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Abstract

The study of mathematical inequalities has significantly influenced numerous scientific disciplines due
to their wide-ranging applications in science and technology. This highlights their importance in both
theoretical and practical contexts, leading to increased attention from the research community. This
research work aims to improve Slater’s inequality within the continuous framework using techniques
from convex analysis applied to twice differentiable functions. To highlight their theoretical importance,
the applications of these improvements will be discussed, particularly in the context of power means and
divergences. It is expected that these findings will have practical applications and will simulate further
research in this area.

1 Introduction

The concept of inequality serves as a foundational pillar in mathematics, with numerous applications across
various branches of scientific fields [20, 29, 39,69, 70]. Without inequalities, solving certain mathematical
problems would be much more difficult or even impossible in many cases [36,53,59,66]. Inequalities are also
fundamental because they allow us to estimate the range of many problems that require approximation [22,37,
48,49,51]. It has been observed that inequalities and convex functions have a very strong relation [2,19,64,70].
Many inequalities have been successfully derived and improved using the properties and applications of convex
functions [3,23,46,65,67,68]. Among the important inequalities in mathematics, the Jensen inequality holds a
pivotal position due to its broad applicability and inventive formulation. The impact of the Jensen inequality
extends across multiple fields of study, from engineering [24] to information theory [57], economics [33],
fractional calculus [18], statistics [35], and epidemiology [58], shaping foundational concepts and applications.
Additionally, Jensen’s inequality is highly regarded for its role in establishing a wide range of classical
inequalities, exploring its fundamental importance in mathematical analysis. Furthermore, one of the most
significant aspects of Jensen’s inequality is its ability to generalize the definition of convex functions, thereby
providing a powerful framework for analyzing and extending properties across mathematical disciplines.
Now, we express Jensen’s inequality in its standard continuous form:

Theorem 1 Assume that ¢ : [a1,a2] — R is convex function and Y1,Ys : I — [aq,as] are integrable
functions with Y1 > 0 and T := fgf Yi(o)do > 0. If the function i) o Y is integrable, then

[ Vi(0)Yalo)da [ Yi(0)(Ya(o))do
w( - ) < - . (1)

When 1 is concave, (1) can be observed in the revers sense.
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478 Improvements of Slater’s Inequality

Many researchers have dedicated significant efforts to explore the wide-ranging applicability and crucial
significance of Jensen’s inequality, due to its interesting properties and ability to simplify problem-solving
[8, 16,27, 45]. In recent years, new versions of refinements [26, 50], improvements [6, 7], generalizations
[28, 38, 56] of Jensen’s inequality, as well as extensions and variations of other inequalities using Jensen’s
inequalities, have been developed using new techniques and principles [12-15]. In 1981, Slater [54] introduced
a complementary inequality to Jensen’s inequality, widely recognized in the literature as Slater’s inequality.
The following theorem presents the classic statement of Slater’s inequality:

Theorem 2 Let 9, > 0 and o; € (a1,a3) fori € {1,2,...,n} with o* Z 0; >0 and Z ngJr(JZ) #0

and also assuming v : (a1, as) — R is an increasing and convex function. Then

Z Qz(fﬂ/hr (Jz) )

7292 Jz <'l/}<
Z Qz¢+(al)

Inequality (2) becomes true in opposite direction, if 1 is concave.
The integral form of the Slater is stated in below theorem.

Theorem 3 Assume that Y1,Ys : (a,b) — (¢,d) be integrable functions with Yi(c) > 0 for o € (a,b) and

Y = f Yi(o)do > 0. Further, let ¢ : (¢,d) — R be an increasing convex function with 1 o Yy and 1/)/4_ oY,
are mtegmble If

b ’
Y™ :/ v, (Yi(o))do #0,

7/ Yi(o ))da<¢<f Yilo Yw+(Y2( 7))do ) (3)

For the concave function 1, inequality (3) holds positive in reverse sense.

