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Abstract

In this paper, we investigate new extensions of Rivlin’s inequality regarding generalization in terms
of the relative growth of a polynomial p(z) with respect to two circles |z| = r and |z| = R while taking
into account the involvement of certain coeflicients of the underlying polynomial. Our results improve
and generalize certain well-known polynomial inequalities. As a consequence of our results, we obtain
other interesting results too. Further, a numerical example is also given in order to illustrate graphically
and compare the obtained inequalities with some recently published results.

1 Introduction

Approximating complex functions with simpler polynomial expressions is a fundamental concept in mathe-
matics and applied sciences. This technique involves constructing polynomial functions that closely mimic
the behavior of intricate functions, making analysis, computation, and problem-solving easier across vari-
ous domains. Polynomial approximation is crucial in fields such as numerical analysis, signal processing,
computer-aided design, physics, and engineering.

Several approaches have been developed to address polynomial approximation, each tailored to specific
contexts and requirements. Least squares approximation, using techniques like linear regression, minimizes
the overall error between the polynomial and data points. Chebyshev approximation minimizes the maximum
absolute error over an interval, ensuring robustness. Rational function approximation introduces flexibility
by representing functions as ratios of polynomials. Each method has strengths and is chosen based on
data characteristics, desired accuracy, and computational efficiency. Researchers continue to refine these
techniques, ensuring that polynomial approximation remains a powerful and adaptable tool in mathematics
and computational sciences.

However, another approach involves applying Bernstein’s inequality, specifically, its trigonometric version,
which plays a crucial role in the literature for establishing inverse theorems in approximation theory (see
Borwein and Erdélyi [15], Ivanov [27], Lorentz [6], Telyakovskii [24]) and have their intrinsic interests. The
first result in this area was connected with some investigation of the well-known Russian chemist Mendeleev
[4]. In fact, Mendeleev’s problem was to determine max_j<z<1 |[p'(z)|, where p(z) is a quadratic polynomial
of real variable x with real coefficients and satisfying —1 < p(z) <1 for —1 < 2 < 1. He himself was able to
prove that if p(z) is a quadratic polynomial and |[p(x)| < 1 on [—1, 1], then [p’(z)| < 4 on the same interval.
A. A. Markov [1] generalized this result for a polynomial of degree n in the real line. He proved that if p(z)
is an algebraic polynomial of degree at most n with real coefficients, then

/ < 2 .

_max [p'(@)] <n”_max |p(z)|
After about twenty years, Bernstein [25] needed the analog of Markov’s Theorem for the unit disk in the
complex plane instead of the interval [—1, 1] to prove an inverse theorem of approximation (see Borwein and
Erdélyi [15, p. 241]) to estimate how well a polynomial of a certain degree approximates a given continuous
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function in terms of its derivatives and Lipschitz constants. This leads to the famous well-known result
known as Bernstein’s inequality which states that if ¢ € 7,, (the set of all real trigonometric polynomials of
degree at most n), then for K := [0, 27),
tm™ ()] <n™ t(0)]. 1
mas 10 (0)] < n™ wmas [1(0) (1)
The above inequality remains true for all ¢ € 75 (the set of all complex trigonometric polynomials

of degree at most n), which implies, as a particular case, the following algebraic polynomial version of
Bernstein’s inequality on the unit disk.

Theorem 1 If p(z) is a polynomial of degree n, then

max P'(2)] < n max Ip(2)l. (2)
z|=1 z|=1

Equality holds in (2) if and only if p(z) has all its zeros at the origin.

It is really of interest both in theoretical and practical aspects that continuous functions are approximated
by polynomials. In this regard, we have the following interesting result (Theorem 2) [15, p. 241, Part (a)
of E.18] which approximates m times differentiable real-valued function on a half-closed interval [0, 27) by
trigonometric polynomials. For the sake of convenience of the readers, we state the above result more
precisely.

Let Lip,, a € (0, 1], denote the family of all real-valued functions ¢g defined on K satisfying

sup { l9(x) — g(y)]

= :x;ﬁyeK}<oo.
|z =yl

If C(K) denotes the set of all continuous functions on K, then for f € C'(K), let
E.(f) = inf{sup [t—fl:te Tn} .
oK

Theorem 2 (Direct theorem) Suppose f is m times differentiable on K and f'™ € Lip, for some o €
(0,1]. Then there is a constant C' depending only on f so that

En(f) <Cn~(mF®) p =12, ...
On the other hand, the converse (inverse) of Theorem 2 is essentially of interest and is stated below.

