
Applied Mathematics E-Notes, 25(2025), 466-476 ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

On Implicit Neutral Differential System With Conformable

Fractional Derivatives With State-Dependent Delay And Impulses∗

Kavitha Velusamy†, Anjitha Kallemoochikkal Mohandas‡, Mallika Arjunan Mani§

Received 3 July 2024

Abstract

This paper examines into the existence and uniqueness of solutions for a nonlinear implicit
neutral fractional differential system (INFDS) incorporating state-dependent delay (SDD) and impulsive
perturbations (IPs). We utilize the conformable fractional derivative (CFD), which offers computational
benefits and preserves key properties. Our results are derived based on the assumption that the involved
functions satisfy local Lipschitz continuity conditions. To illustrate the applicability of our theoretical
contributions, we present an illustrative example.

1 Introduction

Fractional calculus is a fascinating area of mathematics that goes beyond regular differentiation and
integration, exploring operators of non-integer orders. It provides a powerful way to model systems with
memory and hereditary behaviors, helping us better understand complex systems [1–3]. The idea of fractional
calculus dates back to the 17th century, when mathematicians like Leibniz and L’Hopital first thought about
fractional derivatives. Over time, other great mathematicians such as Euler, Riemann, and Grunwald made
important contributions to its theoretical development [4–6].

Impulsive differential equations (IDEs) have emerged as a powerful tool for modeling dynamical
systems that experience abrupt state changes. Unlike classical differential equations, where changes occur
continuously, IDEs incorporate impulsive terms representing sudden jumps or discontinuities in state
variables [7]. This framework is particularly effective for capturing phenomena such as impacts in mechanics,
control systems with sudden parameter shifts, population dynamics with rapid migrations, and biological
systems with discrete events like heartbeats [8–11].

State-dependent delay (SDD) is a significant concept in the study of differential equations, where the
delay in the system’s response depends on the current or past states of the system. This type of delay more
accurately reflects real-world scenarios where the timing of events or actions is influenced by the system’s
current condition. For instance, in biological systems, the reaction time can vary depending on the current
health state, or in control systems, the response delay can depend on the current operating conditions [10–13].

The CFD is a relatively new definition of a fractional derivative introduced by Abdel-Rahman Khalil et al.
[14] in 2014. Unlike some classical fractional derivatives (e.g., Riemann-Liouville, Caputo), the conformable
derivative offers several advantages, see for instance [9, 15–17]. Conformable fractional differential equations
(CFDEs) represent a relatively new area of investigation within the broader field of fractional calculus. In
2017, Bayour and Torres [18] examined the existence results for CFDEs of order ρ ∈ (0, 1] under fixed point
techniques. Later, in [19], authors discussed the existence and stability results for the system discussed in
[18] with non-local conditions under appropriate conditions. More recently, Hannabou et al. [9] studied a
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novel class of non-local IDEs involving the CFD. Their approach leverages the theory of operator semigroups
and fractional calculus to define a solution concept within this domain. The analysis hinges on the powerful
tools of fixed-point theory, where the authors employ appropriate theorems to guarantee the existence and
uniqueness of solutions. Li et al. [20] focus on conformable neutral systems, establishing existence results
using fixed-point theorems. Abbas and Benchohra [13] considered the system as in [18], addressing existence
and uniqueness for systems with both finite and infinite delays using fixed-point theory, and further extend
their results to neutral-type systems. Hilal et al. [21] delve into fractional conformable neutral type systems
with a non-local condition, proving existence and uniqueness of mild solutions via fixed-point theorems.
Based on Xiao et al. [22], another work explores optimal control for conformable fractional neutral stochastic
integro-differential systems [23]. Most recently, Krim et al. [10] anlyzed an implicit CFDEs, establishing
existence results using a specific contraction mapping in b-metric spaces. Even with these advancements,
there has been little research on the existence, uniqueness, and stability of solutions for implicit neutral-type
CFDEs with SDD, especially for systems like model (1.1). This gap in the literature provides a valuable
opportunity for future research.

