
Applied Mathematics E-Notes, 25(2025), 221-228 c© ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

A Characterization Of 0-Completeness In Dislocated b-Metric
Spaces And Its Application In Fixed Point Theory∗

Sushanta Kumar Mohanta†, Pinak Roy‡

Received 27 May 2024

Abstract

The main aim of this paper is to introduce the concept of σb-point in a dislocated b-metric space
and extend Weston’s characterization of metric completeness to dislocated b-metric spaces in terms of
σb-point. We use this new characterization to obtain some fixed point results including the celebrated
Banach Contraction Principle in the framework of 0-complete dislocated metric spaces.

1 Introduction

In 1977, J. D. Weston [17] had characterized metric completeness in terms of the notion of d-point for
lower semicontinuous functions. After that, several authors successfully characterized metric completeness
in terms of fixed point theory (see [8, 9, 10, 11, 12, 15, 16]). In recent investigations, there exist a lot of
generalizations of the concept of metric spaces such as b-metric space, introduced by Bakhtin [2], partial
metric space by Matthews [7], and dislocated metric space by Hitzler et al. [5]. Combining the notions
of b-metric and dislocated metric, Alghamdi et al. [1] introduced another generalization which is called a
dislocated b-metric. They established some fixed point results in dislocated b-metric spaces. In this study,
our main purpose is to introduce the concept of σb-point in dislocated b-metric spaces and extend Weston’s
characterization [17] in such spaces in terms of σb-point. Finally, we apply this new characterization to
obtain some important fixed point results in 0-complete dislocated metric spaces.

2 Some Basic Concepts

This section begins with some definitions, basic facts and properties which will be needed in the sequel.

Definition 1 ([2, 4]) Let X be a nonempty set and s ≥ 1 be a given real number. A function d : X ×X →
[0,∞) is said to be a b-metric on X if the following conditions hold:

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) ≤ s (d(x, z) + d(z, y)) for all x, y, z ∈ X.

The pair (X, d) is called a b-metric space.

It is worth noting that the class of b-metric spaces is effectively larger than that of the ordinary metric
spaces.
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222 0-Completeness in Dislocated b-Metric Spaces

Definition 2 ([14]) A partial b-metric on a nonempty set X is a function pb : X ×X → [0,∞) such that
for some real number s ≥ 1 and all x, y, z ∈ X:

(pb1) pb(x, x) = pb(y, y) = pb(x, y)⇐⇒ x = y;

(pb2) pb(x, x) ≤ pb(x, y);

(pb3) pb(x, y) = pb(y, x);

(pb4) pb(x, y) ≤ s[pb(x, z) + pb(z, y)]− pb(z, z).

The pair (X, pb) is called a partial b-metric space.

Taking s = 1 in the above definition, we get the definition of a partial metric space [7]. It is obvious that
if pb(x, y) = 0, then from (pb1) and (pb2), it follows that x = y. However, x = y does not imply pb(x, y) = 0.

Definition 3 ([5]) Let X be a nonempty set. A function σ : X × X → [0,∞) is said to be a dislocated
metric (or a metric-like) on X if for any x, y, z ∈ X, the following conditions hold:

(σ1) σ(x, y) = 0 =⇒ x = y;

(σ2) σ(x, y) = σ(y, x);

(σ3) σ(x, y) ≤ σ(x, z) + σ(z, y).

The pair (X,σ) is then called a dislocated metric (or metric-like) space.

It is valuable to note that a partial metric is also a dislocated metric but the converse is not true, in
general. The following example supports the above remark.

Example 1 ([13]) Let X = [0, 1]. Then the mapping σ : X ×X → [0,∞) defined by σ(x, y) = x + y − xy
is a dislocated metric on X. But σ is not a partial metric on X since p( 12 ,

1
2 ) =

3
4 � p( 12 ,

1
4 ) =

5
8 .

Definition 4 ([1]) Let X be a nonempty set and s ≥ 1 be a given real number. A function σb : X ×X →
[0,∞) is said to be a dislocated b-metric (or a b-metric-like) on X if the following conditions hold:

(i) σb(x, y) = 0 =⇒ x = y;

(ii) σb(x, y) = σb(y, x) for all x, y ∈ X;

(iii) σb(x, y) ≤ s (σb(x, z) + σb(z, y)) for all x, y, z ∈ X.

The pair (X,σb) is then called a dislocated b-metric (or a b-metric-like) space.

It is clear that every partial b-metric space is a dislocated b-metric space with the same coeffi cient s and
every b-metric space is also a dislocated b-metric space with the same coeffi cient s. However, the reverse
implications need not hold true, in general.

Example 2 ([6]) Let X = [0,∞), p > 1 a constant, and σb : X ×X → [0,∞) be defined by

σb(x, y) = (x+ y)
p, ∀x, y ∈ X.

