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Abstract

For a specific class of two-point boundary value problems involving fourth-order ordinary differential
equations, we investigate the existence and uniqueness of solutions. Applications of such problems for
beam deflection modeling are quite interesting. The principal instruments utilized in this investigation
comprise the application of the fixed point theorems of Banach and Rus. When a beam experiences a
loading force and is immersed at its left end and free at its right, our theoretical findings are applied
to elastic beam deflections. For several classes of linear and nonlinear loading forces, the existence and
uniqueness of solutions to the models are guaranteed.

1 Introduction

We consider the nonlinear fourth-order differential equation

y′′′′ + β2y′′ = f(x, y), x ∈ [0, L], (1)

together with the boundary conditions

y(0) = 0, y′(0) = 0, y′′(L) = 0, y′′′(L) = 0, (2)

in this article. Here L, β ∈ R, β > 0, f : [0, L] × R → R is continuous and f(x, 0) 6= 0 for x ∈ [0, L]. The
assumption f(x, 0) 6= 0 excludes the possibility of the trivial solution. By a solution to (1)—(2) we mean a
function y : [0, L]→ R such that y is four times differentiable, with a continuous fourth-order derivative on
[0, L], which we denote by y ∈ C4 ([0, 1]), and our y satisfies both (1) and (2).

Using fixed point theorems, the purpose of this work is to establish and compare results on the existence
of a unique solution to (1)—(2). Our major findings indicate that there exists a unique nontrivial solution to
the problem if and only if L is small and the function f meets the Lipschitz condition. We first construct the
related Green’s function and rephrase our problem (1)—(2) as an equivalent integral equation in order to get
these results. Next, we utilize an infinite strip to apply the Banach fixed point theorem. The Banach fixed
point theorem is then used inside a closed and bounded set in order to extend the conclusion to a larger
class of functions. Lastly, we extend the length of the interval where the result is valid by Rus’s fixed point
theorem. We consider examples to compare the obtained results.
An examination of fourth-order boundary value problems is naturally motivated by the analysis of de-

flections in elastic beams. Imagine a thin beam which is embedded at the end x = 0 and free at the other
end x = L on the x-axis. A transverse load h(x) and a compressive force P , which vary throughout the
beam’s length, are two of the forces acting on it. If y = y(x) represents the resultant deflection of the beam

at position x, with β =
√

P
EI , the differential equation

y′′′′ + β2y′′ = h(x), x ∈ [0, L], (3)
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442 Fourth Order Boundary Value Problem

depicts the displacement of the beam in the transverse direction caused by buckling, where E is the slender
member’s Young’s modulus and I is the beam’s moment of inertia along its length. Assume that the
compressive load P and E · I are constants for the sake of simplicity. It is obvious that β needs to be bigger
than zero; otherwise, P = 0 would result from β = 0. Given that the beam is embedded at the end x = 0
and free at the other end x = L, the problem in this case is subject to the boundary conditions (2). The
fourth-order differential equation (1) is obtained if we take into account the transverse load on the beam,
which is provided by f(x, y). This load may not be linear.
Examining the construction of Green functions unique to boundary value problems is a common step

in the study of their solutions. As a result, Green functions are important in boundary value problem
theory. In general, the expressions of Green functions are more complicated. This statement is true even
for a simple-looking second-order differential equation y′′ + 2ay′ + by = g(x), x ∈ [0, L], and the boundary
conditions Ay(0) − By′(0) = 0, Cy(L) + Dy′(L) = 0, or Ay(0) + By(L) = 0, Cy′(0) + Dy′(L) = 0. (See
Appendices A and B). Consequently, it is tough to derive their properties, which play an important role in
the qualitative analysis of the corresponding boundary value problems (See Appendix C). Here A, B, C, D,
L, a, b ∈ R with A2 +B2 > 0, C2 +D2 > 0, and g : [0, L]→ R is continuous.