then

Over the past few decades, Slater’s inequality has been extensively examined by researchers, resulting in
notable progressions including extensions, refinements, improvements, and generalizations. In 1985, Pecari¢
[47] extended Slater’s inequality by introducing a generalization that relaxed the requirement of convexity.
This was achieved by imposing a condition on the tuples, ensuring that

me (03) € (a1, 02).
Qler(Ul) i=1

'Mﬁ

=1

In 2000, Mati¢ and Pecari¢ [44] introduced generalized companion inequalities to Jensen’s inequality in
discrete settings. They subsequently applied these inequalities to derive Slater’s inequality and other re-
lated results. In 2017, Delavar and Dragomir [25] extended inequalities of the Slater type to classes of
n-convex functions and differential n-convex functions. Additionally, they derived inequalities of the Jensen,
Hermite-Hadamard, and Fajer types. In 2022, You et al. [63] utilized a 4-convex function to improve Slater’s
inequality in both discrete and continuous contexts. Their research extended to establishing connections
with power means and providing bounds for divergences, Shannon entropy, Bhattacharyya coefficient, and
Zipf-Mandelbrot entropy. Adil Khan et al. [4] developed new estimations for the Slater difference through the
join applications of convexity and Jensen’s and related inequalities, exploring their applications in domains
of power means and information theory. In 2022, Adil Khan et al. [5] developed a method to determine new
estimates for the Slater difference using the convexity of a differentiable function in the absolute sense. They
also discussed the applications of their findings to derive bounds for divergences and power means.
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2 Improvements of Slater’s Inequality

This section is dedicated to discussing improvements to the Slater inequality, specifically in the context of
continuous Riemannian integrals. The following theorem introduces a refined version of the Slater inequality,
developed using concepts from convex analysis and inequalities such as the triangular inequality, the definition
of convex functions, and the classical Holder inequality.

Theorem 4 Let Y1,Ys : (a1,a0) — (B1,0,) be integrable functions, and ¢ : (8,,085) — R be a twice
differentiable function. Further, Assuming T = f;f Yi(o)do and f;f Yl(a)d)/ (Yz(0))do are non-zero and
for ¢ > 1 the function 4" |7 is convexr. If

S LG it )0 (43(0))do

faz Yl YQ( ))d € (617[32)7

then

o [P -7y
(g + D" (¥)|7 + [0 (D)1
(e ) i

(4)

Proof. Assuming T # Y(c) holds for o € (a1, ) without loss of generality. We apply integration by parts

to obtain:

2 -1y

/ltw"(tYQ( )+ (1 -8T )dtdy

0

L e (o) -T)
(w%((); oy Vet ELE
O
= w7 [ Vi) )
We can rewrite identity (5) as
o0 -7 [ Vi)
—/MYl (va(o) - T) /O 1" (2(0) + (1 ~ T ) dedo. (6)

We deduce the below inequality by applying the triangle inequality after taking the absolute value of (6):

o) - 7 [ Vilo)urato)ds]

= /:‘ Yl:ﬁa)‘(YQ(")_T)Q/Ol‘w”(th(UH(l—t )‘dtda )
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By employing the well-known Hdélder inequality in (7), we achieve:

@ - 1 [ Vi)
< [T (e 1) ( /01 0" (alo) + (1 07| dt)éda. )

Applying convezity of the function |1 |1 to the right side of (8), we acquire ({). ®

In next theorem, we obtain an improvement of the Slater inequality by applying the Holder inequality
and the famous Jensen inequality for concave functions.

Theorem 5 Suppose thatv : (31, 85) — R is any function such that " exists, and the functions Y1, Ya(aq, ag) —

(617/62) are integmble and for q > 1, the function [¢"|? is concave. Also, let T := f(jf Yi(o)do # 0 and
fa2 Yi(o)y (Ya(o))do # 0 and

T 22 1(0)Yal0) (Va(0)do
' J32Yi(0)¢ (Ya(o))do

_7/ Yi(o ))do‘
(q%f [ )\(Y2(0> -T)

Proof. From inequality (8), we can formulate that,

€ (61352)'

Then

W ( (¢ + 1;1;2—(20) + T)

do. (9

~

v - 1 [ nemeni] < ()" [ 1R (v - 1)
N ‘tq/} (tY2 o)+ (1 —-t)T )’dt
( 2 T > do. (10)
Utilize Jensen’s inequality in (10), we receive
o) -7 [viowon| < ()" 12| (vee) -7’
) ]f L(tYa(o) + (1 — O)T)dty vy 2
X<w < Jy tadt > ) o )

By simplifying (11), we deduce (9). ®

The following theorem gives an improvement for the Slater inequality which has been proved by working
with the Holder inequality and definition of convex function.