Inspired by the above mentioned works [10, 13], this paper investigates the existence and uniqueness of
a novel class of nonlinear implicit neutral CFDEs. The system under investigation is formulated as:





CFDD
ρ
tp

[ω(t) −H(t, ωt)] = F
(
t, ωκ(t,ωt),

CFDD
ρ
tp
ω(t)

)
, t ∈ Ip, p = 0, 1, . . . , `,

ω
(
t+p
)

= ω
(
t−p
)

+ Lp(ωt−p ), p = 1, . . . , `,

ω(t) = ξ(t), t ∈ (−∞, 0],

(1.1)

where F : I ×W × R → R, H, κ : I ×W → R are functions with H(0, ω0) = 0, Lp : W → R, p = 1, . . . , `,
ξ : (−∞, 0] → R, 0 = t0 < t1 < · · · < t` < t`+1 = Z < ∞, where I = [0, Z], I0 = [0, t1], Ip = (tp, tp+1],
CFDD

ρ
tp

is the CFD of order ρ ∈ (0, 1), and W represents a space with properties relevant to the system,
which will be formally introduced as the phase space later.

For any t ∈ I, we define ωt ∈ W by

ωt(θ) = ω(t + θ), for θ ∈ (−∞, 0].

Our work is carefully structured to explain the concepts and results in a clear order. Section 2 provides the
basics, including the notation and key ideas from fractional calculus. It also includes important supporting
results to prepare the reader for the analysis that follows. Section 3 focuses on the main part of the paper:
proving the existence and uniqueness of solutions for problem (1.1) using the Banach contraction principle.
Finally, Section 4 includes an example to demonstrate the importance of our main findings.

2 Preliminaries

This section lays the groundwork by providing a comprehensive introduction to the concept of the
conformable derivative. It delves into the fundamental definitions, terminology, and essential background
information necessary for understanding the applications of this derivative throughout the paper.

Let C(I,R) represent the collection of continuous functions ω : I −→ R. This particular space, labeled
as C(I,R), forms a Banach space characterized by the supremum norm ‖ · ‖, defined as:

‖ω‖∞ = sup{|ω(t)| : t ∈ I}.

Now, we construct the subsequent Banach space

PC(I,R) =
{
ω : I → R, ω ∈ C(Ip,R) forp = 0, 1 . . . , `, and there existω(−p ) and ω(+p )

with ω(tp) = ω(t−p ), p = 1, 2, . . . , `
}

and is normed by
‖ω‖PC = sup

t∈I

|ω(t)|.
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Definition 2.1 ([14]) The CFD of a function f : [0,∞) → R of order 0 < ρ ≤ 1 is defined by

Dρf(t) = lim
ε→0

f
(
t+ εt1−ρ

)
− f(t)

ε
,

provided the limit exists. In the case where t = 0, we modify the definition as follows:

CFDDρf(0) = lim
t−→0+

CFDDρf(t).

Theorem 2.1 ([14]) Let ρ ∈ (0, 1] and f1, f2 be ρ-differentiable at a point t > 0. As a result, we have

(i) CFDDρ(f1f2) = f1
CFDDρ(f2) + f2

CFDDρ(f1).

(ii) CFDDρf(t) = t1−ρDf(t), where f is differentiable and D =
d

dt
.

Definition 2.2 ([15]) Let ρ ∈ (0, 1]. The CF integral starting from a point d of a function f : [0,∞) → R

of order ρ is described as

Iρ(f)(t) =

∫ t

0

σρ−1f(σ)dσ.

Theorem 2.2 ([14]) If f(·) is a continuous function in the domain of Iρ(·), then for all t > 0, we have

CFDDρ(Iρf(t)) = f(t).

Proposition 2.1 ([14]) If f(·) is a differentiable function, then for all t > 0, we have

Iρ
(
CFDDρf(·)

)
= f(t) − f(0).

Now, we construct the phase space axioms. Let (W, ‖ · ‖W) be a seminormed linear space consisting of
functions mapping (−∞, 0] into R, defined by

W =
{
ω : (−∞, 0] → R : θ 7→ ω(θ) ∈ C((θp, θp+1],R) for p = 0, 1, . . . , `, and there exist ω(θ−p ) and ω(θ+p )

with ω(θp) = ω(θ−p ), p = 1, 2, . . . , ` and θp = tp − t for each t ∈ (tp, tp+1]
}

and satisfy the subsequent axioms, which are derived from the original formulations by Hale and Kato [24].

(B1) If ω : (−∞, 0] → R, and ω0 ∈ W, then there exist constants η1, η2, η3 > 0 such that for each t ∈ I, the
following hold:

(a) ωt ∈ W,

(b) ‖ωt‖W ≤ η1‖ω0‖W + η2 sup
ψ∈[0,t]

|ω(ψ)|,

(c) ‖ω(t)‖ ≤ η3‖ωt‖W .