Fourth-order boundary value problems and their application to elastic beam deflections have been exten-
sively researched. The solvability of fourth-order boundary value problems and the existence and uniqueness
of solutions have been the focus of numerous well-known studies. One powerful and effi cient method for
proving the existence or uniqueness of solutions to nonlinear boundary value problems is to use fixed point
theorems. The presence of solutions to fourth-order boundary value problems using different fixed point the-
orems has been investigated by numerous writers. Among the several articles discussing the subject of the
solvability of fourth-order nonlinear differential equations with respect to a variety of boundary conditions
using fixed point theory, we refer to [1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 19] and the references therein
for a few recent publications in this area.
The problem at hand is not the same as the works described above. We also note that our method

of ensuring the existence and uniqueness of solutions to fourth-order boundary value problems appears to
hold a unique place in the literature: it applies Rus’s fixed point theorem. The findings presented here
represent a step forward from more conventional methods, including using Banach’s fixed point theorem.
Rus’s fixed point theorem and two metrics are used to accomplish this. As we shall see, this makes it possible
to comprehend the existence and uniqueness of solutions to a larger class of problems. This involves honing
the Lipschitz constants in closed and limited domains as well as in a global (unbounded) setting.
Since our main tools in this paper are fixed point theorems, let us state Banach and Rus’s fixed point

theorems for the reader’s convenience.

Theorem 1 ([18]) Let X be a nonempty set, and d be a metric on X such that (X, d) forms a complete
metric space. If the mapping T : X → X satisfies d(Ty, Tz) ≤ αd(y, z) for some α ∈ (0, 1) and all y, z ∈ X,
then there is a unique y0 ∈ X such that Ty0 = y0.

Theorem 2 ([16]) Let X be a nonempty set, and d and ρ be two metrics on X such that (X, d) forms a
complete metric space. If the mapping T : X → X is continuous with respect to d on X and

1. there exists c > 0 such that d(Ty, Tz) ≤ cρ(y, z) for all y, z ∈ X, and

2. there exists α ∈ (0, 1) such that ρ(Ty, Tz) ≤ αρ(y, z) for all y, z ∈ X,

then there is a unique y0 ∈ X such that Ty0 = y0.

This is how the remainder of the paper is structured. Using the variation of parameters formula and
a few more assumptions, we construct the Green’s function in Section 2 that corresponds to the boundary
value problem (1)—(2). The estimation of an integral involving the Green’s function is the focus of Section 3.
Our primary theorems regarding the uniqueness of the solution to the boundary value problem (1)—(2) are
demonstrated in Section 4. We also give some instances to show how well-established results can be applied.
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2 Construction of the Green’s Function

Rewriting the boundary value problem (1)—(2) as an equivalent integral equation is the aim of this section.
Thus, we will examine the linear equation (3) in conjunction with the boundary conditions (2).

Proposition 1 If h : [0, L] → R is a continuous function, then the boundary value problem (3)—(2) has a
unique solution which we can write as

y(x) =

∫ L

0

G(x, ξ)h(ξ)dξ, 0 ≤ x ≤ L, (4)

where the Green’s function is given by

G(x, ξ) =

{
G1(x, ξ), 0 ≤ ξ ≤ x ≤ L,
G2(x, ξ), 0 ≤ x ≤ ξ ≤ L. (5)

Here

K(x, ξ) =
1

β3 [β(x− ξ)− sinβ(x− ξ)] ,

G1(x, ξ) =
(1− cosβx) sinβξ

β3 +
(sinβx− βx) cosβξ

β3 +K(x, ξ),

and

G2(x, ξ) =
(1− cosβx) sinβξ

β3 +
(sinβx− βx) cosβξ

β3 .

Proof. The general solution of (3) is given by

y(x) = c1 + c2x+ c3 cosβx+ c4 sinβx+

∫ x

0

K(x, ξ)h(ξ)dξ, 0 ≤ x ≤ L, (6)

where c1, c2, c3 and c4 are arbitrary constants. From (6), we have

y′(x) = c2 − βc3 sinβx+ βc4 cosβx+

∫ x

0

Kx(x, ξ)h(ξ)dξ, 0 ≤ x ≤ L, (7)

y′′(x) = −β2c3 cosβx− β2c4 sinβx+

∫ x

0

Kxx(x, ξ)h(ξ)dξ, 0 ≤ x ≤ L, (8)

y′′′(x) = β3c3 sinβx− β3c4 cosβx+

∫ x

0

Kxxx(x, ξ)h(ξ)dξ, 0 ≤ x ≤ L, (9)

where

Kx(x, ξ) =
1

β2 [1− cosβ(x− ξ)] , Kxx(x, ξ) =
sinβ(x− ξ)

β
, Kxxx(x, ξ) = cosβ(x− ξ).

Using boundary conditions (2) in (6)—(9) and rearranging the terms, we get

c1 =

∫ L

0

sinβξ

β3 h(ξ)dξ, c2 = −
∫ L

0

cosβξ

β2 h(ξ)dξ, c3 = −c1, c4 = − 1

β
c2.

