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Abstract

The purpose of this paper is to study the existence and multiplicity of positive solutions for a math-
ematical model of thermal explosion which is described by the system

−∆u = λf(v), x ∈ Ω,
−∆v = λg(u), x ∈ Ω,
n.∇u+ a(u)u = 0, x ∈ ∂Ω,
n.∇v + b(v)v = 0, x ∈ ∂Ω,

where Ω is a bounded smooth domain of RN , ∆ is the Laplacian operator, λ > 0 is a parameter, f, g are
C1 strictly increasing functions that have a combined sublinear effect at ∞, and a, b : [0,∞) → (0,∞)
are strictly increasing C1 functions. We establish our existence and multiplicity results by the method
of sub- and supersolutions.

1 Introduction

A classical problem in combustion theory is a model of thermal explosion which occurs due to a spontaneous
ignition in a rapid combustion process. In this paper, we consider a model involving a nonlinear boundary
heat loss which is not a very typical one in classical combustion theory, but is relevant to some more
applications (see [4, 10, 12, 5] for details). The model reads as:

θ(t)−∆θ = λf(η), (t, x) ∈ (0,∞)× Ω,
η(t)−∆η = λg(θ), (t, x) ∈ (0,∞)× Ω,
n.∇θ + a(θ)θ = 0, (t, x) ∈ (0,∞)× ∂Ω,
n.∇η + b(η)η = 0, (t, x) ∈ (0,∞)× ∂Ω,
θ(0, x) = 0 = η(0, x).

(1)
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Here θ, η are the appropriately scaled temperature in a bounded smooth domain Ω ⊂ RN, N ≥ 1, and f, g
are the normalized reaction rate. We assume that f, g satisfy the following assumptions:

(H1) f, g ∈ C([0,∞)) are strictly increasing functions,

(H2) lims→∞
f(Ag(s))

s = 0, for all A > 0.

On the C2 boundary ∂Ω, with the outward unit normal denoted by n, the heat-loss parameters a(θ), b(η)
are assumed to satisfy the following hypothesis:

(H3) a, b : [0,∞)→ (0,∞) are strictly increasing bounded C1 functions.

Physically this assumption means that a heat loss through the boundary always exists and increases
linearly with the temperature even in the small temperature regime.
A bifurcation (or scaling) parameter λ > 0 can be associated with the size of domain Ω in (1) which

grows linearly as the measure of Ω increases. It is well known that, after normalizing for the size of Ω, the
long term behavior of solution of the system (1) is close to the solution of the time-independent system:

−∆u = λf(v), x ∈ Ω,
−∆v = λg(u), x ∈ Ω,
n.∇u+ a(u)u = 0, x ∈ ∂Ω,
n.∇v + b(v)v = 0, x ∈ ∂Ω.

(2)

The motivation for this study cames from the work in [7] where the authors established the existence,
uniqueness and multiplicity of positive solutions for certain range of λ for the single equation of the form{

−∆u = λf(u), x ∈ Ω,
n.∇u+ a(u)u = 0, x ∈ ∂Ω.

Here we extend this study to Laplacian system of the form (2). In [1], Ali-Shivaji-Ramaswamy discussed
the existence of multiple positive solutions to such systems with Dirichlet boundary conditions. One can
refer to [3, 8] for some recent existence and uniqueness results of elliptic problems with nonlinear boundary
conditions.