(B2) For the function ω(·) as described in (B1), ωt is continuous on I and maps into the space W.

(B3) The space W possesses the property of completeness.

Consider the space

Θ =
{
ω : (−∞, 0] → R, ω|(−∞,0] ∈ W, ω|I ∈ PC(I,R)

}
.
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Definition 2.3 A function ω ∈ Θ constitutes a solution to system (1.1) if and only if it adheres to the
subsequent integral equation:

ω(t) =





ξ(0) +H(t, ωt) +

∫ t

0

σρ−1Ξ(σ)dσ, t ∈ [0, t1],

ξ(0) +H(t, ωt) +
∑̀

p=1

Lp(ωt−p ) +
∑̀

p=1

∫ tp

tp−1

σρ−1Ξ(σ)dσ +

∫ t

tp

σρ−1Ξ(σ)dσ,

t ∈ (tp, tp+1], p = 1, 2, . . . , `,

ξ(t), t ∈ (−∞, 0],

(2.1)

where Ξ ∈ C(I) in a way that Ξ(t) = F (t, ωκ(t,ωt),Ξ(t)).

3 Existence and Uniqueness Results

This section is dedicated to proving existence and uniqueness results for system (1.1). To begin, we
establish an existence theorem for the system (1.1) by employing Banach’s fixed-point theorem [25].

In the subsequent analysis, we assume that 0 ≤ κ(t, χ) ≤ t, χ ∈ W and adopt the further assumptions:

(HF) The function F : I ×W × R → R is continuous and ∃ MF > 0 and 0 < M̃F < 1 such that

|F (t, ξ, v)− F (t, ξ, v)| ≤ MF‖ξ − ξ‖W + M̃F |v − v|

for each t ∈ I, ξ, ξ ∈ W, v, v ∈ R.

(HF1) For every q > 0, we can find a constant MF > 0 such that

|F (t, ωt2, v) − F (t, ωt1, v)| ≤ MF (q)|t2 − t1| + M̃F |v − v|, t, t1, t2 ∈ I, v, v ∈ R,

for all function ω : (−∞, Z] → R such that ω0 = χ ∈ B, ω : [0, Z] → R is continuous and
max

0≤s≤Z
‖ω(s)‖ ≤ q.

(HS) The function κ : I ×W → [0,∞) is such that

(i) the function t 7→ κ(t, χ) is continuous for every χ ∈ W;

(ii) there exists a constant Mκ > 0 such that

|κ (t, u)− κ (t, u)| ≤ Mκ ‖u− u‖
W
, u, u ∈ W, ∀ t ∈ I.

(HH) The function H : I ×W → R is continuous and ∃ a constant MH > 0 such that

|H(t, u)−H(t, u)| ≤ MH‖u− u‖W , for each t ∈ I, u, u ∈ W.

(HI) The functions Lp : W → R, p = 1, 2, . . . , ` are continuous and ∃ a constant MLp
> 0 such that

|Lp(u) − Lp(u)| ≤ MLp
‖u− u‖W , for all u, u ∈ W

and ML = max{ML1
,ML2

, . . . ,ML`
}.

Theorem 3.1 Suppose F, κ,H and Lp, p = 1, 2, . . . , ` are satisfy the conditions (HF), (HF1), (HS), (HH)
and (HI). If

Λ1 =

[
η2

(
MH +

∑̀

p=1

MLp
+

(MF + MF (Q)Mκ)

ρ(1 − 2M̃F )
{`Aρ + Bρ}

)]
< 1, (3.1)

where A = max{t1 − t0, t2 − t1, t3 − t2, . . . , tp − tp−1, p = 1, 2, . . . , `} and B = max{t− t1, t− t2, . . . , t− tp},
then the system (1.1) has a unique solution on (−∞, Z].
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Proof. Define the operator Υ : Θ → Θ by

(Υω)(t) =





ξ(0) +H(t, ωt) +

∫ t

0

σρ−1Ξ(σ)dσ, t ∈ [0, t1],

ξ(0) +H(t, ωt) +
∑̀

p=1

Lp(ωt−p ) +
∑̀

p=1

∫ tp

tp−1

σρ−1Ξ(σ)dσ

+

∫ t

tp

σρ−1Ξ(σ)dσ, t ∈ (tp, tp+1], p = 1, 2, . . . , `,

ξ(t), t ∈ (−∞, 0].