Substituting the constants c1, c2, c3 and c4 in (6) and rearranging the terms, we obtain (4). Hence, the
boundary value problem (3)—(2) has a unique solution (4). To verify that y ∈ C4[0, L], one can differentiate
(4) four times and check its continuity.
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3 Estimation of the Green’s Function

In this section, we prove a useful inequality for an integral that involves the Green’s function.

Proposition 2 The Green’s function in (5) satisfies∫ L

0

|G(x, ξ)| dξ ≤ Lk1 + Lk2 +
L4

24
,

where

k1 = sup
x∈[0,L]

∣∣∣∣ (1− cosβx)

β3

∣∣∣∣ and k2 = sup
x∈[0,L]

∣∣∣∣ (sinβx− βx)

β3

∣∣∣∣ .
Proof. For all x ∈ [0, L], we have∫ L

0

|G(x, ξ)| dξ =

∫ x

0

|G(x, ξ)| dξ +

∫ L

x

|G(x, ξ)| dξ

≤
∫ x

0

∣∣∣∣∣ (1− cosβx) sinβξ

β3

∣∣∣∣∣dξ +

∫ x

0

∣∣∣∣∣ (sinβx− βx) cosβξ

β3

∣∣∣∣∣dξ
+

∫ x

0

|K(x, ξ)| dξ

+

∫ L

x

∣∣∣∣∣ (1− cosβx) sinβξ

β3

∣∣∣∣∣dξ +

∫ L

x

∣∣∣∣∣ (sinβx− βx) cosβξ

β3

∣∣∣∣∣dξ
≤ k1

[∫ x

0

|sinβξ| dξ +

∫ L

x

|sinβξ| dξ
]

+ k2

[∫ x

0

|cosβξ| dξ +

∫ L

x

|cosβξ| dξ
]

+

∫ x

0

K(x, ξ)dξ

= k1

∫ L

0

|sinβξ| dξ + k2

∫ L

0

|cosβξ| dξ +

∫ x

0

K(x, ξ)dξ

≤ Lk1 + Lk2 +
x4

24

≤ Lk1 + Lk2 +
L4

24
.

The proof is complete.

4 Existence of a Unique Solution

In this section, we will apply fixed point theorems to prove our results on the existence of a unique solution
to the boundary value problem (1)—(2) and compare them. For this, let us define two metrics on the set X
of continuous functions defined on [0, L] such that

d(y, z) = sup
x∈[0,L]

|y(x)− z(x)| ,

and

ρ(y, z) =

(∫ L

0

|y(x)− z(x)|2 dx
) 1

2

,

for all y, z ∈ X. It is easy to show that (X, ρ) is a metric space and (X, d) forms a complete metric space.
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4.1 Application of Theorem 1 on an Infinite Strip

Theorem 3 Let f : [0, L] × R → R be a continuous function and f(x, 0) 6= 0 for x ∈ [0, L]. Assume f
satisfies the Lipschitz condition with respect to its second argument with a Lipschitz constant K. If

Lk1 + Lk2 +
L4

24
<

1

K
, (10)

then there exists a unique non-trivial solution to the boundary value problem (1)—(2).

Proof. It follows from Proposition 1 that the boundary value problem (1)—(2) is equivalent to the integral
equation

y(x) =

∫ L

0

G(x, ξ)f(ξ, y(ξ))dξ, 0 ≤ x ≤ L.

Define the mapping T : X → X by

(Ty)(x) =

∫ L

0

G(x, ξ)f(ξ, y(ξ))dξ, 0 ≤ x ≤ L.

Clearly, y is a solution of (1)—(2) iff y is a fixed point of T . To establish the existence of a unique fixed point
of T , we show that the conditions of Theorem 1 hold. To see this, let y, z ∈ X, x ∈ [0, L] and consider

|(Ty)(x)− (Tz)(x)| =
∣∣∣∣∣
∫ L

0

G(x, ξ)f(ξ, y(ξ))dξ −
∫ L

0

G(x, ξ)f(ξ, z(ξ))dξ

∣∣∣∣∣
≤
∫ L

0

|G(x, ξ)| |f(ξ, y(ξ))− f(ξ, z(ξ))| dξ

≤ K
∫ L

0

|G(x, ξ)| |y(ξ)− z(ξ)| dξ

≤ Kd(y, z)

∫ L

0

|G(x, ξ)| dξ

≤ K
(
Lk1 + Lk2 +

L4

24

)
d(y, z),

implying that

d(Ty, Tz) ≤ K
(
Lk1 + Lk2 +

L4

24

)
d(y, z),

for all y, z ∈ X. Since

K

(
Lk1 + Lk2 +

L4

24

)
< 1,

the mapping T is a contraction. Hence, by Theorem 1, T has a unique fixed point in X. Therefore, the
boundary value problem (1)—(2) has a unique non-trivial solution y ∈ X. The proof is complete.

