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Abstract

In the study of the problem of monitoring an electric power system, power domination, a variation
on domination in graphs was introduced. The proper coloring of a graph is the assignment of colors to
the vertices in which no two vertices receive the same color. The concept of power dominator coloring of
graphs has been proposed, based on the concepts of coloring and power domination. A power dominating
set is defined as a subset of the vertex set of a graph, wherein the vertices and edges are monitored in
accordance with rules of the power dominating monitoring system. For a given graph G, the power
dominator chromatic number χpd(G) of G is the bare minimum of colors required for power dominator
coloring. In this paper, the power dominator chromatic number of different classes of line graphs are
obtained.

1 Introduction

Let G = (V, E) be a graph with a finite set of elements, called vertices and a finite set of pairs of vertices,
called edges. We consider simple, finite and undirected graphs. A subset S ⊆ V is a dominating set of
G if every vertex in V − S has at least one neighbour in S. The concept of domination in graphs has
multiple variations [7]. While expressing the problem of monitoring an electric power system in terms of
graph theory and minimizing the number of phase measurement units (PMUs) in the system, Haynes et al.
[6, 8] developed the concept of power domination. In a graph G = (V, E) depicting an electric power system,
a vertex v ∈ V (G) represents an electrical node, whereas an edge e ∈ E(G) represents a transmission line
that connects two electric nodes. If a set S of vertices monitors every vertex and every edge in the system
(according to a set of criteria for power system monitoring), then the set S is said to be a power dominating
set of a graph G. The minimum number of vertices required for a power dominating set of a graph G is
called the power domination number of G.

Several variations of the concept of graph coloring have been presented and examined by many researchers
[1, 10]. A proper coloring of a graph G is a color assignment to a graph’s vertices that ensures no two
neighboring vertices receive the same color. The chromatic number χ(G) indicates the minimal number of
colors needed to properly color G. The concept of dominator coloring in a graph has been developed and
studied, based on the principles of domination and coloring in graphs. A dominator coloring of G is a proper
coloring in which each vertex of G dominates every vertex of at least one color class. The chromatic number
χ(G)represents the minimum number of colors required to color the vertices of a graph G so that no two
neighbouring vertices receive the same color whereas the dominator chromatic number χd(G) represents is
the minimum number of colors required for a dominator coloring of the graph [2, 5, 11].

Based on the concepts of coloring and power domination, a new variation of coloring called as power
dominator coloring of a graph G has been proposed and investigated [12]. For a vertex v in a graph G, we
associate a monitoring set M(v) [13] as follows:

Step (i) M(v) = N [v], the closed neighbourhood of v.
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Step (ii) Add a vertex w to M(v), (which is initially not in M(v)) whenever w has a neighbour u ∈ M(v)
such that all the neighbours of u other than w, are already in M(v).

Step (iii) Repeat Step(ii) until no more vertices can be added to M(v).

Then we say that v power dominates the vertices in M(v). The power dominator coloring of G is a proper
coloring of G in which every vertex in the vertex set V power dominates all vertices in at least one color
class. The minimum number of colors required for a power dominator coloring of G is denoted by the power
dominator chromatic number χpd(G).

2 Preliminaries

Line graphs [9] form a very basic area of research in graph theory and have been well-investigated. The line
graph L(G) of an undirected graph G is a graph such that each vertex of L(G) represents an edge of G and
two vertices of L(G) are adjacent if and only if their corresponding edges share a common end vertex in G.
Some of the important properties of Line graph are as follows:

• The Line graph of a connected graph is connected.

• The chromatic number of a Line graph L(G) is equal to the edge chromatic number of the graph G.

• If a graph G has an Euler cycle then L(G) is Hamiltonian.

Example 1 A graph G and its line graph L(G) are shown in Figure 1. The graph G has five edges e1, e2,
e3, e4, e5 and so the line graph L(G) has five vertices, each one corresponding to an edge. Since the edges
e1, e2 share a common end vertex at v2 in G, the vertices e1, e2 in L(G) are adjacent in L(G).

G :

v4 v3

v2v1

e3

e1

e2e4 e5

e1

e4

e5
e2

e3

L(G) :

Figure 1: A Graph G and its line graph L(G).