(3.2)

Now, we show that ΥBQ ⊂ BQ. To do this, let max
t∈I

F (t, 0, 0) = M∗
F ; max

t∈I
H(t, 0) = M∗

H ; max{Lp(0), p =

1, 2, . . . , `} = M∗
L and let BQ = B(0, Q) = {ω ∈ Θ : ‖ω‖Θ ≤ Q, 0 ≤ t ≤ Z} be the ball centered at the

origin with radius

Q >
Ω1

1 −

(
MHη2 +

MF η2t
ρ
1

ρ(1 − M̃F )

) . (3.3)

For each t ∈ [0, t1] and ω ∈ BQ, we sustain

|(Υω)(t)| =

∣∣∣∣ξ(0) +H(t, ωt) +

∫ t

0

σρ−1Ξ(σ)dσ

∣∣∣∣ ≤ |ξ(0)|+ |H(t, ωt)| +

∫ t

0

σρ−1|Ξ(σ)|dσ. (3.4)

Note 1 From the phase space axioms and conditions (HF)–(HI), we have the following estimations:

|ξ(0)| ≤ η3‖ξ‖W , (3.5)

|H(t, ωt)| ≤ |H(t, ωt) −H(t, 0)|+ |H(t, 0)| = MH ‖ωt‖W + M∗
H

≤ MH

[
η1 ‖ξ‖ω + η2 sup

0≤ψ≤t
|ω(ψ)|

]
+ M∗

H

≤ MH [η1 ‖ξ‖ω + η2Q] + M∗
H

= MHη1 ‖ξ‖W + MHη2Q+ M∗
H , (3.6)

|Ξ(t)| ≤ |F (t, ωκ(t,ωt),Ξ(t)) − F (t, 0, 0)|+ |F (t, 0, 0)|

≤ MF ‖ωκ(t,ωt)‖W + M̃F |Ξ(t)|+ M∗
F

≤ MF

[
η2 max

0≤τ≤κ(t,ωt)
|ω(τ )| + η1‖ξ‖W

]
+ M̃F |Ξ(t)|+ M∗

F

= MF η1‖ξ‖W + MFη2Q+ M̃F |Ξ(t)| + M∗
F

≤
MF (η1‖ξ‖W + η2Q) + M∗

F

1 − M̃F

. (3.7)

By incorporating the results of equations (3.5)–(3.7), equation (3.4) is transformed into the following
expression:

|(Υω)(t)| ≤ η3‖ξ‖W + MHη1‖ξ‖W + MHη2Q+ M∗
H +

MF (η1‖ξ‖W + η2Q) + M∗
F

1 − M̃F

∫ t

0

σρ−1 dσ
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≤ Ω1 +

(
MHη2 +

MF η2t
ρ
1

ρ(1 − M̃F )

)
Q ≤ Q,

where

Ω1 = (MHη1 + η3) ‖ξ‖W + M∗
H +

(MF η1‖ξ‖W + M∗
F ) tρ1

ρ(1 − M̃F )
.

Further, for each t ∈ Ip, p = 1, 2, . . . , ` and ω ∈ BQ, we obtain

|(Υω)(t)| ≤ |ξ(0)| + |H(t, ωt)| +

∣∣∣∣∣
∑̀

p=1

Lp(ω
−
tp

)

∣∣∣∣∣+
∑̀

p=1

∫ tp

tp−1

σρ−1|Ξ(σ)| dσ+

∫ t

tp

σρ−1|Ξ(σ)| dσ

≤ Ω2 +

(
MHη2 + η2

∑̀

p=1

MLp
+

MFη2

ρ(1 − M̃F )
{`Aρ + Bρ}

)
Q,

where

Ω2 =

(
η3 + MHη1 +

∑̀

p=1

MLp
η1

)
‖ξ‖W + M∗

H + `M∗
L +

(MF η1‖ξ‖W + M∗
F )

ρ(1 − M̃F )
{`Aρ +Bρ} .

Then for all t ∈ I, and ω ∈ BQ, we have

‖Υω‖Θ ≤ Ω2 + η2

(
MH +

∑̀

p=1

MLp
+

MF

ρ(1 − M̃F )
{`Aρ + Bρ}

)
Q ≤ Q.

This proves that Υ transforms the ball BQ into itself. Next, for ω, ω ∈ PC and t ∈ [0, t1], we sustain

|(Υω)(t) − (Υω)(t)| ≤ |H(t, ωt) −H(t, ωt)| +

∫ t

0

σρ−1|Ξ(σ) − Ξ(σ)|dσ, (3.8)

where Ξ,Ξ ∈ C(I,R) are such that

Ξ(t) = F (t, ωκ(t,ωt),Ξ(t)) and Ξ(t) = F (t, ωκ(t,ωt),Ξ(t)).