Theorem 6 Assume that, all the conditions of Theorem 4 are fulfilled. Moreover, if p > 1 such that
1,1

=+ = =1, then

p ' a

v -1 [rentaeia] < () [ 12 (e -7)

y (Iz//’(Yz)lq 2+ |¢/’<T>|q)%d0

(12)
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Proof. Inequality can also be written in the following form,

1 [z

o) - 7 [ ewtaene] < [

1
x/t
0

Applying the Holder inequality on the right side of (7), we arrive
— 1 [ 1\ [*

T)— =~ | YVi(o)(Yalo))d ‘ < (=) /
v - 7 [ vewmene| < (25)" [

1 ;

Now, using the convexity of |"'|9 on the right side of (14), we receive

)

w”(tYQ() 1-1) )’dtda (13)

2P| -7)

1

”(m( )+ (1T )\ dt>édcr. (14)

0

‘w(T)—% QQQSG(UW(YQ(U))CJU‘ < (lerJé/f Y1z(10)‘(y2(0)_T)2
(/ ( +a-9| @ )dt)ldg. (15)
Simplifying (15), we acquire
’w(T)_% :2Y1(0)¢(Y2(0))da‘ < p+1 11)/042 Yi(o) 0)—7)2

(W” |/tdt+] )/ 1—t)dt>;da. (16)

Since, fol tdt = 3 and fol(l —t)dt = L. Therefore (16) is equivalent (12).

The below theorem provides another improvement for the Slater inequality, which easily be deduced by
using the Holder inequality and definition of convex functions.

Theorem 7 Let the hypotheses of Theorem &5 be true. Furthermore, zf + = =1 forp>1, then
_ 1 @2
w@) - 7 [ Vi)
1 % o Yl(a) =\2| Y2(U)+T
(1) [ P Oae 7)o (225)

Proof. Utilizing Holder inequality on the right side of (7), we get

do. (17)

o) - 7 [viewmions| < ()" [71E2 (o) -7
<f0 (th . dt(l—t)T)’ dt>;da. 18)

Instantly, applying Jensen’s inequality to (18), we receive

v -1 [ventena] < () [ 12 (e -7)

o (o) + (1 0T 7)) (19)

The inequality (17) can easily be deduced by just finding the integrals in (19). m

X
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We utilized the power mean inequality and definition of convex function to present an improvement for
the Slater inequality.

Theorem 8 Suppose that, the assumptions of Theorem /j are valid, then
N5 [ Yi(0) —=\2
_ < Z _
7 vewsena] < (5)7 [P (v -7)

(zw (Yz)\q6+ [y (T )|q) do.

(20)
Proof. By exploiting the power mean inequality on the right side of (7), we acquire

= [ iosonna] = (G) [P o <)
([

N7\ @
W (tYQ(J) +(1- t)T)( dt) do. (21)
Recently, applying the definition of convex function in (21), we obtain

1)

< ( / (e (Yoo + (1 t>|w"<T>Q)dt) . @)

o) - 3 [ viwaens| < ()7 [

@y

Now, simplifying (22), we catch (20). m

In the coming theorem, we propose an improvement of the Slater inequality by consuming the power
mean inequality and the Jensen inequality for concave functions.

Theorem 9 Let all the conditions of Theorem &5 be true. Then

o) - 7 [ Vilo)utrato)do]

1

< ;/j Yl;") (Yalo) - T)" x 1/,(%*7)’ (23)
Proof. Using (21) we can write that,
o - 7 [ viewtmaonde] < 5 [ P2|(vate) - 7)’
e ”(th o)+ (1—1) )‘ dt
(O Sy tdt ) i 29

By utilizing the Jensen inequality on the right side of (24), we deduce

‘MT)—;/a%Yl(o)qp(Yz(a))da‘ < (1);/:

59 (i) - 1)

L p+1 T
s (th(a) +(1- t)T)dt
v ( 0 [ tdt )‘ (%)

Evaluating integrals in (25), we obtain (23). ®
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3 Applications for the Means

The power means is one of the most consequential, noteworthy and valuable tools for solving a variety of
problems [21,42,62]. One of the important fact about the power means is that, it has an estimable structure,
and due this circumstance, power means have a very dominant place in many fields of science [11,34, 61].
There are exist a lot of results in the literature that have found by numerous researchers of different areas
[10,55,60]. In recent decades, the already established have been refined, improved, extended and generalized
in many ways according to the interest [56,57,63]. Due to the great importance and wide significance of
power means, we have also show an interest to provide some results for this means.