Definition 1 The wheel graph [1] W1,n, n ≥ 3 is join of the graphs Cn and K1. That is, W1,n = Cn + K1.
Here the vertices corresponding to Cn are called rim vertices and Cn is called rim of W1,n while the vertex
corresponding to K1 is called apex vertex.

Definition 2 (i) A bistar graph [4] Bn,n, n ≥ 2 is obtained by attaching n pendant edges at each end
point of K2.

(ii) The graph obtained from the star graph S1,n, n ≥ 2 by attaching a pendant edge to each of the existing
n pendant vertices, is called the double star graph and denoted by S1,n,n.

Definition 3 A tadpole graph [14] T (m, n), m ≥ 3, n ≥ 1 is the graph obtained by joining a vertex of the
cycle Cm, and an end vertex of the path Pn by an edge.
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Definition 4 The Helm graph [4] Hn with n ≥ 3, is defined to be the graph obtained from the wheel graph
W1,n by attaching a pendant edge at each vertex of the cycle.

Definition 5 The n-sunlet graph [15] SLn , n ≥ 3, is a graph on 2n vertices with a cycle Cn such that each
vertex of the cycle is joined to a new pendant vertex.

Definition 6 ([4]) The firecracker graph Fn,k, n, k ≥ 2 is obtained from n copies G1, G2, · · · , Gn of star
graph S1,k by joining a pendant vertex ui of Gi with a pendant vertex ui+1 of Gi+1 by an edge, for 1 ≤ i ≤
n − 1.

We recall some known results.

Theorem 1 ([5]) Let G be a connected graph. Then

max{χ(G), γ(G)} ≤ χd(G) ≤ χ(G) + γ(G).

Theorem 2 ([5]) For any graph G, χ(G) ≤ χd(G).

Theorem 3 ([2]) Let T be a tree of order n ≥ 2. Then γ(T ) + 1 ≤ χd(T ) ≤ γ(T ) + 2.

Theorem 4 ([12]) For any graph G, χ(G) ≤ χpd(G) ≤ χd(G).

Theorem 5 ([12]) (i) For a path Pn, n ≥ 2, χpd(Pn) = 2.

(ii) For a cycle Cn, n ≥ 3,

χpd(Cn) =

{

2 if n is even,
3 if n is odd.

3 Power Dominator Chromatic Number of Line graph of Certain

Graphs

In this section we obtain the power dominator chromatic numbers of line graph of certain classes of graphs.

Theorem 6 (i) For path Pn, n ≥ 3, the power dominator chromatic number χpd(L(Pn)) = 2.

(ii) For cycle Cn, n ≥ 3

χpd(L(Cn)) =

{

2 if n is even,
3 if n is odd.

Proof. (i) For the path Pn on n vertices n ≥ 3, the line graph is the path Pn−1 on n − 1 vertices and
χpd(L(Pn)) = χpd(Pn−1) = 2 (by Theorem 5).

(ii) For the cycle Cn, n ≥ 3 with n vertices and n edges, line graph L(Cn) is Cn, so that χpd(L(Cn)) =
χpd(Cn). Hence the required result.

Theorem 7 (i) For the star graph S1,n, n ≥ 2, χpd(L(S1,n)) = n.

(ii) For the bistar graph Bn,n, n ≥ 2, χpd(L(Bn,n)) = n + 1.

Proof. (i) For the star graph S1,n, n ≥ 2, the line graph L(S1,n) is the complete graph on n vertices. Thus
χpd(L(S1,n)) = χpd(Kn) = n.

(ii) Let the vertex set of the bistar Bn,n be V = V1 ∪ V2, where V1 = {u, v} and V2 = {ui, vi | 1 ≤ i ≤ n}
such that u and v are adjacent, each ui is adjacent to u and vi is adjacent to v, 1 ≤ i ≤ n. The line graph
of Bn,n is the graph L(Bn,n), each of whose vertices corresponds to an edge in Bn,n. For 1 ≤ i ≤ n, let
xi be the vertex of L(Bn,n) corresponding to the edge uui of Bn,n. Likewise, for 1 ≤ i ≤ n, let yi be the
vertex of L(Bn,n) corresponding to the edge vvi of Bn,n and z be the vertex of L(Bn,n) corresponding to
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edge uv of Bn,n. As the edges corresponding to z and xi, 1 ≤ i ≤ n in Bn,n share a common vertex, they
form a complete graph of order n + 1 in L(Bn,n). Similarly the vertices z and yi, 1 ≤ i ≤ n in L(Bn,n) form
another complete graph Kn+1. Therefore, L(Bn,n) is obtained by joining two copies of Kn+1 at a vertex
(corresponding to z).
For a proper coloring of L(Bn,n), assign color i to the vertices xi and yi, 1 ≤ i ≤ n, and color n + 1 to the
vertex z. Note that this is indeed a power dominator coloring of L(Bn,n) as the vertices xi and yi, 1 ≤ i ≤ n,
dominate and hence power dominate the color class {z}. Thus χpd(L(Bn,n)) = n + 1.