From (HH) and phase space axioms, we have

|H(t, ωt) −H(t, ωt)| ≤ MH‖ωt − ωt‖W ≤ MHη2 max
0≤τ≤t

‖ω(τ ) − ω(τ )‖. (3.9)

In view of (HF), (HF1) and (HS), we have

|Ξ(t) − Ξ(t)| = |F (t, ωκ(t,ωt),Ξ(t)) − F (t, ωκ(t,ωt),Ξ(t))|

≤ |F (t, ωκ(t,ωt),Ξ(t)) − F (t, ωκ(t,ωt),Ξ(t))| + |F (t, ωκ(t,ωt),Ξ(t))− F (t, ωκ(t,ωt),Ξ(t))|

≤ MF ‖ωκ(t,ωt) − ωκ(t,ωt)‖W + M̃F |Ξ(t) − Ξ(t)| + MF (Q)|κ(t, ωt) − κ(t, ωt)|

+ M̃F |Ξ(t)− Ξ(t)|

≤ MF η2 max
0≤τ≤t

‖ω(τ ) − ω(τ )‖ + MF (Q)Mκ‖ωt − ωt‖W + 2M̃F |Ξ(t) − Ξ(t)|

≤ MF η2 max
0≤τ≤t

‖ω(τ ) − ω(τ )‖ + MF (Q)Mκη2 max
0≤τ≤t

‖ω(τ ) − ω(τ )‖ + 2M̃F |Ξ(t) − Ξ(t)|

≤
η2(MF + MF (Q)Mκ)

1 − 2M̃F

max
0≤τ≤t

‖ω(τ ) − ω(τ )‖. (3.10)
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Utilizing (3.9) and (3.10) in (3.8), we have

|(Υω)(t) − (Υω)(t)| ≤ η2

(
MH +

(MF + MF (Q)Mκ)t
ρ
1

ρ(1 − 2M̃F )

)
max
0≤τ≤t

‖ω(τ ) − ω(τ )‖.

Further, for each t ∈ Ip, p = 1, 2, . . . , ` and ω ∈ BQ, we obtain

|(Υω)(t) − (Υω)(t)| ≤ MH |ωt − ωt|W +
∑̀

p=1

|Lp(ω(t−p )) − Lp(ω(t−p ))|

+
∑̀

p=1

∫ tp

tp−1

σρ−1|Ξ(σ) − Ξ(σ)|dσ +

∫ t

tp

σρ−1|Ξ(σ) − Ξ(σ)|dσ

≤ η2

(
MH +

∑̀

p=1

MLp
+

(MF + MF (Q)Mκ)

ρ(1 − 2M̃F )
{`Aρ +Bρ}

)
max

0≤τ≤t
‖ω(τ ) − ω(τ )‖.

Thus, for all t ∈ I, we obtain

‖Υω − Υω‖Θ ≤ η2

(
MH +

∑̀

p=1

MLp
+

(MF + MF (Q)Mκ)

ρ(1 − 2M̃F )
{`Aρ + Bρ}

)
‖ω − ω‖Θ

≤ Λ1‖ω − ω‖Θ

which implies that Υ is a contraction. The fixed point ω(·) of Υ is the unique solution of system (1.1) in
BQ.

4 Example

Consider the following impulsive conformable fractional infinite delay system

CFDD
1
2

tp

[
ω(t) −

tωte
−κt+t

180(et − e−t)(1 + |ωt|)

]
=

ω(t) − τ (ω(t))e−κt+t

190(et − e−t)(1 + |ω(t− τ (ω(t)))|)

+
ω(t)e−κt+t

256(et − e−t)
(
1 +

∣∣∣CFDD
1
2

tp
ω(t)

∣∣∣
) ,

t ∈
[
0, 1

2

]
∪
(

1
2 , 1
]
, (4.1)

ω
(

1
2

+
)
− ω

(
1
2

−
)

=
|ω−

1
2

|

20 + |ω−
1
2

|
, (4.2)

ω(t) = t+ 1, t ∈ (−∞, 0], (4.3)

where τ ∈ C(R, [0, 1]). Let κ > 0 and

Cκ =

{
ω ∈ PC((−∞, 1],R) : lim

λ→−∞
eκλω(λ) exists in R

}
.