4.2 Application of Theorem 1 within a Closed and Bounded Set

Consider a closed ball BN with radius N in X as follows:

BN = {y ∈ X : d(y, 0) ≤ N}.

Since BN is a closed subspace of X, the pair (BN , d) forms a complete metric space. Clearly, T : BN → X.
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Theorem 4 Let f : [0, L] × [−N,N ] → R be a continuous function and f(x, 0) 6= 0 for x ∈ [0, L]. Assume
f satisfies the Lipschitz condition with respect to its second argument with a Lipschitz constant K. If L
satisfies the inequalities (10) and

Lk1 + Lk2 +
L4

24
≤ N

M
, (11)

where

M = sup
(x,y)∈[0,L]×[−N,N ]

|f(x, y)|,

then there exists a unique non-trivial solution y to the boundary value problem (1)—(2) such that

|y(x)| ≤ N, x ∈ [0, L].

Proof. First, we show that T : BN → BN . To see this, let y ∈ BN , x ∈ [0, L] and consider

|(Ty)(x)| ≤
∫ L

0

|G(x, ξ)| |f(ξ, y(ξ))| dξ

≤M
∫ L

0

|G(x, ξ)| dξ

≤M
(
Lk1 + Lk2 +

L4

24

)

implying that

d(Ty, 0) ≤M
(
Lk1 + Lk2 +

L4

24

)
≤ N.

Thus, Ty ∈ BN . Therefore, T : BN → BN . It follows from the proof of Theorem 3 that T : BN → BN
is a contraction. Hence, by Theorem 1, T has a unique fixed point in BN . Therefore, the boundary value
problem (1)—(2) has a unique non-trivial solution y ∈ BN . The proof is complete.

4.3 Application of Theorem 2 on an Infinite Strip

Theorem 5 Let f : [0, L] × R → R be a continuous function and f(x, 0) 6= 0 for x ∈ [0, L]. Assume f
satisfies the Lipschitz condition with respect to its second argument with a Lipschitz constant K. If

(
k2

1L+ k2
2L+ 2k1k2L+

L7

252
+
k1L

4

12
+
k2L

4

12

) 1
2

<
1

K
, (12)

then there exists a unique non-trivial solution to the boundary value problem (1)—(2).
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Proof. To establish the existence of a unique fixed point of T using Theorem 2, we have to show that the
conditions of Theorem 2 hold. For this purpose, let y, z ∈ X, x ∈ [0, L] and consider

|(Ty)(x)− (Tz)(x)| =
∣∣∣∣∣
∫ L

0

G(x, ξ)f(ξ, y(ξ))dξ −
∫ L

0

G(x, ξ)f(ξ, z(ξ))dξ

∣∣∣∣∣
≤
∫ L

0

|G(x, ξ)| |f(ξ, y(ξ))− f(ξ, z(ξ))| dξ

≤ K
∫ L

0

|G(x, ξ)| |y(ξ)− z(ξ)| dξ

≤ K
(∫ L

0

|G(x, ξ)|2 dξ
) 1

2
(∫ L

0

|y(ξ)− z(ξ)|2 dξ
) 1

2

≤ K sup
0≤x≤L

(∫ L

0

|G(x, ξ)|2 dξ
) 1

2

ρ(y, z)

≤ cρ(y, z),

implying that
d(Ty, Tz) ≤ cρ(y, z),

for all y, z ∈ X. Here

c = K sup
0≤x≤L

(∫ L

0

|G(x, ξ)|2 dξ
) 1

2

> 0.

Also,

ρ(y, z) =

(∫ L

0

|y(x)− z(x)|2 dx
) 1

2

≤
(∫ L

0

sup
0≤x≤L

|y(x)− z(x)|2 dx
) 1

2

≤ sup
0≤x≤L

|y(x)− z(x)|
(∫ L

0

dx

) 1
2

= L
1
2 d(y, z).