In this section, we establish a number of relations for the power means with the help of main results.
The desired relations will give different estimations for the power means. To forward ahead, first we recall
the definition of power mean.

Definition 1 Let Y7,Ys : (a1,2) — R be integrable functions with T := f;f Yi(o)do. Then, the power
mean of order r € R is given by:

“2Y1(0)Y, (0)do %
o (f‘}” ) )
7-( 1, 2)_ 22 Y1 (0) log Ya(o)do
exp 1 = , = 0.

The first consequence of Theorem 4 for power means is given in the next corollary.

Corollary 1 Assume that g1,92 : (a1,2) — (0,00) are integrable functions with g = f;lz g1(o)do and
q > 1. Further, let v and t be non-zero real numbers such that t < r.

(i) If r and t are positive, then

t

t - gM{(g1,92) )
M{ (g1, 92) ( % gl(a)gé’”(a)d‘)

0 1" o) s - 702 )

7 Ja, 7 g1(0)gs " (0)do

IN

X

q(£-2)
q(t—2r) gM{ (91,92) "
((q +1)g, (o) + <f:12 gl(g)g;’“(a)dg) ) :

CERCES) do (26)

(it) fr and t are negative with £ ¢ (2,2 + %), then

( gM{ (g1, 92)
I3 g1(0)g5 " (0)do

< 1D [ o) (shto) - ol Yy

g Jau Jolai(o)gy (o

) - Mtt(gth)

X

ot 4(7*2)
(a+ g5 (0) + (f ECr ()U)dcr) 3
( - ) do (27)

(¢+1)(g+2)

(1i1) If v is positive and t is negative, then (27) holds.
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Proof. (i) To prove inequality (26), consider ¥(c) = o+, o > 0. Then certainly

V() = L (7= 1)t

r-r

and

" t
" _|Z(Z
(6l = L - Dl
Clearly, " (o) is negative and (|¢”(a)\q)” is positive for the specified conditions, which conclude that (o)
is concave and |[¢"'(c)|9 is convex. Therefore, to acquire (26), just put ¥(o) = o+, Yi(o) = g1(0), and
Ya(o) = g5(0) in (4)-

(ii)—(iii) For the mentioned values of r, t, and q in cases (ii) and (iii) respectively, both the functions

P(o) and |9"(0)|? are convex. Therefore, inequality (27) can easily be deduced by following the procedure of

(i). m

(-1 - e

We obtain a relation for the power means with the help of Theorem 5, which is stated in the below
corollary.

Corollary 2 Assume that g1,92 : (a1,a2) — (0,00) are integrable functions with g := f;f g1(0)do and
q > 1. Further, let v and t be non-zero real numbers such that t < r and % € (2, 2+ %), Then

< tht(glv 2)
[ ia(o)gs " (o

1 Nat(t—r) /LY2 (r gM{ (g1, 92) )2
e — o o) — —5 —
(1) T [, 2 @50~ i i

r gM{(g1,92) .
4+ D95(0) + Jo g, oyt (v i
q+2 '

T )i ~ MH(g1,02)

X (28)

Proof. Consider (o) = o+ defined on (0,00). Then, obviously 1(c) is convex and [¢" ()9 is concave.
Therefore, use (c) = o+, Yi(0) = g1(0), and Ya(o) = g5(c) in (9), we receive (28). m

Some more relations for the power are stated in coming corollary which have been deduced from Theorem
6.

Corollary 3 Letr andt be non-zero real numbers witht < r and p,q > 1 such that %—%—% = 1. Also, assume

that g1, 92 : (a1, ) — (0,00) are integrable functions with G := f:‘f g1(0)do.

(i) If r and t are positive, then

M{(g1,92) — (f th(ghgz))dU)fv
L \wt(r—t) ’ r M (g1, 92) 9
(ﬁ) t gmt /al 91(o) (92 (o) — f;‘f zl (a)zé_gj(a)d0>

(+-2)
q(t—2r) gM; (g1,92)
(92 (U)+ (f:f gl(a)g;T(J)dJ> );
X
2

IN

do. (29)
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(i) If r and t are negative with £ ¢ (2,2 + %) , then

gM{(91, 92) >t t
a _r - M (91792)
(faf i)l (de )
1 )%t(t*T’) /az ( r ng(glaQQ) >2
— 1 = 91\0)\ 92\0) — —©& —
(1) "5 [, 9 \50) -~ i o
(1-2r) i\
g o)+ (f% ;(3)?17%(0)(10) i
ajg 2
x( ) do. (30)
2
(iii) If v is positive and t is negative, then (30) holds.
Proof. (i) Inequality (29) can certainly be achieved by taking ¢¥(c) = o+, o > 0, Yi(0) = ¢1(0), and

Ya(o) = g5(o) in (12).
(i) (iii) For inequality (30) follows the method of (i). m
Another relation is obtained from Theorem 7 for the power means which is given in the following theorem.