Theorem 3 (Inverse theorem) Suppose m is a non-negative integer, a € (0,1), and f € C(K). Suppose
there is a constant C > 0 depending only on f such that

En(f) <Cn~(mF®) n =12, ..
Then f is m times continuously differentiable on K and f™ € Lip,.

The proof of Theorem 3 is done by the application of the well-known result due to Bernstein (inequality
(1)) given in [15].

This discussion shows how important Bernstein and Markov-type inequalities are in approximation theory.
For more information on direct and inverse theorems and related topics, you can check out books by Cheney
[5], Lorentz [6], and DeVore and Lorentz [19].

Inequality (2) can be sharpened if the zeros of p(z) are restricted. In this direction, Erdds conjectured
and later Lax [16] proved that if p(z) has no zero in |z| < 1, then

max /()] < = max|p(z)]. 3)

|z|= |2l
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As a partial generalization of (3), Malik [9] proved that if p(z) has no zero in |z| < k, k > 1, then

p(2)]-

fﬁi’ﬂp( 2l = 1+k| |= o
Inequality (2) shows how fast a polynomial of degree at most n can change and is of interest both in
mathematics, especially in approximation theory, and in application areas such as physical systems. Various
analogs of these inequalities are known in which the underlying intervals, the sup-norms, and the families
of polynomials are replaced by more general sets, norms, and families of functions, respectively. One such
generalization is the relative growth of the polynomial p(z) concerning two circles |z| = r < 1 and |z| = 1,
and obtain inequalities about the dependence of sup-norms of |p(rz)| on |p(z)|, where |z| = 1.
For a polynomial p(z) of degree n, in accordance with the maximum modulus principle, the ensuing result
[7] holds for R > 1 as
ma [p(2)] < B max p(2)] (4)
with equality only for p(z) = Az".
The reverse analog of the inequality (4) whenever R < 1 is given by Varga [23], and he proved that if
p(z) is a polynomial of degree n, then for 0 < r <1,
max [p(z)| > r" max |p(z)|. ()
|z|=r |z|=1
Equality in (5) holds whenever p(z) = az™.
For the class of polynomials having no zero inside the unit circle, it was Rivlin [26] who proved that if
p(2) is a polynomial of degree n having no zero in |z| < 1, then for 0 < r < 1,

14+7\"
()] > (T) ma (2| (6)

Equality holds in (6) if p(z) = (z + a)™ whenever |a| = 1.
The following result can be viewed as a consequence of Rivlin’s inequality and was proved independently
by Jain [28] that if p(z) is a polynomial of degree n having all its zeros in |z| < 1, then for r > 1,

r+1\"
o p(2) = ("5 ) max ). @
|z|=r 2 |z|=1

The inequalities mentioned above serve as the foundation for an extensive body of literature on their
extensions, generalizations, and improvements in various directions, see the papers [2, 3, 10, 12, 13, 14, 22].
For a deeper understanding of these types of inequalities and their applications, we refer readers to the
monographs [8, 20].

Govil [11] generalized inequality (6) by studying the relative growth of polynomials p(z) having no zero
n |z| < 1, with respect to two circles |z| = r and |z| = R whenever 0 < r < R < 1, and proved that

_|_
ma[p(2)] > (1 : R) ma 5(2). (®)

1+R
Kumar [17] (see also [18, Corollary 2.2]) obtained a bound that sharpens inequality (6) by proving that
if p(z) is a polynomial of degree n having no zero in |z| < 1, then for 0 < r <1,

o= (5 [ (5 mer

Recently, Dhankhar and Kumar [21] further improved the bound of inequality (9) under the same hypothesis

and proved that
1+7r\" lao| — lan|] (1 —7)
max |p(z Z[( )—F[ max |p(z)|. 10

|z|:r| ( )| 2 |CLO|—|— |6Ln| 2n |z|:1| ( )| ( )

The result is best possible and the equality holds for the polynomial p(z) = ( 1tz )n
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They [21] further obtained the refinement of inequality (8) by proving that if p(z) is a polynomial of degree
n having no zero in |z| < 1, then for 0 < r < R <1,