The norm of Cκ is defined as follows:

‖ω‖κ = sup
λ∈(−∞,1]

eκλ|ω(λ)|.

It is easy to verify that Cκ satisfies the axioms of a phase space. Consequently, we can establish Cκ as a
phase space itself.
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Set

κ(t, ξ) = t− τ (ξ(0)), (t, ξ) ∈ [0, 1]× C((−∞, 0],R);

F (t, u, v) =
e−κt+t

190(et − e−t)(1 + ‖u‖Cκ
)

+
e−κt+t

256(et − e−t) (1 + |v|)
, t ∈ [0, 1], u ∈ Cκ, v ∈ R;

H(t, u) =
te−κt+t

180(et − e−t)(1 + ‖u‖Cκ
)
, t ∈ [0, 1], u ∈ Cκ.

It is important to note that H(0, u) = 0 for any u ∈ Cκ. For any u, u ∈ Cκ, v, v ∈ R and t ∈ [0, 1], we have

|F (t, u, v)− F (t, u, v)| ≤
1

190
‖u− u‖Cκ

+
1

256
|v − v|;

|H(t, u)−H(t, u)| ≤
1

180
‖u− u‖Cκ

;

|L1(u) − L1(u)| ≤
1

20
‖u− u‖Cκ

.

Hence, assumptions (HF), (HH) and (HI) hold with MF =
1

190
,M̃F =

1

256
,MH =

1

180
, and ML1

=
1

20
.

Set ρ =
1

2
, ` = Z = η2 = Mκ = 1 and MF (Q) =

1

190
. At t1 =

1

2
, then A =

1

2
and B =

1

2
.

Furthermore

Λ1 = η2

(
MH +

∑̀

p=1

MLp
+

(MF + MF (Q)Mκ)

ρ(1 − 2M̃F )
{`Aρ + Bρ}

)
= 0.0856 < 1.

Hence, in view of Theorem 3.1, the given impulsive conformable fractional system (4.1)–(4.3) has a unique
solution on (−∞, 1].

Figure 1: Trajectory of the solution (4.1)–(4.3) with ρ = 0.5 and L1 = 0.5.

Figure 1 illustrates the solution of the system (4.1)–(4.3) without and with impulses for ρ = 0.5. The red
dashed line indicates the impulsive jump applied at t = 0.5.

Figure 2 shows the solutions ω(t) of the system (4.1)–(4.3) for different fractional orders ρ =
0.8, 0.85, 0.90, 0.95, with impulsive jumps at t = 0.25, 0.5, and 0.75. The solutions exhibit distinct
characteristics influenced by impulsive jumps, fractional orders, and smooth dynamics between impulses.
The red dashed lines at t = 0.25, 0.5, and 0.75 mark the locations of impulsive jumps, each causing a sudden
increase in ω(t), with the magnitude dictated by the impulsive condition. Fractional orders significantly
impact the growth rate, with lower order (ρ = 0.8) resulting in slower overall growth, while higher order
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Figure 2: Trajectory of the solution (4.1)–(4.3) with impulses at L1 = 0.25, L2 = 0.5, L3 = 0.75 and different
fractional orders ρ = 0.8, 0.85, 0.90, 0.95.

(ρ = 0.95) demonstrate faster growth due to stronger memory effects. Between these impulses, the solution
evolves smoothly, driven by the interplay of the conformable fractional derivative and state-dependent delay
terms, reflecting the complex dynamics of the system.

5 Conclusion

In conclusion, this paper thoroughly examines the existence and uniqueness of solutions for nonlinear
INFDS with SDD and IPs. Using the computational benefits of CFD, we ensured the results are both
practical and maintain important mathematical properties. The analysis was based on local Lipschitz
continuity of the functions, and the existence and uniqueness were proven using a contractive mapping
in Theorem 3.1.

The findings were further substantiated with an illustrative example, which highlight the dynamic
interplay between CFD, SDD, and IPs. The example figures reveal key insights: the impact of impulses
at specified points, the influence of varying fractional orders (ρ), and the smooth transitions between
impulses. Lower fractional orders exhibit slower dynamics, while higher orders demonstrate rapid growth
due to stronger memory effects, providing a deeper understanding of fractional-order systems with complex
interactions.

This work provides a strong foundation for future research on models with non-instantaneous impulses,
controllability, and stability. Using advanced fixed-point theorems in these areas could greatly improve how
fractional systems are applied to model real-world problems.
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