Thus, we obtain that
d(Ty, Tz) ≤ cρ(y, z) ≤ cL 1

2 d(y, z),

for all y, z ∈ X. Then, for any ε > 0, choose δ = ε

cL
1
2
such that d(Ty, Tz) < ε whenever d(y, z) < δ.

Therefore, T is continuous with respect to d on X. Consider

(∫ L

0

|(Ty)(x)− (Tz)(x)|2 dx
) 1

2

≤

∫ L

0

K (∫ L

0

|G(x, ξ)|2 dξ
) 1

2

ρ(y, z)

2

dx


1
2

≤ Kρ(y, z)

(∫ L

0

(∫ L

0

|G(x, ξ)|2 dξ
)
dx

) 1
2

.
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Now, consider∫ L

0

|G(x, ξ)|2 dξ =

∫ x

0

|G(x, ξ)|2 dξ +

∫ L

x

|G(x, ξ)|2 dξ

≤
∫ x

0

(
k2

1 sin2 βξ + k2
2 cos2 βξ +

(x− ξ)6

36
+ 2k1k2 sinβξ cosβξ

+
k1(x− ξ)3 sinβξ

3
+
k2(x− ξ)3 cosβξ

3

)
dξ

+

∫ L

x

(
k2

1 sin2 βξ + k2
2 cos2 βξ + 2k1k2 sinβξ cosβξ

)
dξ

=

∫ L

0

(
k2

1 sin2 βξ + k2
2 cos2 βξ + 2k1k2 sinβξ cosβξ

)
dξ

+

∫ x

0

(
(x− ξ)6

36
+
k1(x− ξ)3 sinβξ

3
+
k2(x− ξ)3 cosβξ

3

)
dξ

≤ k2
1L+ k2

2L+ 2k1k2L+
L7

252
+
k1L

4

12
+
k2L

4

12
.

Hence,(∫ L

0

|(Ty)(x)− (Tz)(x)|2dx
)1/2

≤ Kρ(y, z)

(∫ L

0

(
k2

1L+ k2
2L+ 2k1k2L+

L7

252
+
k1L

4

12
+
k2L

4

12

)
dx

)1/2

= K

(
k2

1L+ k2
2L+ 2k1k2L+

L7

252
+
k1L

4

12
+
k2L

4

12

) 1
2

ρ(y, z),

implying that
ρ(Ty, Tz) ≤ αρ(y, z),

for all y, z ∈ X. Here

α = K

(
k2

1L+ k2
2L+ 2k1k2L+

L7

252
+
k1L

4

12
+
k2L

4

12

) 1
2

< 1.

Hence, by Theorem 2, T has a unique fixed point in X. Therefore, the boundary value problem (1)—(2) has
a unique non-trivial solution y ∈ X. The proof is complete.

5 Examples

In this section, we provide a few examples to illustrate the applicability of results established in the previous
section.

Example 1 Consider (1)—(2) with β = L = 1 and

f(x, y) =
y2

y2 + 1
+ 10x+ 1.

Clearly, f : [0, 1] × R → R is a continuous function and f(x, 0) 6= 0 for x ∈ [0, 1]. Also, f satisfies the
Lipschitz condition with respect to its second argument with a Lipschitz constant K = 1. Further, we obtain

k1 = sup
x∈[0,1]

|1− cosx| ≈ 0.4597,
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and
k2 = sup

x∈[0,1]

|sinx− x| ≈ 0.1585.

Clearly,

Lk1 + Lk2 +
L4

24
≈ 0.6599 < 1,

implying the inequality (10) holds. Therefore, by Theorem 3, (1)—(2) has a unique non-trivial solution y ∈ X.

Example 2 Consider (1)—(2) with β = 1, L = 2 and

f(x, y) =
y2

y2 + 1
+ 10x+ 1.

Clearly, f : [0, 2] × R → R is a continuous function and f(x, 0) 6= 0 for x ∈ [0, 2]. Also, f satisfies the
Lipschitz condition with respect to its second argument with a Lipschitz constant K = 1. Further, we obtain

k1 = sup
x∈[0,2]

|1− cosx| ≈ 1.4162,

and
k2 = sup

x∈[0,2]

|sinx− x| ≈ 1.0907.

