derivative, which we discuss below.

Now, taking limit as r →∞ on both sides of (20), we have∥∥∥∥∥zDαp(z)− sαp(z)− (n− s)
λmzs+1

ks

∥∥∥∥∥
∞

≤ (n− s)(|α|+A)‖A+ z‖∞

∥∥∥∥∥p(z)zs − λm

ks

∥∥∥∥∥
∞

. (27)

Let z1 be a point on |z| = 1 such that

max
|z|=1

∣∣∣∣p(z)zs − λm

ks

∣∣∣∣ = ∣∣∣∣p(z1)zs1
− λm

ks

∣∣∣∣ . (28)

Now, we choose the argument of λ such that∣∣∣∣p(z1)zs1
− λm

ks

∣∣∣∣ = ∣∣∣∣p(z1)zs1

∣∣∣∣− |λ|mks ≤ max|z|=1
|p(z)| − |λ|m

ks
. (29)

Moreover on |z| = 1,∣∣∣∣zDαp(z)− sαp(z)− (n− s)
λmzs+1

ks

∣∣∣∣ ≤ |Dαp(z)| − s|α||p(z)| − (n− s)
|λ|m
ks

. (30)

Using (28), (29) and (30) in (27), we have

max
|z|=1

|Dαp(z)| − s|α|max
|z|=1

|p(z)| − (n− s) |λ|m
ks
≤ (n− s)(|α|+A)

A+ 1

{
max
|z|=1

|p(z)| − |λ|m
ks

}
. (31)

Dividing both sides of inequality (31) by |α| and letting |α| → ∞, and considering limit as |λ| → 1, we get
inequality (10).
Again, taking s = 0 in (20), we get the following interesting result.
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Corollary 1 Let p(z) =
(
a0 +

∑n
j=µ ajz

j
)
, 1 ≤ µ ≤ n, be a polynomial of degree n having no zero in

|z| < k, k ≥ 1, then for every α, λ with |α| ≥ 1 and |λ| < 1, and for all r > 0

‖Dαp(z)− nλm‖r ≤
n(|α|+A0)
‖A0 + z‖r

‖p(z)− λm‖r , (32)

where

A0 = kµ+1


µ
n

|aµ|
|a0|−|λ|mk

µ−1 + 1

µ
n

|aµ|
|a0|−|λ|mk

µ+1 + 1

 and m = min
|z|=k

|p(z)|.

Remark 2 Dividing both sides of (32) by |α| and taking limit as |α| → ∞, we get an integral analogue of
a result due to Dewan et al. [16, Theorem 1] as shown below.

Now, letting r →∞ on both sides of (32), we get

max
|z|=1

|Dαp(z)− nλm| ≤
n(|α|+A0)
A0 + 1

max
|z|=1

|p(z)− λm|. (33)

Following similar procedures as in (28) and (29) in the right hand side of (33), inequality (33) would give

max
|z|=1

|Dαp(z)| − n|λ|m ≤
n(|α|+A0)
A0 + 1

{
max
|z|=1

|p(z)| − |λ|m
}
. (34)

Remark 3 When |λ| → 1, (34) reduces to a result of Dewan et al. [16, Theorem 1]. Further, on dividing
both sides of inequality (34) by |α| and taking limit as |α| → ∞, we get a result due to Gardner et al. [17].
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