Corollary 4 Presume that, the suppositions of Corollary 2 are valid. Moreover, if p > 1 such that %—I—% =1,

then

(f thtggl’gz) )i Mg 2)

;12 g1(o g;fr(a)da
gM{ (g1, 92)

() 5 /aazgl(")@(f’)f;zgl(a)gz-"(a)daf

p+1/ grr Ja,
s gM; (91,92)
92(0) + 2 . )9t~ " (o)do 572
X( f("l ;1( ).‘12 ( ) > da‘ (31)

Proof. Putting ¢(c) = o+, o € (0,00), Yi(0) = g1(0), and Ya(0) = g5 (o) in (17), we obtain (31). m

By utilizing Theorem 8, we establish some relations for the power means highlighted in the coming

corollary.
Corollary 5 Let the positive valued functions g1 and go be integrable over (a1, ) with g := f;f g1(o)do

Also, suppose that r and t are non-zero real numbers such that t < r. Assume that ¢ > 1.

(i) If r and t are positive, then
gM{ (g1, 92) ;
Mt(91792) - ( [e] —_r
t Jol 1(0)g3 " (0)do
I\1=gt(r —t) /Oé2 ( . gM{(g1,92) >2
< (= _ 91(0)( 95(0) — <= =
(2> g Ja, o) gito) [ g1(0)gs " (0)do
(t—2r) gy )
qlt—2ar gy (91,92
292 (U) + (f:lg g1(0')g;r(0)da) %
do. (32)

< :
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(i) If r and t are negative with £ ¢ ( 24 q) then

(fal g1(o (zg 2(3;) >:Mf(gl;92)

< )G [l )

g(t—2r) ol gre  \"

7 gM; (91,92 X
<29 (0') + <f:12 gﬂa)gé"’(a)da) )q
x 6

do. (33)

(#i3) If v is positive and t is negative, then (33) holds.

Proof. (i) To achieve (32), consider ¢(o) = o+, 0 >0, Y1(c) = ¢1(0), and Ya(c) = g5 (o) in (20).
(i)~ (iii) Now, to deduce (33) select (o) = o+, o € (0,00), Yi(0) = g1(0), and Ya(o) = g5(a) in (20).
[

The next corollary gives a relation for the power means as a consequence of Theorem 9.

Corollary 6 Presume that the hypotheses of Corollary 2 are satisfied, then

gM{ (g1, 92) ) ¢
a —r - M (91,92)
(afgl(o)gé (0)do '

bt —r) [ , IMi(g1,92)  \°
e I CRR ey o)

<
r gM{(g1,92) .
205(9) + [T grorak (orae \ F 2
x . do. (34)

i
=

Proof. Inequality (34) can easily be acquired by using (o) = or, o € (0,00), Y1(0) = g1(0), and Ya(o) =
g5(o) in (23). m
Some relations are deduced for the power means by utilizing Theorem 4, which are given in the below

corollary.

Corollary 7 Let g1, g2 be positive valued functions on (a1, as) and g > 1. Then

(1)
Mo(g1, 92) 1 [z 2
M_1(g1,92) < exp (g /a1 91(0)(92(0) *M—1(91792)>
(q+1)g5 %" (0) + M2 (g1,92) \ ¥
X( (¢+1)(g+2) ) dy)' (35)
(ii)

L[ M2(91 92))2
- ol lo o) — 2 Je)
9/a1 a1 )< 842(7) M (g1, g2)
M) 1

d

(a+ 1)g3(0) +exp  fE22)
( (¢+1)(g+2)

M22(91792)
exp | ——=| - M , <
p (M1(g17gz)> 1(91 92)

(36)

X
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Proof. (i) First, we prove inequality (26). For this, take ¥(o) = logo, o € (0,00). Then, clearly, both
the functions v and |¢"|9 are convex. Therefore, to obtain (35), use ¥ (o) = logo, Y1(0) = ¢1(0), and
Y3(0) = ga(0) in (4).