Since

Lk1 + Lk2 +
L4

24
≈ 5.6805 > 1,

the inequality (10) does not hold. Hence, Theorem 3 is not applicable in this case.

Example 3 Consider (1)—(2) with β = L = 1 and f(x, y) = x2y2 + 1. Clearly, f : [0, 1] × R → R is a
continuous function and f(x, 0) 6= 0 for x ∈ [0, 1]. But, f doesn’t satisfies the Lipschitz condition with
respect to its second argument. Hence, Theorem 3 is not applicable in this case.

Example 4 Consider (1)—(2) with β = 1, L = 0.5 and f(x, y) = x2y2 + 1. Choose N = 1. Clearly,
f : [0, 0.5] × [−1, 1] → R is a continuous function and f(x, 0) 6= 0 for x ∈ [0, 0.5]. Also, f satisfies the
Lipschitz condition with respect to its second argument with a Lipschitz constant K = 0.5. Further, we
obtain

k1 = sup
x∈[0,0.5]

|1− cosx| ≈ 0.1224,

k2 = sup
x∈[0,0.5]

|sinx− x| ≈ 0.0206,

and
M = sup

(x,y)∈[0,0.5]×[−1,1]

|f(x, y)| = 1.25.

Since

Lk1 + Lk2 +
L4

24
≈ 0.0741 < 0.8 < 2,

where 1
K = 2 and N

M = 0.8, the inequalities (10) and (11) hold. Hence, by Theorem 4, (1)—(2) has a unique
non-trivial solution y ∈ BN .

Example 5 Consider Example 4. We obtain that(
k2

1L+ k2
2L+ 2k1k2L+

L7

252
+
k1L

4

12
+
k2L

4

12

) 1
2

≈ 0.1044 <
1

K
.

Then, by Theorem 5, (1)—(2) has a unique non-trivial solution y ∈ X.
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6 Conclusion

In this paper, we applied the fixed point theorems of Banach and Rus to investigate the existence and
uniqueness of solutions to a specific class of two-point boundary value problems involving fourth-order
ordinary differential equations. These problems have fascinating implications in beam deflection modeling.
Future work on this project will examine whether there are any solutions for either a functionally graded
elastic beam subjected to a loading force or a variable cross-section elastic beam subjected to a loading force
[3, 13] such that the beam is embedded at the left end and free at the right end.

Appendix A
Consider the second-order differential equation

y′′ + 2ay′ + by = g(x), x ∈ [0, L], (13)

together with the boundary conditions

Ay(0)−By′(0) = 0, Cy(L) +Dy′(L) = 0. (14)

Proposition 3 Assume a2 = b and Λ1 = (A+ aB)(cL− aDL+D) + B(C − aD) 6= 0. If g : [0, L]→ R is
a continuous function, then the boundary value problem (13)—(14) has a unique solution which we can write
as

y(x) = e−ax
∫ L

0

P (x, ξ)g(ξ)dξ, 0 ≤ x ≤ L,

where the Green’s function is given by

P (x, ξ) =
1

Λ1

{
P1(x, ξ), 0 ≤ ξ ≤ x ≤ L,
P2(x, ξ), 0 ≤ x ≤ ξ ≤ L. (15)

Here
P2(x, ξ) = − [(A+ aB)x+B] [(C − aD)(L− ξ) +D] ,

and
P1(x, ξ) = P2(x, ξ) + Λ1(x− ξ).

Proposition 4 Assume a2 < b and take c =
√
b− a2. If

Λ2 = (A+ aB) [(C − aD) sin cL+ cD cos cL] + cB [(C − aD) cos cL− cD sin cL] 6= 0

and g : [0, L]→ R is a continuous function, then the boundary value problem (13)—(14) has a unique solution
which we can write as

y(x) = e−ax
∫ L

0

Q(x, ξ)g(ξ)dξ, 0 ≤ x ≤ L,

where the Green’s function is given by

Q(x, ξ) =
1

Λ2

{
Q1(x, ξ), 0 ≤ ξ ≤ x ≤ L,
Q2(x, ξ), 0 ≤ x ≤ ξ ≤ L. (16)

Here

Q2(x, ξ) = −
[
B cos cx+

(A+ aB)

c
sin cx

]
[(C − aD) sin c(L− ξ) + cD cos c(L− ξ)] ,

and

Q1(x, ξ) = Q2(x, ξ) +
Λ2

c
sin c(x− ξ).
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Proposition 5 Assume a2 > b and take d =
√
a2 − b. If