Then (X,σb) is a dislocated b-metric space with coeffi cient s = 2p−1, but it is neither a partial b-metric space
nor a b-metric space. Indeed, for any 0 < y < x, we have

0 6= σb(x, x) = (x+ x)
p > (x+ y)p = σb(x, y).
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Example 3 ([6]) Let (X,σ) be a dislocated metric space and σb(x, y) = (σ(x, y))p, where p > 1 is a real
number. Then σb is a dislocated b-metric with coeffi cient s = 2p−1.

Definition 5 ([1]) Let (X,σb) be a dislocated b-metric space with coeffi cient s, and let (xn) be a sequence
in X and x ∈ X. Then

(i) (xn) converges to x if and only if limn→∞ σb(xn, x) = σb(x, x). We denote this by limn→∞ xn = x or
xn → x(n→∞).

(ii) (xn) is Cauchy if limn,m→∞ σb(xn, xm) exists and is finite.

(iii) (X,σb) is said to be a complete dislocated b-metric space if for every Cauchy sequence (xn) in X, there
exists x ∈ X such that

lim
n,m→∞

σb(xn, xm) = lim
n→∞

σb(xn, x) = σb(x, x).

Definition 6 A sequence (xn) in a dislocated b-metric space (X,σb) is called 0-Cauchy if

lim
n,m→∞

σb(xn, xm) = 0.

The space (X,σb) is said to be a 0-complete dislocated b-metric space if every 0-Cauchy sequence in X
converges to a point x ∈ X such that σb(x, x) = 0, i.e.,

lim
n,m→∞

σb(xn, xm) = lim
n→∞

σb(xn, x) = σb(x, x) = 0.

Remark 1 The definition of a 0-complete dislocated metric space (X,σ) can be obtained from the above
definition by taking s = 1.

Remark 2 If (X,σb) is complete, then it is 0-complete.

The converse assertion of the above remark may not hold good, in general. The following example
supports the above remark.

Example 4 The space X = [0,∞) ∩Q with σb(x, y) = max {x, y} is a 0-complete dislocated b-metric space
with coeffi cient s = 1, but it is not complete. Moreover, the sequence (xn) with xn = 1 for each n ∈ N is a
Cauchy sequence in (X,σb), but it is not a 0-Cauchy sequence.

3 A Characterization of 0-Completeness

Definition 7 Let (X,σb) be a dislocated b-metric space. A function ϕ : X → R is called lower semicontin-
uous if, for each sequence (xn) ⊆ X converges to a point x ∈ X with σb(x, x) = 0, we have

ϕ(x) ≤ lim inf
n→∞

ϕ(xn).

Definition 8 Let (X,σb) be a dislocated b-metric space with coeffi cient s ≥ 1 and h : X → R be a function.
A point x0 ∈ X is called a σb-point for h if for every point x ∈ X other than x0,

h(x0)− h(x) <
1

s
σb(x0, x).

Taking s = 1 in the above definition, we get σ-point in dislocated metric space (X,σ). In case of metric
spaces (X, d), the above σb-point reduces to d-point.
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Example 5 Let X = [0,∞) and let σb(x, y) = (x + y)2, ∀ x, y ∈ X. Then (X,σb) is a dislocated b-
metric space with coeffi cient s = 2. Let h : X → R be defined by h(x) = x2 for all x ∈ X. Then,
h(0) − h(x) = −x2 < 1

2σb(0, x) for every x ∈ X with x 6= 0. Therefore, 0 is a σb-point for h. We now

consider another mapping g : X → R defined by g(x) = x2

5 for all x ∈ X. Then it is easy to verify that every
point of X is a σb-point for g.

Theorem 1 If the dislocated b-metric space (X,σb) with coeffi cient s ≥ 1 is 0-complete then any lower
semicontinuous function h : X → R which is bounded below has a σb-point.

Proof. For any point x1 ∈ X, we can construct a sequence (xn) in the following way:
For each n ∈ N, let

cn = inf{h(x) : h(xn)− h(x) ≥
1

s2
σb(xn, x), xn 6= x}

and let xn+1 be a point such that

h(xn)− h(xn+1) ≥ sn+1σb(xn, xn+1) (1)

and
h(xn+1) < cn + n

−1. (2)

We now clarify that if the set {h(x) : h(xn)−h(x) ≥ 1
s2σb(xn, x), xn 6= x} is empty, then for every x ∈ X

other than xn,

h(xn)− h(x) <
1

s2
σb(xn, x) ≤

1

s
σb(xn, x).