(i) Now, to achieve (36), let us take (o) = expy, o € (—00,00). Then surely, the functions b and ||
both are convex. Thus, applying (/) by choosing (o) = expy, Y1(0o) = g1(0), and Ya(c) = g2(0), we obtain
(56). m

The following corollary provides relations for the power means, which have been acquired from Theorem
6.

Corollary 8 Suppose that, the conditions of Corollary 7 are fulfilled. Additionally, if p > 1 such that
1,1

=+ = =1, then

p ' a

(i)
) (g,;zr(a) T JQM:fp(gl,gz)> ey ) (37)
(i)
Sl ) RO e IR e )
9 (gg(a) : epo(JM) ) ' o (39)

Proof. (i) Use (o) =logo, o € (0,00), Yi(0) = g1(0), and Ya(o) = g2(0) in (12), we receive (37).
(ii) Take (o) = expo, 0 € (—00,0), Y1(0) = g1(0), and Ya(o) = go(o) in (12), we get (38). m

The following relations are the consequences of Theorem 8 for the power means.

Corollary 9 Suppose that, the conditions of Corollary 7 are fulfilled. Additionally, if p > 1 such that
1,1

<+ 2 =1, then

P q

(i)
m s exp ((;)1;;/:2 91(0)(92(0) —M—1(91792))2
. (2922%) + 16\43p<gl,gg>)é dy>. )
(it)
€xp (m) = Mi(g1,92) < (;)1_é; :2 91(0)<10g92(0) - m>2

M3 (91,92) 1

293 (c) +exp | T2 )N+
X( 2 (M1(Q1792))) do. (40)
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Proof. (i) To acquire inequality (39), select (o) =logo, o € (0,00), Yi(0) = g1(0), and Y(o) = g2(0) in
(20).

(i) For inequality (40), apply (20) by putting ¢(c) = expo, 0 € (—00,00), Y1(0) = g1(0), and Ya(o) =
g2(0). m

4 Applications for Divergences

During the last few decades, the divergences have been utilized very abundantly in the various areas of
science, particularly in communication domain [1,9]. The divergences can be used to remove faults in com-
munication or transmission of signals over channels [30,31]. Moreover, the pragmatic information processing
in computers, in the internet, and in other networks can be studied and developed with the help of diver-
gences [17,32,40]. In the recent years, there are many theoretical and conceptual approaches have been
organized in very systematical manners, how divergence should be used to solve many problems in the com-
munication networks [41,43,52]. Due to the great importance and real applicability of divergence in several
real world problems, we have also made an attempt to contribute some literature to this area. Here, we
provide some estimations for the Csiszdar and Kullback—Leibler divergences, Shannon entropy, and Bhat-
tacharyya coefficient as applications of the main results. In order to proceed to the desire estimations, first
we state the definition of Csiszér divergence.

Definition 2 Let g1, g2 : (a1, a0 — (0,00) be integrable functions and 1) be a real valued function defined on
(0,00). Then, the Csiszar divergence is defined as:

Dy (g1, 92) = /C¥2 g1(0) (92(0)> do.

a1 91(0')

Corollary 10 Assume that, the functions g1 and go are positive such that their integrals exists over (aq, o).
Also, let

5= [ ai(o)do Jar 92 (B@)de
9= 91 b oraz "(92(0)\ g ’
o1 fal 91(0)'€/J (91(0)) d

and 1 be a real valued twice differentiable function over (0,00) such that 1”7 is convex for ¢ > 1. Then

‘w(fff g2(a>¢'(§iéi§)d0) _ Dylar.g2)

D, (91,92) g
Lo g(0) _ Jar gz(o)w’(_gjgg)dg)z
< g/al 91(0)(g1(0) Dw’(gl,gz)

q

- Sz 920000 (5453 ) do
) ((q+ Dl (2" + [ (= <gl(,223 ) )

(¢+1)(g+2)

)éda. (41)

Proof. Inequality (41) can be easily deduced by taking Y1(o) = g1(0) and Ya(o) = Z?Egg in(4). =

Corollary 11 Let g1,92 : (a1, a2) — (0,00) be integrable function with

g1(0)do and — —
1 J22 g1(o) (25 do

=

I 2 oo (220
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Further, assume that 1 : (0,00) — R is a twice differentiable function such that |1"|9 is concave for q¢ > 1,
then

‘q/}(f;f g2(0) (nggg)da) _ Dy(g1,92)

