A Characterization Of 0-Completeness In Dislocated *b*-Metric Spaces And Its Application In Fixed Point Theory^{*}

Sushanta Kumar Mohanta[†], Pinak Roy[‡]

Received 27 May 2024

Abstract

The main aim of this paper is to introduce the concept of σ_b -point in a dislocated *b*-metric space and extend Weston's characterization of metric completeness to dislocated *b*-metric spaces in terms of σ_b -point. We use this new characterization to obtain some fixed point results including the celebrated Banach Contraction Principle in the framework of 0-complete dislocated metric spaces.

1 Introduction

In 1977, J. D. Weston [17] had characterized metric completeness in terms of the notion of *d*-point for lower semicontinuous functions. After that, several authors successfully characterized metric completeness in terms of fixed point theory (see [8, 9, 10, 11, 12, 15, 16]). In recent investigations, there exist a lot of generalizations of the concept of metric spaces such as *b*-metric space, introduced by Bakhtin [2], partial metric space by Matthews [7], and dislocated metric space by Hitzler et al. [5]. Combining the notions of *b*-metric and dislocated metric, Alghamdi et al. [1] introduced another generalization which is called a dislocated *b*-metric. They established some fixed point results in dislocated *b*-metric spaces. In this study, our main purpose is to introduce the concept of σ_b -point in dislocated *b*-metric spaces and extend Weston's characterization [17] in such spaces in terms of σ_b -point. Finally, we apply this new characterization to obtain some important fixed point results in 0-complete dislocated metric spaces.

2 Some Basic Concepts

This section begins with some definitions, basic facts and properties which will be needed in the sequel.

Definition 1 ([2, 4]) Let X be a nonempty set and $s \ge 1$ be a given real number. A function $d: X \times X \rightarrow [0, \infty)$ is said to be a b-metric on X if the following conditions hold:

- (i) d(x,y) = 0 if and only if x = y;
- (ii) d(x,y) = d(y,x) for all $x, y \in X$;
- (iii) $d(x,y) \leq s (d(x,z) + d(z,y))$ for all $x, y, z \in X$.

The pair (X, d) is called a b-metric space.

It is worth noting that the class of *b*-metric spaces is effectively larger than that of the ordinary metric spaces.

^{*}Mathematics Subject Classifications: 54H25, 47H10.

[†]Department of Mathematics, West Bengal State University, Barasat, 24 Parganas (North), Kolkata-700126, West Bengal, India

[‡]Department of Mathematics, West Bengal State University, Barasat, 24 Parganas (North), Kolkata-700126, West Bengal, India

Definition 2 ([14]) A partial b-metric on a nonempty set X is a function $p_b : X \times X \to [0, \infty)$ such that for some real number $s \ge 1$ and all $x, y, z \in X$:

 $(p_{b1}) p_b(x,x) = p_b(y,y) = p_b(x,y) \iff x = y;$

 $(p_{b2}) \ p_b(x,x) \le p_b(x,y);$

 $(p_{b3}) p_b(x,y) = p_b(y,x);$

 $(p_{b4}) p_b(x,y) \le s[p_b(x,z) + p_b(z,y)] - p_b(z,z).$

The pair (X, p_b) is called a partial b-metric space.

Taking s = 1 in the above definition, we get the definition of a partial metric space [7]. It is obvious that if $p_b(x, y) = 0$, then from (p_{b1}) and (p_{b2}) , it follows that x = y. However, x = y does not imply $p_b(x, y) = 0$.

Definition 3 ([5]) Let X be a nonempty set. A function $\sigma : X \times X \to [0, \infty)$ is said to be a dislocated metric (or a metric-like) on X if for any $x, y, z \in X$, the following conditions hold:

- $(\sigma_1) \ \sigma(x,y) = 0 \Longrightarrow x = y;$
- $(\sigma_2) \ \sigma(x,y) = \sigma(y,x);$
- $(\sigma_3) \ \sigma(x,y) \le \sigma(x,z) + \sigma(z,y).$

The pair (X, σ) is then called a dislocated metric (or metric-like) space.

It is valuable to note that a partial metric is also a dislocated metric but the converse is not true, in general. The following example supports the above remark.

Example 1 ([13]) Let X = [0,1]. Then the mapping $\sigma : X \times X \to [0,\infty)$ defined by $\sigma(x,y) = x + y - xy$ is a dislocated metric on X. But σ is not a partial metric on X since $p(\frac{1}{2}, \frac{1}{2}) = \frac{3}{4} \nleq p(\frac{1}{2}, \frac{1}{4}) = \frac{5}{8}$.