1 T " 2(n—1) |a’0| |CLn| (1z L )
> - Z). 11
||zn|axr |p(z)| |:(1 ) + R | 0| | n| ~ (1 )n |Izn| ax |p( )| ( )

The present paper is mainly motivated by the desire to establish a generalized refinement of inequality
(11) and as a consequence, we obtain another result that gives a generalized improvement of inequality
(7). The paper is organized as follows. Section 2 introduces the main results, accompanied by remarks and
corollaries. Section 3 provides and constructs auxiliary results essential for proving the main findings. The
proofs of these main results are detailed in Section 4. Section 5 presents a numerical example to graphically
illustrate and compare the new inequalities with previously established ones. Finally, Section 6 offers the
conclusion.

2 Main Results

In this paper, we first establish a result for the class of polynomials that have no zero in |z| < 1, except for
a zero of multiplicity s at the origin, where 0 < s < n. This result not only improves but also generalizes
the inequalities (8) of Govil [11], and (11) of Dhankhar and Kumar [21]. More precisely, we prove that:

n—s
Theorem 4 Ifp(z) =2° Y a,2¥, 0 < s <mn, is a polynomial of degree n having no zero in |z| < 1, except
0

V=
zero of multiplicity s at the origin, then for 0 <r < R <1,

(L™ ot [ Ll ] Qs
1+R lag| 4 |an—s|R*—5 (I1+R)n—s

x max [p(z)]- (12)

max|p(z)| = (%)

|z|=

When s = 0, inequality (12) of Theorem 4 reduces to the following interesting result which sharpens
inequalities (8) due to Govil [11] as well as (11) of Dhankhar and Kumar [21].

n
Corollary 1 Ifp(z) = > a,z” is a polynomial of degree n having no zero in |z| < 1, then for0 <r < R <1,
v=0

max [p(z)]. (13)

>
max p(2)] = AR | e

|z|=r

(LY o[ ool T 1
1+R lao| + |an|R™

Remark 1 Since p(z) has no zero in |z| < 1, we have |ag| — |an| > 0, and hence for 0 <r < R <1,

_ n-lp _
Jr [ |lao| — lan| ] A+n)" (R—r) 0.
lao| + |an|R" (1+R)» -

Therefore inequality (13) sharpens inequality (8) whenever |ag| # |an| and 0 < r < R < 1. Moreover,

|ao| — |an| ] 1+r)"H(R—1) ZRz(nn[ |ao| — |an| ] (R—r)

(1+R) |ao| + |an| R™ | (1+ R)"™

In view of these facts, inequality (13) improves over inequality (11) whenever

(
where 0 < r < R <1
R<1,andn>1.

lao| # |an|, 0 < r <

Putting R = 1 in inequality (13) of Corollary 1, we get the following interesting result which improves
the well-known result due to Rivlin [26], and also the inequality (10) of Dhankhar and Kumar [21].
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n
Corollary 2 Ifp(z) = > a,z” is a polynomial of degree n having no zero in |z| < 1, then for 0 <r <1,

w0 > [(F) o+ [l ) D200 o, (14

2 lao| + |an| 2n |2]=1

As an application of Theorem 4, we prove the following result, which deals with a class of polynomials
having all its zeros in |z| < 1, More precisely, we prove

n—
Theorem 5 If p(z) = z° Z a,z”, 0 < s < n, is a polynomial of degree n having all its zeros in |z| < 1 with
zero of multiplicity s at the omgm then forr > R > 1,

(r+ 1 )"S N [ |an—s| —lao] | (r+1)"*"'(r—R)

max|p(:) = ()’

|z|=r

max [p(z)]. (15)

R+1 |@n—s| R + |ao] (R+ 1)n—s lz|=R

When s = 0 in inequality (15) of Theorem 5, we get the following result which gives an improvement of
a result due to Dhankhar and Kumar [21, Corollary 1.4].

n

Corollary 3 If p(z) = > ay2¥ is a polynomial of degree n having all its zeros in |z| < 1 with zero of
v=0

multiplicity s at the origin 0 < s < n, then forr > R > 1,

() i) i e e (10

max [p(z)| =

|z|=r

Putting R = 1 in inequality (16) of Corollary 3, we have the following interesting result which yields
an improvement of inequality (7) due to Jain [28], as well as of a result due to Dhankhar and Kumar [21,
Theorem 1.2].