Dw/ (.91792) y
< 1 /wg<@(mw> ﬂ?@wv%?gpw>
>~ - 1 1 -
g(q + 1)% o1 gl(a) Dq/;' (91,92)
ga(o) | JE2 9200w (23 )do
AU Rt by vt Ty
X [t P do. (42)

Proof. Use Yi(0) = g1(0) and Ya(o) = % in (9), we acquire (42). m

Corollary 12 Suppose that the assumptions of Corollary 10 are valid. Moreover, if p > 1 such that %—i—% =
1, then

lib(f‘:f 92;0( (QQEUg)dU) _ Dy(91,92)

ﬂ/ glaQQ) g

< 1/a291(0)<92(0) f;lzgz(a)wl(gfggg)d(;v)?

glp+1)r 91(0) Dy (g1,92)
(i ooy o

D, (91,92)

1

92(0'))|q +

<’w//(gl(0)
X

q

do. (43)

2

Proof. To obtain (43), just put Y1(o) = g1(0) and Ya(o) = gf ”; in (12). m

O’

Corollary 13 Suppose that, all the hypotheses of Corollary 11 are satisfied. Furthermore, if the relation
% + % is true for p > 1, then
oo ()Y Drto
Dw’ (gla 92) g
o a (o)
< ! / 291(0)<g2(0) 3 Ja, 92(0) v (22(0))d0>
= 1
gp+1)» 91(0) D (91,92)
g2(o) + Jap oo )w/(zfg;)da

u{ 91(o) D/ (91,92)
2

Proof. By utilizing Y1(c) = g1(c) and Ya(c) = ZT—U in (17), we receive (44). m

do. (44)

Corollary 14 Let the conditions of Corollary 10 be fulfilled. then

W@%Q (ZﬂﬁDu%@>

(91, 92) 7
LI mm_ﬁwmwﬁwf
< 21—%5 /oz1 91(0)<gl(0) Dw’(gl,gz)

’Tﬁwmwﬁwﬁﬁq

D, (91,92)

2¢// gz(g) q+ %
< WGl - ) do. (45)
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Proof. Applying (20) by choosing Y1(0) = g1(0) and Yo(o) = gfggg, we get (45). m

Corollary 15 Assume that, the hypotheses Corollary 11 are positive, then

‘1#(];12 92(0)¢/(ﬁ2)d0> _ Dw(%l792)

D, (91, 92) g
L[ o) o iy
= 2 e, T \gi(o) D, (91.9)

yote) S o (5) 0
1/)”( 91(0) D, (91.92)

X

3 do. (46)

Proof. To acquire (40), use (23) for Y1i(o) = g1(0) and Ya(o) = zfggg [

Definition 3 For any probability density function g1, g2 : (a1, a2) — (0,00), then Kullback-Leibler diver-

gence is defined as:
Y 91(0))
Dk(glygz)/al 91(0)111(92(0) do

Corollary 16 Suppose that g1 and g2 are positive probability distributions on (a1, as) and ¢ > 1, then
ot ([ E9) - Dutgan < [ oo (2 - ([ 4 dy))
o 92(0) PP e T o) s g2(0)

2q 2 2q
g1(9) az gi(o)
<(Q+1)(9;(0)) + <fa1 g;(a)dy> );

(¢+1)(g+2)

X

do. (47)

Proof. Consider (o) = —logo defined on (0,00), then by successive differentiations, we have " (o) = 02
and (|v"(0)|) = 2q(q2 + 1)o~ 29+ From these expressions, it is clear that both the functions 1" and

(|"]7)  are positive with the given conditions. Which reflects the convexity of ¢ and |"(0)|?. Thus, to
achieve (47) use (o) = —logo in (41). m

Corollary 17 Assume that the hypotheses of Corollary 16 are true. Moreover, if for p > 1 the relation
% + % =1 is valid, then

log ( /a " 6i(0) dy) — Di(91, 92)

. 92(0)
) o ([ ) )
X<(5:$s%)2q+ (s zigzgdy)g"y

6

do. (48)

Proof. To get (48), take ¢(o) = —logo, o € (0,00) in (453). =
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Corollary 18 Let the conditions of Corollary 16 are fulfilled, then

log (/:2 zigg dy) — Dk(g1,92)
< ()7 [Ceo(Eg- ([ EGw) )
x <2(z;éz§)2" : (6f55 i) 2q> P »

Proof. Apply (15) for ¢(o) = —logo, o € (0,00), we obtain (49). m

Definition 4 For the probability density function i : (a1, a) — (0,00), the Shannon entropy is defined by:

S(g1) = /a2 g91(0)log (g1(0))do.