2 Existence Results

In this section, we shall establish our existence results via the method of sub - supersolution. A pair of
nonnegative functions (ψ1, ψ2) ∈W 1,2∩C(Ω)×W 1,2∩C(Ω) and a pair (z1, z2) ∈W 1,2∩C(Ω)×W 1,2∩C(Ω)
are called a subsolution and supersolution of the system (2) if they satisfy

−∆ψ1 ≤ λf(ψ2), x ∈ Ω,
−∆ψ2 ≤ λg(ψ1), x ∈ Ω,
n.∇ψ1 + a(ψ1)ψ1 ≤ 0, x ∈ ∂Ω,
n.∇ψ2 + b(ψ2)ψ2 ≤ 0, x ∈ ∂Ω,

(3)

and 
−∆z1 ≥ λf(z2), x ∈ Ω,
−∆z2 ≥ λg(z1), x ∈ Ω,
n.∇z1 + a(z1)z1 ≥ 0, x ∈ ∂Ω,
n.∇z2 + b(z2)z2 ≥ 0, x ∈ ∂Ω,

(4)

respectively. It is well known that if there exist sub and supersolutions (ψ1, ψ2) and (z1, z2) respectively
of the system (2) such that (ψ1, ψ2) ≤ (z1, z2). Then the system (2) has a solution (u, v) such that (u, v)
∈ [(ψ1, ψ2), (z1, z2)] ( see [2, 6] ).
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By strict sub and super-solutions we understand functions (ψ1, ψ2) and (z1, z2) for which strict inequalities
(3) and (4) hold.
Our multiplicity results are obtained by constructing sub and super-solution pairs that satisfy the fol-

lowing lemma.

Lemma 1 ([6, 9, 11]) Suppose that the system (2) has a sub-solution (ψ1, ψ2), a strict super-solution
(ζ1, ζ2), a strict sub-solution (w1, w2), and a super-solution (z1, z2) for the system (2) such that

(ψ1, ψ2) ≤ (ζ1, ζ2) ≤ (z1, z2),

(ψ1, ψ2) ≤ (w1, w2) ≤ (z1, z2),

and (w1, w2) � (ζ1, ζ2). Then the system (2) has at least three distinct solutions (ui, vi), i = 1, 2, 3 such that

(u1, v1) ∈ [(ψ1, ψ2), (ζ1, ζ2)], (u2, v2) ∈ [(w1, w2), (z1, z2)]

and
(u3, v3) ∈

[
(ψ1, ψ2), (z1, z2)

]
\
([

(ψ1, ψ2), (ζ1, ζ2)
]
∪
[
(w1, w2), (z1, z2)

])
.

To precisely state our existence result we consider the unique classical solution er of the following linear
elliptic problem {

−∆er = 1, x ∈ Ω,
n.∇er + r0er = 0, x ∈ ∂Ω,

for r = a, b, where r0 = r(0). Then we establish the following theorem.

Theorem 1 Let (H1)—(H3) hold and f(0) or g(0) be strictly positive. Then the system (2) has a positive
solution (u, v) for all λ > 0.

Proof. It is easy to see that (ψ1, ψ2) = (0, 0) is a subsolution of the system (2). We now construct the

supersolution (z1, z2). Let (z1, z2) =
(
Cλea, λg(Cλ‖eb‖∞)eb

)
, where Cλ is a large number to be chosen later.

We shall verify that (z1, z2) is a supersolution of the system (2) for all λ > 0. By (H2) we can choose Cλ
large enough so that

Cλ ≥ λf
(
λg(Cλ‖eb‖∞)‖eb‖∞

)
,

and therefore

−∆z1 = Cλ ≥ λf
(
λg(Cλ‖eb‖∞)‖eb‖∞

)
≥ λf

(
λg(Cλ‖eb‖∞)eb

)
= λf(z2) inΩ,

and

n.∇z1 + a(z1)z1 ≥ Cλn.∇ea + Cλeaa0

= Cλ(n.∇ea + eaa0)

= 0 on ∂Ω.

Next,

−∆z2 = λg
(
Cλ‖eb‖∞

)
≥ λg

(
Cλeb

)
= λg(z1), inΩ,

and

n.∇z2 + b(z2)z2 ≥ λg
(
Cλ‖eb‖∞

)
n.∇eb + λg

(
Cλ‖eb‖∞

)
ebb0

= λg
(
Cλ‖eb‖∞

)
(n.∇eb + b0eb) = 0, on ∂Ω,
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which implies that (z1, z2) is indeed a positive supersolution of the system (2). Therefore the system (2) has
a positive solution for all λ > 0.