n
Corollary 4 Ifp(z) = > a,z” is a polynomial of degree n having all its zeros in |z| < 1, then forr > 1,

w0 > [ () [k ol D= D o, a7

2 lan| + |aol 2n |2]=1

Remark 2 Since p(z) has all its zeros in |z| < 1, we have |a,| — |ag] > 0, and we have for r > 1,

[|an| - |a0|] GRS
[an] +al 2

This conditions shows that inequality (17) sharpens inequality (7) significantly, whenever |a,| # |aog| and
r> 1.

3 Lemmas
We shall need the following lemmas to prove the above theorems and verify the claims.

Lemma 1 Foranye>1, f > 1, where 1 > R > 0 and m is any positive integer, then

1 e—1 n 1 mf—1> ef —1
R) e+ Rm R) f+R ™~ ef+Rmtl’
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Proof. We need to show

1 e—1 I\" f-1 ef —1
— +| = - > 0.
R) e+ R™ R f+R ef+Rmtl

R™(e—1)(f+ R)(ef + R™) + R(f —1)(e + R™)(ef + ™)
—R™ef —1)(e+R™)(f + R) > 0.

Equivalently,

Since
(e+R™)(f+R)=ef +eR+ fR™ + R™ <2(ef + R™)

for ef + R™*1 > eR + fR™ ase > 1, f > 1, it suffices to demonstrate that
R™(e—1)(f+ R)(ef + R™™) + R(f — 1)(e + R™)(ef + R™)
—2R™ Y (ef — 1)(ef + R™) > 0.
But
R™(e = 1)(f + R)(ef + R™™) + R(f = 1)(e + R™)(ef + R™™1) = 2R™ (ef — 1)(ef + R™)
= (ef + R™™)[fR™(1 - R)(e — 1) + eR(f — 1)(1 — R™)] > 0.
This completes the proof. m

Lemma 2 Forany 0 <r < R <1 and R; > 1, where 1 < j < n, we have

e R;+R 1+R RiRs..R, + R" (1+R)"
Proof. We prove the result by induction on n. The identity
Ri+r 1+7r Ri—1 R—r
= 19
Ri+R (1+R>+[R1+R] (1+R>’ (19)
justifies the validity of (18) for n = 1. Let us assume that (18) is true for n = m. Then using the result for
m and with the help of (19), we have
m—+1 m
f(345) - (55 (89
Jaley Rj + R Royy1 +R iy Rj + R
1+r 4 Ry —1 R—r 1+7r\™
- 1+R Rpt1+RI\1+R 1+R

L R™ 1 RiR-... -1 ] (1+T>m71(R—T)

RiR,.. R +Rm (1+R)m™
1\ RiRy Rn—1 (1 ™ Rg1 — 1
R) RiRy..Rpm+R™ " \R) Rn1+R

[
5
[ 7;5? = H;m] [ ] (R |
7)
A4+r)mR—r)

- (¢

)

r

(1+ R)m+t
mAt 1\ RiRs..Ry —1 I\N™ Ryiq —1
+Rm - 142...4vm + - m—+1

R) RiRy..R,, + R™ R) Rmi1+R

BT

“(z

_l’_
_l’_

(
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Applying Lemma 1 to the second term on the right-hand side of the above inequality, we obtain

“ﬁl Ri+r\_ (Ll+r m“+Rm RiRy..Rpi1—1 | (1 +7)"(R—7)
e Ri+R) ~ \1+R RiRs...Rp41 + R (1+ R)ym+1

which by induction, the proof completes. m

4 Proofs of the Main Results

Proof of Theorem 4. We consider p(z) = 2°G(z), where G(z) is a polynomial of degree n — s having
no zero in |z| < 1. Let z; = Rje%, where 1 < j < n — s, be the zeros of G(z). Since G(z) has no zero in
|z] <1, R; > 1. Then for any 0 <7 < R <1 and 0 < 6 < 27, we have

|G (re'?)| nl:f |re? — R;eti|
|G(Re')| |
T Jrei0-0) R

et |Re7;(070]‘) _ Rj|

1
[ r*+ R} —2rRjcos(0 —0;) \°
R2 + R —2RR; cos(0 — 0)

n

H (T+RJ>
iy R+Rj

3 <
w

Y

Therefore, we have

n—s

cee) = (T] (Rf; )| it (20)