1

Corollary 19 Presume that g; is a positive probability density function on (a1, ) and ¢ > 1, then

log (/: g%(U)d‘7> —S(q) < /:2 g1(0)<g£0) s gfl(U)de

a1

2q
(g+1)g (f gt ) ;
X do. 50

< (¢+1(g+2) ) (0)
Proof. Inequality (50) can smoothly be gained by taking ¥ (o) = —logo, o € (0,00) in (41). ®

Corollary 20 Assume that the conditions of Corollary 20 are true with further addition that, the relation
%—&— % =1 is valid for p > 1, then

log </:2 g%(a)dc?) - S(g1) < (pil); /:2 gl(U)(glia) oo gfl(a)cla>2

a1

X( o+ () >>ﬁda. o

Proof. Utilizing (/3) for ¢(c) = —logo, o € (0,00), we receive (51). m

Corollary 21 Let the hypotheses of Corollary 20 hold. Then

o ([ ) st @W /fglw(gja) )
2q
x( (f2 ! ) )éda 5

6

Proof. To acquire (52), apply (45) for (o) = —logo, o € (0,00). W

Definition 5 The Bhattacharyya coefficient for the positive Probability density functions g1 and go over

(a1, @) is defined by:
B(g1,92) =/ g1(0)g2(0)do.
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Corollary 22 Assume that, all the conditions of Corollary 16 are fulfilled, then

B(g1,92) L[ g2(0) B(g1,92) 2
B(g y 9 )_ 3 1 < < g (‘7) - 3 1
VRN 1 0k 0)9s F(0)do if, o <91(0> [ g <a>922<a>do)

2q 24

3 _1 2q
91(0) ) 3 S22 97 (0)g, 2 (0)do | 3
<(q+1>(92(0)) + . B(91,92) )

Q=

X do. (53)

Proof. Consider (o) = —/o, o € (0,00), then distinctly " (o) =

(') = ()75 (G + 1o (.

Which implies that both " (o) and (|¢”(U)|q)” are positive on (0,00) for ¢ > 1. This admit that the functions
P(o) and [¢" ()9 are convex. Hence, to acquire (53) put (o) = —\/o in (41). &

Corollary 23 Suppose that the hypotheses of Corollary 17 are true, then

B(g1,92)
P —1
[l 9t (0)gy * (0)do

1 “ . 92(0) B(g1,92) 2
= Ap+1)7 /al ol )<91(0) f512g§(0)92é(0)d0>

e F | (fe2 ek @nt@ar) ¥
g1(o ar 91 (9)95 o)do
(!]2(0)) +< B(g1,92) ) 2
X

( ; )

3(91792) -

do. (54)

Proof. Using (c) = —\/o, o € (0,00) in (43), we achieve (5/). m

Corollary 24 Let the assumptions of Corollary 16 are come true. Then

3(91 , 92)
I g3 (0)g5 * (0)dor
7 (2t

91(0)7 a2 3 2
Jol 9t (0)gs

2q

O\ F | (12208005 % ()do\ D
g1(o o £ (o)g, o)do
(2(92(0)) +( " Bar.90) ) )1
X

B(91792) -

- " do. (55)

Proof. Inequality (55) can be obtained by utilizing (45) while taking ¥(o) = —y/o, 0 € (0,00). =

5 Conclusion

The theory of mathematical inequalities is a crucial and influential area of research. It provides a valu-
able framework for introducing and developing mathematical tools to solve and manage various real-world
problems. An interesting fact about mathematical inequalities is that many of them are based on convex
functions. Among these inequalities, Jensen’s and Slater’s inequalities are particularly noteworthy. This
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article aims to presented novel improvements to Slater’s inequality through a new methodological approach.
The intended improvements were proven by utilizing twice-differentiable functions and other mathematical
tools from convex analysis and mathematical inequalities. The applications of the main findings were ex-
plored for power means and in information theory, providing new relations for power means, Csiszdr and
Kullback—Leibler divergence, Shannon entropy, and Bhattacharyya coefficient.

Acknowledgment. The authors would like to thank the anonymous reviewers and the editor for carefully
reading the paper and giving helpful suggestions that made the manuscript better.
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