Λ3 = (A+ aB − dB)
[
(C − aD)e−dL − dDe−dL

]
− (A+ aB + dB)

[
(C − aD)edL + dDedL

]
6= 0

and g : [0, L]→ R is a continuous function, then the boundary value problem (13)—(14) has a unique solution
which we can write as

y(x) = e−ax
∫ L

0

R(x, ξ)g(ξ)dξ, 0 ≤ x ≤ L,

where the Green’s function is given by

R(x, ξ) =
1

Λ3

{
R1(x, ξ), 0 ≤ ξ ≤ x ≤ L,
R2(x, ξ), 0 ≤ x ≤ ξ ≤ L. (17)

Here

R1(x, ξ) =
[
(A+ aB + dB)edx − (A+ aB − dB)e−dx

]
×
[(

C − aD
2d

+
D

2

)
ed(L−ξ) +

(
D

2
− C − aD

2d

)
e−d(L−ξ)

]
,

and

R2(x, ξ) = R1(x, ξ) +
Λ3

2d

[
ed(x−ξ) − e−d(x−ξ)

]
.

Appendix B
Consider the second-order differential equation (13) together with the boundary conditions

Ay(0) +By(L) = 0, Cy′(0) +Dy′(L) = 0. (18)

Proposition 6 Assume a2 = b and λ4 =
(
AeaL +B

) (
CeaL − aDL+D

)
+ BL

(
aCeaL + aD

)
6= 0. If

g : [0, L] → R is a continuous function, then the boundary value problem (13)—(18) has a unique solution
which we can write as

y(x) = e−ax
∫ L

0

U(x, ξ)g(ξ)dξ, 0 ≤ x ≤ L,

where the Green’s function is given by

U(x, ξ) =
1

Λ4

{
Θ1(ξ) + xΘ2(ξ) + Λ4(x− ξ), 0 ≤ ξ ≤ x ≤ L,
Θ1(ξ) + xΘ2(ξ), 0 ≤ x ≤ ξ ≤ L.

(19)

Here
Θ1(ξ) = −BL [aD(L− ξ)−D]−B(L− ξ)

[
CeaL − aDL+D

]
, 0 ≤ ξ ≤ L,

and
Θ2(ξ) =

[
AeaL +B

]
[aD(L− ξ)−D]−B(L− ξ)

[
aCeaL + aD

]
, 0 ≤ ξ ≤ L.

Proposition 7 Assume a2 < b and take c =
√
b− a2. If

Λ5 =
[
AeaL +B cos cL

] [
cCeaL − aD sin cL+ cD cos cL

]
+B

[
aCeaL + aD cos cL+ cD sin cL

]
sin cL 6= 0,

and g : [0, L]→ R is a continuous function, then the boundary value problem (13)—(18) has a unique solution
which we can write as

y(x) = e−ax
∫ L

0

V (x, ξ)g(ξ)dξ, 0 ≤ x ≤ L,
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where the Green’s function is given by

V (x, ξ) =
1

Λ5

{
Θ3(ξ) cos cx+ Θ4(ξ) sin cx+ Λ5

c sin c(x− ξ), 0 ≤ ξ ≤ x ≤ L,
Θ3(ξ) cos cx+ Θ4(ξ) sin cx, 0 ≤ x ≤ ξ ≤ L. (20)

Here

Θ3(ξ) = −B
c

[
cCeaL − aD sin cL+ cD cos cL

]
sin c(L− ξ)−B

[
aD

c
sin c(L− ξ)−D cos c(L− ξ)

]
sin cL,

and

Θ4(ξ) = −B
c

[
aCeaL + aD cos cL+ cD sin cL

]
sin c(L− ξ)

+
[
AeaL +B cos cL

] [aD
c

sin c(L− ξ)−D cos c(L− ξ)
]
, 0 ≤ ξ ≤ L.