So, in this case xn becomes a σb-point for h and the theorem is proved. Therefore, we assume that the set

{h(x) : h(xn)− h(x) ≥
1

s2
σb(xn, x), xn 6= x}

is nonempty.
In other words, in above construction, we have considered none of xn as a σb-point for h. Because, if xn

is a σb-point for h, then we have nothing to prove. It follows from condition (1) that the sequence (h(xn)) is
nonincreasing in R. Also, it is bounded below by assumed hypothesis. So, the sequence (h(xn)) is convergent
and hence it is Cauchy.
For m ≥ n, we have

h(xn)− h(xm) = h(xn)− h(xn+1) + h(xn+1)− h(xn+2)
+ · · ·+ h(xm−2)− h(xm−1) + h(xm−1)− h(xm)

≥ sn[sσb(xn, xn+1) + s
2σb(xn+1, xn+2)

+ · · ·+ sm−n−1σb(xm−2, xm−1) + sm−nσb(xm−1, xm)]
≥ sσb(xn, xn+1) + s

2σb(xn+1, xn+2)

+ · · ·+ sm−n−1σb(xm−2, xm−1) + sm−n−1σb(xm−1, xm)
≥ σb(xn, xm). (3)

Hence,
σb(xn, xm) ≤ h(xn)− h(xm)→ 0 as m, n→∞.

This proves that the sequence (xn) is 0-Cauchy in (X,σb). By 0-completeness of (X,σb), it follows that the
sequence (xn) converges to a point x0 ∈ X such that σb(x0, x0) = 0. Thus, σb(xn, x0)→ σb(x0, x0) = 0. We
now compute that for each y ∈ X,

σb(x0, y) ≤ s[σb(x0, xn) + σb(xn, y)].
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This implies that

σb(x0, y) ≤ s lim sup
n→∞

[σb(x0, xn) + σb(xn, y)] = s lim sup
n→∞

σb(xn, y).

Therefore, for each y ∈ X, we have

lim sup
n→∞

σb(xn, y) ≥
1

s
σb(x0, y). (4)

From condition (3), it follows that
h(xm) ≤ h(xn)− σb(xn, xm) (5)

for all m ≥ n. By using conditions (4), (5) and lower semicontinuity of the function h, one can obtain that

h(x0) ≤ lim inf
m→∞

h(xm)

≤ lim inf
m→∞

[h(xn)− σb(xn, xm)]

= h(xn)− lim sup
m→∞

σb(xn, xm)

≤ h(xn)−
1

s
σb(xn, x0)

for all n ≥ 1. Thus,
h(xn)− h(x0) ≥

1

s
σb(xn, x0) for all n ≥ 1. (6)

If x0 is not a σb-point for h, then for some x(6= x0) ∈ X, we have

h(x0)− h(x) ≥
1

s
σb(x0, x) > 0. (7)

Using conditions (6) and (2), we obtain

h(x) ≤ h(xn+1) + h(x)− h(x0) < cn + n
−1 + h(x)− h(x0). (8)

In view of condition (7), we can choose n in such a way that condition (8) ensures that h(x) < cn.
From conditions (6) and (7), it follows that

h(xn)− h(x) = h(xn)− h(x0) + h(x0)− h(x)

≥ 1

s
[σb(xn, x0) + σb(x0, x)]

> 0,

which implies that h(xn) > h(x). So, xn 6= x. Moreover,

h(xn)− h(x) ≥
1

s
[σb(xn, x0) + σb(x0, x)] ≥

1

s2
σb(xn, x), xn 6= x.

It now follows from the definition of cn that h(x) ≥ cn, which contradicts the fact that h(x) < cn. Thus, x0
is a σb-point for h.

The following theorem is an immediate consequence of Theorem 1.

Theorem 2 If the dislocated metric space (X,σ) is 0-complete then any lower semicontinuous function
h : X → R which is bounded below has a σ-point.

Proof. The proof can be obtained from Theorem 1 by taking s = 1.

The following is the result of Weston [17].
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Theorem 3 If the metric space (X, d) is complete then any lower semicontinuous function X → R which
is bounded below has a d-point.

Proof. The result follows from Theorem 1 by taking σb = d.

Remark 3 It is worthy to mention that the main result is obtained under the weaker assumption that the
given dislocated b-metric space is 0-complete. Moreover, the result remains valid in complete b-metric spaces
and 0-complete partial b-metric spaces.

4 An Application in Fixed Point Theory

In this section, we give an application of our main Theorem 1 in fixed point theory. We assume that (X,σ)
is a dislocated metric space and h : X → R is a function.

Remark 4 When σ and h are given, a relation “� ” can be defined on X as follows:

x� y if and only if h(y)− h(x) ≥ σ(x, y).

This relation orders X. In fact, “� ” is transitive, antisymmetric, but it is not reflexive.