Theorem 8 For the line graph of S1,n,n, n ≥ 2, χpd(L(S1,n,n)) = χpd(Kn) + 1.

Proof. Let S1,n,n be double star graph with vertex set V = {v} ∪ V1 ∪ V2 where v is the root vertex,
V1 = {vi | 1 ≤ i ≤ n} and V2 = {v′i | 1 ≤ i ≤ n} and edge set E = E1 ∪ E2 where

E1 = {xi = vvi | 1 ≤ i ≤ n} and E2 = {yi = viv
′

i | 1 ≤ i ≤ n}.

Note that the graph L(S1,n,n) has 2n vertices and n(n + 1)/2 edges. In L(S1,n,n), the vertices {xi : 1 ≤
i ≤ n} induce a clique of order n. The vertex yi is adjacent to the vertex xi, 1 ≤ i ≤ n in L(S1,n,n). For
proper coloring, assign color i to xi, 1 ≤ i ≤ n. The vertices yi, 1 ≤ i ≤ n, are colored by n + 1. Thus
χpd(S1,n,n) = n + 1 = χpd(Kn) + 1.

Example 2 In Figure 2 a power dominator coloring of the line graph L(S1,5,5) of the double star graph
S1,5,5 is shown.

Figure 2: Power dominator coloring of L(S1,5,5).

Theorem 9 Let Tm,n, m ≥ 3, n ≥ 1 be the tadpole graph. Then the power dominator chromatic number of
the line graph of Tm,n is

χpd(L(Tm,n)) =

{

3 if m is even,
4 if m is odd.
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Proof. Let the vertex set and edge set of Tm,n be V (Tm,n) = {v1, v2, · · · , vm} ∪ {u1, u2, · · · , un} where vi,
1 ≤ i ≤ m, are on the cycle and ui, 1 ≤ i ≤ n, are on the path and

E(Tm,n) = {xi = vivi+1 | 1 ≤ i ≤ n − 1} ∪ {xn = vnv1} ∪ {yj = ujuj+1 | 1 ≤ j ≤ n − 1} ∪ {z = uvn}.

The vertex set and edge set of L(Tm,n) are V (L(Tm,n)) = E(Tm,n) and

E(L(Tm,n)) = {xixi+1 | 1 ≤ i ≤ n − 1} ∪ {xnx1} ∪ {yjyj+1 | 1 ≤ j ≤ n − 1} ∪ {xnz, xn−1z}.

We assign colors to the vertices in the following way, in order to obtain power dominator coloring of
L(Tm,n). Assign color 1 to the vertex z, color 2 to yi for odd i, 1 ≤ i ≤ n − 1 and color 3 to yi, for even i,
1 ≤ i ≤ n − 1.
Case(i): If m is odd, assign color 2 to each vertex xi, for odd i, i ≥ 1 and i ≤ m − 2 and color 3 to even i,
1 ≤ i ≤ m − 1. The vertex vm is colored by the color 4. Clearly note that each vertex xi, 1 ≤ i ≤ m − 1
power dominates the color class 4 as well as 1. Also note that the vertices yi, 1 ≤ i ≤ n− 1 power dominate
the color class 1. Thus χpd(L(Tm,n)) = 4 if m is odd.
Case(ii): If m is even, assign color 2 to each vertex xi, for odd i, 1 ≤ i ≤ m, and color 3 to even i, 1 ≤ i ≤ m.
Hence the vertices xi, 1 ≤ i ≤ m, and yi, 1 ≤ i ≤ n− 1, dominate and hence power dominate the color class
1. In both the cases , vertex yi, 1 ≤ i ≤ n − 1 power dominates the color class z. Thus χpd(L(Tm,n)) = 3 if
m is even.