Proposition 8 Assume a2 > b and take d =
√
a2 − b. If

Λ6 = −
[
AeaL +BedL

] [
aCeaL + dCeaL + aDe−dL + dDe−dL

]
−
[
AeaL +Be−dL

] [
−aCeaL + dCeaL − aDedL + dDedL

]
6= 0,

and g : [0, L]→ R is a continuous function, then the boundary value problem (13)—(18) has a unique solution
which we can write as

y(x) = e−ax
∫ L

0

W (x, ξ)g(ξ)dξ, 0 ≤ x ≤ L,

where the Green’s function is given by

W (x, ξ) =
1

Λ6

{
Θ5(ξ)edx + Θ6(ξ)e−dx + Λ6

2d

[
ed(x−ξ) − e−d(x−ξ)] , 0 ≤ ξ ≤ x ≤ L,

Θ5(ξ)edx + Θ6(ξ)e−dx, 0 ≤ x ≤ ξ ≤ L. (21)

Here

Θ5(ξ) =
B

2d

[
aCeaL + dCeaL + aDe−dL + dDe−dL

] [
ed(L−ξ) − e−d(L−ξ)

]
−
[
AeaL +Be−dL

] [(aD
2d
− D

2

)
ed(L−ξ) −

(
aD

2d
+
D

2

)
e−d(L−ξ)

]
, 0 ≤ ξ ≤ L,

and

Θ6(ξ) =
B

2d

[
−aCeaL + dCeaL − aDedL + dDedL

] [
ed(L−ξ) − e−d(L−ξ)

]
+
[
AeaL +BedL

] [(aD
2d
− D

2

)
ed(L−ξ) −

(
aD

2d
+
D

2

)
e−d(L−ξ)

]
, 0 ≤ ξ ≤ L.

Appendix C
Proposition 9 The Green’s function in (15) satisfies∫ L

0

|P (x, ξ)| dξ ≤
[
|A+ aB|L+ |B|

|Λ1|

] [
|C − aD| L

2

2
+ |D|L

]
+
L2

2
.
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Proposition 10 The Green’s function in (16) satisfies∫ L

0

|Q(x, ξ)| dξ ≤ k3L

|Λ2|
[|C − aD|+ |C| |D|] +

L

c
,

where

k3 = sup
x∈[0,L]

∣∣∣∣∣B cos cx+ (A+ aB) sin cx

∣∣∣∣∣.
Proposition 11 The Green’s function in (17) satisfies∫ L

0

|R(x, ξ)| dξ ≤ k4

d |Λ3|

[∣∣∣∣C − aD2d
+
D

2

∣∣∣∣ (edL − 1
)

+

∣∣∣∣D2 − C − aD
2d

∣∣∣∣ (1− e−dL)]+
1

2d2

(
edL + e−dL − 2

)
,

where

k4 = sup
x∈[0,L]

∣∣∣∣∣(A+ aB + dB)edx − (A+ aB − dB)e−dx

∣∣∣∣∣.
Proposition 12 The Green’s function in (19) satisfies∫ L

0

|U(x, ξ)| dξ ≤ 1

|Λ4|

[
|D|L2

(
|B|+

∣∣AeaL +B
∣∣)( |a|L

2
+ 1

)

+
|B|L2

2

(∣∣CeaL − aDL+D
∣∣+ L

∣∣aCeaL + aD
∣∣) ]+

L2

2
.

Proposition 13 The Green’s function in (20) satisfies∫ L

0

|V (x, ξ)| dξ ≤ 1

|Λ5|

[
|B| k5L

c

∣∣cCeaL − aD sin cL+ cD cos cL
∣∣+ |B| |D| k5L

(
|a|
c

+ 1

)
|sin cL|

+
|B| k6L

c

∣∣aCeaL + aD cos cL+ cD sin cL
∣∣+
∣∣AeaL +B cos cL

∣∣ |D| k6L

(
|a|
c

+ 1

)]

+
L

c
,

where
k5 = sup

x∈[0,L]

|cos cx| and k6 = sup
x∈[0,L]

|sin cx| .

Proposition 14 The Green’s function in (21) satisfies∫ L

0

|W (x, ξ)| dξ ≤ 1

|Λ6|

[
|B| k7

2d2

(
edL + e−dL − 2

)
+ k8

(∣∣∣∣aD2d − D

2

∣∣∣∣ (edL − 1
)

+

∣∣∣∣aD2d +
D

2

∣∣∣∣ (1− e−dL))
]

+
1

2d2

(
edL + e−dL − 2

)
,

where

k7 = sup
x∈[0,L]

[∣∣aCeaL + dCeaL + aDe−dL + dDe−dL
∣∣ edx +

∣∣−aCeaL + dCeaL − aDedL + dDedL
∣∣ e−dx] ,

and
k8 = sup

x∈[0,L]

[∣∣AeaL +Be−dL
∣∣ edx +

∣∣AeaL +BedL
∣∣ e−dx] .
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