Definition 9 A point x0 in (X,σ) is said to be a minimal point w.r.t. � if and only if x � x0 implies
x = x0.

Theorem 4 A point of X is a σ-point for h if and only if it is a minimal point w.r.t. �.

Proof. Let x0 ∈ X be a σ-point for h. Then,

h(x0)− h(x) < σ(x, x0), ∀ x ∈ X and x 6= x0. (9)

Now x � x0 implies that h(x0) − h(x) ≥ σ(x, x0). This gives that x = x0. Because if x 6= x0, then by
condition (9) it follows that h(x0)−h(x) < σ(x, x0), a contradiction. Therefore, x0 is a minimal point w.r.t.
�.
Conversely, let x0 be a minimal point w.r.t. �. Then x� x0 implies that x = x0. That is, x� x0 does

not hold for all x ∈ X with x 6= x0. Therefore, h(x0)−h(x) < σ(x, x0) for all x ∈ X with x 6= x0. This gives
that x0 is a σ-point for h.

Theorem 5 If a function f : X → X is such that it may be possible to choose σ and h so that the relation
� has the property that fx 6= x implies fx� x, then any σ-point for h is a fixed point for f .

Proof. Let x0 ∈ X be a σ-point for h. Then,

h(x0)− h(x) < σ(x, x0), ∀ x ∈ X and x 6= x0. (10)

If fx0 6= x0, then by hypothesis fx0 � x0 which implies that

h(x0)− h(fx0) ≥ σ(fx0, x0),

which contradicts the condition (10). So, it must be the case that fx0 = x0. This shows that x0 is a fixed
point of f .

We now apply Theorems 2 and 5 to prove Banach Contraction Principle in 0-complete dislocated metric
spaces.

Theorem 6 Let (X,σ) be a 0-complete dislocated metric space and let f : X → X be a mapping satisfying
the following condition:

σ(fx, fy) ≤ ασ(x, y) (11)

for all x, y ∈ X, where 0 ≤ α < 1 is a constant. Then f has a unique fixed point u(say) in X with
σ(u, u) = 0.
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Proof. Let h(x) = β σ(fx, x), where β = 1
1−α > 0 and x ∈ X. We first show that h : X → R is a lower

semicontinuous function. Let yn → y in (X,σ) with σ(y, y) = 0. Then, limn→∞ σ(y, yn) = σ(y, y) = 0. We
have to show that

h(y) ≤ lim inf
n→∞

h(yn).

By using condition (11), we have

h(y) = β σ(fy, y) ≤ β [σ(fy, yn) + σ(yn, y)]
≤ β [σ(fy, fyn) + σ(fyn, yn) + σ(yn, y)]

≤ β [ασ(y, yn) + σ(fyn, yn) + σ(yn, y)]

= β(α+ 1)σ(y, yn) + h(yn).

This gives that,
h(y) ≤ lim inf

n→∞
h(yn).

Thus, h is a lower semicontinuous function on a 0-complete dislocated metric space (X,σ) which is also
bounded below. Therefore, Theorem 2 ensures the existence of a σ-point u(say) for h.
We now show that fx 6= x implies fx� x. Let fx 6= x. By using condition (11), we obtain

h(x)− h(fx) = β [σ(fx, x)− σ(f2x, fx)]
≥ β [σ(fx, x)− ασ(fx, x)]
= β (1− α)σ(fx, x)]
= σ(fx, x).

Thus f satisfies the condition that fx 6= x implies fx � x. By applying Remark 5, it follows that the
σ-point u for h is a fixed point for f in X. For uniqueness, let v ∈ X be another fixed point of f . Then, by
condition (11), we get

σ(u, v) = σ(fu, fv) ≤ ασ(u, v).
Since 0 ≤ α < 1, it follows that σ(u, v) = 0 and hence u = v.
Moreover, σ(u, u) = σ(fu, fu) ≤ ασ(u, u) gives that σ(u, u) = 0.
We now give an example in support of the above theorem.

Example 6 Let X = [0, 1] and σ : X ×X → [0,∞) be defined by

σ(x, y) = x+ y, ∀x, y ∈ X.

Then (X,σ) is a 0-complete dislocated metric space. Let f : X → X be defined by

fx =
x2

1 + x
, ∀x ∈ X.

Then,

σ(fx, fy) = fx+ fy =
x2

1 + x
+

y2

1 + y

=
x

1 + x
x+

y

1 + y
y

≤ 1

2
(x+ y)

=
1

2
σ(x, y)

for all x, y ∈ X. Therefore, all the conditions of Theorem 6 hold good and 0 is the unique fixed point of f
in X with σ(0, 0) = 0.
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Remark 5 It is valuable to note that the last result of this section is obtained under the weaker assumption
that the given dislocated metric space is 0-complete.
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