Definition 7 ([3]) A banana tree Bn,k, n, k ≥ 2 is obtained from n copies of star graph S1,k by connecting
a pendant vertex in each of these n copies with a single root vertex which is distinct from all the vertices in
the star graphs.

Theorem 10 Let Bn,k, n, k ≥ 3 be the banana tree. Then the power dominator chromatic number of its
line graph L(Bn,k) is n + k.

Proof. In the construction of the line graph L(Bn,k), each of the n-copies of star graph S1,k forms a
complete graph Kk of order k and the root vertex of Bn,k which is connected to a pendant vertex in each of
the n-copies of star S1,k induces a clique of order n. Thus the line graph L(Bn,k) is obtained by connecting
a vertex (which corresponds to the edge joining a pendant vertex in S1,k and the root vertex of Bn,k) of
each of the n-copies of Kk with a distinct vertex of the n-clique induced by the edges at the root vertex. For
a proper coloring of L(Bn,k), assign k distinct colors to the vertices of the n-copies of Kk. The n-clique is
colored with distinct additional colors. Thus we require n+k colors (and no less) to yield a power dominator
coloring of L(Bn,k). Hence χpdL(Bn,k) = n + k.

Theorem 11 Let SLn, n ≥ 3 be the sunlet graph. Then

χpd(L(SLn)) = χd(L(SLn)) =

{

n
2

+ 2, if n is even,

dn
2
e + 2, if n is odd.

Proof. Let SLn be the sunlet graph. It is known that [13]

χd(L(SLn)) =

{

dn
2
e + 2, if n is odd,

n
2

+ 2, if n is even.

and by the definition of power dominator coloring, in this case it can be seen that, χpd(L(SLn)) =
χd(L(SLn)).

Theorem 12 For a Helm graph Hn, n ≥ 3, the power dominator chromatic number of its line graph,
χpd(L(Hn)) = n + 3.
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Proof. Let V (Hn) = {v1} ∪ V1 ∪ V2 where v1 is the apex vertex, V1 = {vi | 2 ≤ i ≤ n + 1} be the rim
vertices and V2 = {vi | n + 2 ≤ i ≤ 2n + 1} be the pendant vertices incident with the rim vertices such that
vn+i is adjacent with vi, 2 ≤ i ≤ n + 1 and

E(Hn) = {ei = v1vi+1 : 1 ≤ i ≤ n}∪{e′i = vi+1vi+2 : 1 ≤ i ≤ n−1}∪{e′n+1 = vn+1v2
}∪{fi = vi+1vn+i+1 : 1 ≤ i ≤ n}.

For a proper coloring, assign color i to ei, 1 ≤ i ≤ n, note that these vertices form a complete graph in
L(Hn). Here fi, e

′

i are adjacent to ei. In order to obtain a power dominator coloring, if n-even, assign colors
n + 1 to e′i, for odd i and n + 2 to even i and fi is colored by n + 3, 1 ≤ i ≤ n. If n is odd, assign color n +1
to e′i, for odd i and n + 2 to even i where 1 ≤ i ≤ n − 1 and fi is colored by n + 3, 1 ≤ i ≤ n − 1. Then
assign n + 3 color to e′n and n + 2 to fn. Thus we required n + 3 colors for a power dominator coloring of
L(Hn). Hence χpd(L(Hn)) = n + 3.

Theorem 13 For a graph Fn,k, n, k ≥ 3 be a graph, the power dominator chromatic number of its line graph
χpd(L(Fn,k)) = k + dn

2
e.

Proof. Consider the line graph of Fn,k, n, k ≥ 3 as in Definition 6. Color the vertices of the part of the
line graph corresponding to Gi, 1 ≤ i ≤ n, by the distinct colors 1, 2, · · · , k. The vertices wi, 1 ≤ i ≤ n− 1,
in the part of the line graph corresponding to the edges uiui+1 are colored as follows: color w1 and wn−1

by the new colors k + 1 and k + 2 respectively. In the remaining vertices w2, · · · , wn−2, each of the vertices
w3, w5, · · · is given a new color, thus requiring dn−4

2
e colors. The remaining wi’s are given the colors from

1, 2, · · · , k to ensure proper coloring. A little reflection will tell that their cannot be any other proper coloring
requiring lesser number of colors. Thus

χpd(L(Fn,k)) = k + 2 + d
n − 4

2
e = k + d

n

2
e.
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