Our second result concerns with multiplicity of solution for the system (2) and gives an estimate on the
parameter λ when such a situation occurs. For positive constants ai, bi; i = 1, 2, define

Q1(a1, b1) = min{ a1
f(b1)

,
b1

g(a1)
}

and

Q2(a2, b2) = max{ a2
f(b2)

,
b2

g(a2)
}.

Then we establish:

Theorem 2 Assume f(0) or g(0) be positive. Let BR be the largest ball of radius R inscribed in Ω, for
0 < ε < R, we define

C1(Ω) = inf
ε

N

εN
RN−1

R− ε ,

and C(Ω) = C1(Ω)‖er‖∞, for r = a, b. Let (H1)—(H3) hold and Q1

Q2
> C(Ω) for some ai, bi, i = 1, 2. Then

the system (2) has at least three positive solutions for λ ∈ (λ∗, λ
∗), where λ∗ = CQ2 and λ

∗ = Q1

‖er‖∞ , for
r = a, b.

Proof. We will establish a pair of subsolutions (ψ1, ψ2), (w1, w2) and a pair of supersolutions (ζ1, ζ2),
(z1, z2), satisfying Lemma 1. Clearly (ψ1, ψ2) = (0, 0) is a subsolution of the system (2).
We next construct a positive supersolution (ζ1, ζ2), of the system (2) when λ < Q1

‖er‖∞ , for r = a, b. Since
λ < a1

f(b1)‖ea‖∞ , we can choose ε > 0 so small that λf(b1) <
a1

ε+‖ea‖∞ . Let

(ζ1, ζ2) = (a1
ea + ε

‖ea‖∞ + ε
, b1

eb + ε

‖eb‖∞ + ε
).

Then, we have

−∆ζ1 =
a1

ε+ ‖ea‖∞
> λf(b1)

≥ λf
(
b1

eb + ε

‖eb‖∞ + ε

)
= λf(ζ2) inΩ,

and

n.∇ζ1 + a(ζ1)ζ1 ≥ a1
ε+ ‖ea‖∞

(
n.∇ea + (ea + ε)a0

)
=

a1
ε+ ‖ea‖∞

(n.∇ea + a0ea + a0ε)

=
a1a0ε

ε+ ‖ea‖∞
> 0 on ∂Ω.

Similar argument shows that ζ2 satisfies −∆ζ2 > λg(ζ1) inΩ, and n.∇ζ2 + b(ζ2)ζ2 > 0.
Next let us construct a strict sub-solution (w1, w2) of the system (2). First note that a system −∆uD = λf(vD), x ∈ Ω,

−∆vD = λg(uD), x ∈ Ω,
uD = 0 = vD, x ∈ ∂Ω,
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admits a strict sub-solution (w1D, w2D) with ‖w1D‖∞ ≥ a2 and ‖w2D‖∞ ≥ b2 provided λ < λ∗ (see [1]).
Then we have (w1, w2) � (ζ1, ζ2). From Hopf’s lemma, n.∇wiD < 0 for i = 1, 2. Therefore, setting w1 = w1D
and w2 = w2D we obtain a strict sub-solution for the system (2). for λ > λ∗.
Let (z1, z2) be the super solution as in the proof of Theorem 2 Further, wi, ζi ≤ zi, i = 1, 2 for Cλ large.

Hence there exist positive solutions (ui, vi), i = 1, 2, 3 such that

(u1, v1) ∈ [(ψ1, ψ2), (ζ1, ζ2)], (u2, v2) ∈ [(w1, w2), (z1, z2)]

and
(u3, v3) ∈

[
(ψ1, ψ2), (z1, z2)

]
\
([

(ψ1, ψ2), (ζ1, ζ2)
]
∪
[
(w1, w2), (z1, z2)

])
.
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