Now, applying Lemma 2 to the right-hand side of the inequality (20) and using the fact that

|ao

|an75|

RiRy..Ry_s =

3

since R; > 1, j=1,2,...n— s, |ag| — |an—s| > 0. We have the following inequality

i0 L+r\"° n—s—1 laol — [an—s| (1+r)" "' (R-r) i0
’G(Te )’ > (1 m R) + R [|a0| m |anS|R"S} At B ’G(Re )’ . (21)
Also, we have
i p(re’)
|G(T€ )| . (reif)s (22)
|G(Rei?)| — |p&e) |’
(Rele)s

From inequalities (21) and (22), we have

max [p(2)|-

max[p()] > ()" E

(o)™ s et [ L] ] Qs
|z|=r R

1+ R lao| + |an—s|R™—* (1+ R)n—s

This completes the proof of Theorem 4. =
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Proof of Theorem 5. Since p(z) has all its zeros in |z| < 1, with zero of multiplicity s at the origin

0 < s < n, its conjugate reciprocal polynomial ¢(z) = 2"p (%) of degree n — s has no zero in |z| < 1. Now,
if r > R >1, then % < % < 1. Applying corollary 1 to ¢(z), we get

1+l n—s 1 n—s—1 an_s —la (1+l)n7571(i_l)
(1) +(3) [Pl 8l B e
i 7 ol T a0l () 1+ D) ik

Using the facts that

max |g(z)] >
==L

1 1
max |¢(z)] = =— max |p(z)| and max |q(z)| = — max |p(z)|,
max Jo(2)| = gz max ()] and max o(2) = - max (=)
we have
T\ r+1\""° |an—s| — |ao| (r+1)"=*"Y(r — R)
> (= .
fﬁfﬁ Ip(2)l = (R) (R+ 1) + [lanis"SJr lao] (R+1)n—s |Izr|li)z§ Ip(=)]

This ends the proof of Theorem 5. m

5 Numerical Example and Graphical Representations

As an illustration of the obtained results, we consider the following example and compare the bounds obtained
from our results with previously known results.

Example 1 Let p(z) = (z +2)?(z + 3)? with no zero in |z| < 1. Then on the circle |z| = r, we have
Ip(re'®)| = [(rcosf+ 2)? + (rsin6)?][(rcos 6 + 3)2 + (rsin 6)?)]
= (r*+4+4rcosh)(r* +9 + 6rcosb).
For convenience, we denote the quantity on the right-hand side by
A(0) = (r* + 4+ 4rcos0)(r* + 9+ 6rcosf), 6 € [0,27).

We must choose 0 such that A(0) is the maximum. For this we require to solve A’(f) =0,
i.e.,
— (107® sin  + 607 sin 6 + 48r? sin 6 cos ) = 0,
i.e.
—10(r2
0 =0,7, and cosfl[%].

Further, for 8 =0,

A" —60r — 4812 <0, for 0 <r <1,

i.e., A(0) attains its mazimum value as (r +2)(r + 3)2. Thus

i0 2 2
= == 2
max |p(z)] = max [p(re®)| = (r+2)%(r+3)7,
which we can also observe in Figure 1.

We can consider the differences between the values of the left and the right-hand sides respectively in the
inequalities (8) due to Gowil [11], (11) due to Dhankhar and Kumar [21], and (13) of Corollary 1 as

1+r
14+ R

4
M(p,r)— ( ) M(p, R), of inequality (8),

1+7\* 35RS(R —r) , ,

Si(r,R) =< M(p,r)— (1+R> + 36+ RV 1 R) M(p, R), of inequality (11),
1+7r\*  35R¥1+7)3(R—7) , ,

M(p,r)— (1+R> 36+ B (11 RS M(p,R),  of inequality (13).
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Ip(re'®)

Figure 1: Surface graph of the function (r,8) — |p(re*®)| for 0 < r <1 and 0 < 6 < 2, clearly showing the
extremals.

In Figure 2, we present the comparison of the surface graphs for the differences (r, R) — 1(r, R) of the
inequalities (8), (11), and (13) for 0 < r < 0.5 and 0.5 < R < 1 indicated respectively by blue, grey, and
orange colors. It is clear that the lesser the value of 61 (r, R) for a surface, the more improved the bound is.
It can be seen that inequality (13) of our Corollary 1 gives a higher improvement than inequalities (8) due
to Govil [11], and (11) due to Dhankhar and Kumar [21] as the values of v and R vary.

30 [

20

61(r,R)

1.0

Figure 2: Surface comparison of the differences (r, R) — 41 (r, R) in the inequalities (8), (11), and (13).

For r = 0.5, we have max|,|—o.5 |p(z)| = 76.56, and for the values of R as 0.6, 0.8, and 0.9, we have
max|;|—o.¢ [p(2)| = 87.61, max|.|—o.s [p(2)| = 113.21, and max,|—g.9 |p(2)| = 127.92, respectively. Then it is
evident that the differences between the values of the left and the right-hand sides in the inequalities (8) due
to Govil [11], (11) due to Dhankhar and Kumar [21], and (13) of Corollary 1 are as in the following Table
1.

When R = 1, inequalities (8) due to Gowil [11], (11) of Dhankhar and Kumar [21], and (13) of Corollary
1 reduces respectively to inequalities (6) due to Rivlin [26], (10) due to Dhankhar and Kumar [21], and (14)
of Corollary 2.

Further, we can examine the differences between the left and right-hand sides in the inequalities (9) due
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R=0.6 R=038 R=09
Inequality (8) 8.89 21.97 26.87
Inequality (11) 8.83 21.15 24.88
Inequality (13) 7.74 16.59 17.65

New Extensions of the Well-Known Rivlin’s Inequality

Table 1: Differences between the values of the left and the right-hand sides given by inequalities (8), (11),

and (13).

to Kumar [17], (10) of Dhankhar and Kumar [21], and (14) of Corollary 2 to compare their sharpness. For

this, we consider

M(p,?”)—

M(p,?”)—

M(p,?”)—

In Figure 3, we present
in the inequalities (9) due

() () () ]
() @) ()]

(15 () (12

the graphics for the difference r — A(r) between the left and the right-hand sides
to Kumar [17], (10) due to Dhankhar and Kumar [21], and (14) of Corollary 2.

of inequality (9),

of inequality (10),

of inequality (14).

= Kumar (1.9)

ot === Dhankhar and Kumar (1.10) 1
=== Corollary 2.3

0 - .

0.0 0.2 04 0.6 0.8 1.0

r

Figure 3: Comparison of the differences r — A(r) in the inequalities (9), (10), and (14).

For r = 0.3, 0.5, and 0.7, we have respectively max|,|—o.3 |p(2)| = 57.61, max|.|—o.5 |p(z)| = 76.56, and
max|;—o.7 [p(2)| = 99.80. Then it is evident that the differences between the values of the left and the right-
hand sides given by inequalities (9) due to Kumar [17], (10) of Dhankhar and Kumar [21], and (14) of
Corollary 2 are as in the following Table 2.

Remark 3 At any given point along the r-azis, the inequalities whose A(r) graph is positioned closer to
the r-azis offer a more refined and improved bound in comparison to the other inequalities. From Figure 3,



Thoudam et al. 535

r=0.3 r=0.5 r=0.7
Inequality (9) 29.86 30.47 24.56
Inequality (10) | 25.95 26.74 22.08
Inequality (14) |  18.81 16.63 12.08

Table 2: Differences between the values of the left and the right-hand sides given by inequalities (9), (10),
and (14).

it is clear that inequality (14) of Corollary 2 gives the most improved bound for all v, 0 < r < 1, for this
particular ezample. It is clear that as the degree of the polynomial rises, our result enhances in precision and
accuracy, surpassing significantly the results obtained from inequalities (9) due to Kumar [17], and (10) of
Dhankhar and Kumar [21].

6 Conclusion

In the past few years, a series of papers on Rivlin-type inequalities has been published, resulting in significant
advancements in various areas. This paper continues the exploration of these inequalities for polynomials,
establishing new results that consider the placement of specific polynomial coefficients. Our findings not
only generalize but also refine several well-known polynomial inequalities. Finally, we provide a numerical
example to graphically illustrate and compare our newly obtained inequalities with recent results.
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