Definition 4 ([1]) Let X be a nonempty set and $s \ge 1$ be a given real number. A function $\sigma_b : X \times X \rightarrow [0, \infty)$ is said to be a dislocated b-metric (or a b-metric-like) on X if the following conditions hold:

- (i) $\sigma_b(x,y) = 0 \Longrightarrow x = y;$
- (*ii*) $\sigma_b(x, y) = \sigma_b(y, x)$ for all $x, y \in X$;
- (*iii*) $\sigma_b(x, y) \leq s (\sigma_b(x, z) + \sigma_b(z, y))$ for all $x, y, z \in X$.

The pair (X, σ_b) is then called a dislocated b-metric (or a b-metric-like) space.

It is clear that every partial b-metric space is a dislocated b-metric space with the same coefficient s and every b-metric space is also a dislocated b-metric space with the same coefficient s. However, the reverse implications need not hold true, in general.

Example 2 ([6]) Let $X = [0, \infty)$, p > 1 a constant, and $\sigma_b : X \times X \to [0, \infty)$ be defined by

$$\sigma_b(x,y) = (x+y)^p, \ \forall x, y \in X$$

Then (X, σ_b) is a dislocated b-metric space with coefficient $s = 2^{p-1}$, but it is neither a partial b-metric space nor a b-metric space. Indeed, for any 0 < y < x, we have

$$0 \neq \sigma_b(x, x) = (x + x)^p > (x + y)^p = \sigma_b(x, y).$$

Example 3 ([6]) Let (X, σ) be a dislocated metric space and $\sigma_b(x, y) = (\sigma(x, y))^p$, where p > 1 is a real number. Then σ_b is a dislocated b-metric with coefficient $s = 2^{p-1}$.

Definition 5 ([1]) Let (X, σ_b) be a dislocated b-metric space with coefficient s, and let (x_n) be a sequence in X and $x \in X$. Then

- (i) (x_n) converges to x if and only if $\lim_{n\to\infty} \sigma_b(x_n, x) = \sigma_b(x, x)$. We denote this by $\lim_{n\to\infty} x_n = x$ or $x_n \to x(n \to \infty)$.
- (ii) (x_n) is Cauchy if $\lim_{n,m\to\infty} \sigma_b(x_n, x_m)$ exists and is finite.
- (iii) (X, σ_b) is said to be a complete dislocated b-metric space if for every Cauchy sequence (x_n) in X, there exists $x \in X$ such that

$$\lim_{n,m\to\infty}\sigma_b(x_n,x_m) = \lim_{n\to\infty}\sigma_b(x_n,x) = \sigma_b(x,x).$$

Definition 6 A sequence (x_n) in a dislocated b-metric space (X, σ_b) is called 0-Cauchy if

$$\lim_{n,m\to\infty}\sigma_b(x_n,x_m)=0$$

The space (X, σ_b) is said to be a 0-complete dislocated b-metric space if every 0-Cauchy sequence in X converges to a point $x \in X$ such that $\sigma_b(x, x) = 0$, i.e.,

$$\lim_{n,m\to\infty}\sigma_b(x_n,x_m) = \lim_{n\to\infty}\sigma_b(x_n,x) = \sigma_b(x,x) = 0.$$

Remark 1 The definition of a 0-complete dislocated metric space (X, σ) can be obtained from the above definition by taking s = 1.

Remark 2 If (X, σ_b) is complete, then it is 0-complete.

The converse assertion of the above remark may not hold good, in general. The following example supports the above remark.

Example 4 The space $X = [0, \infty) \cap \mathbb{Q}$ with $\sigma_b(x, y) = \max\{x, y\}$ is a 0-complete dislocated b-metric space with coefficient s = 1, but it is not complete. Moreover, the sequence (x_n) with $x_n = 1$ for each $n \in \mathbb{N}$ is a Cauchy sequence in (X, σ_b) , but it is not a 0-Cauchy sequence.

3 A Characterization of 0-Completeness

Definition 7 Let (X, σ_b) be a dislocated b-metric space. A function $\varphi : X \to \mathbb{R}$ is called lower semicontinuous if, for each sequence $(x_n) \subseteq X$ converges to a point $x \in X$ with $\sigma_b(x, x) = 0$, we have

$$\varphi(x) \le \liminf_{n \to \infty} \varphi(x_n).$$

Definition 8 Let (X, σ_b) be a dislocated b-metric space with coefficient $s \ge 1$ and $h: X \to \mathbb{R}$ be a function. A point $x_0 \in X$ is called a σ_b -point for h if for every point $x \in X$ other than x_0 ,

$$h(x_0) - h(x) < \frac{1}{s}\sigma_b(x_0, x).$$

Taking s = 1 in the above definition, we get σ -point in dislocated metric space (X, σ) . In case of metric spaces (X, d), the above σ_b -point reduces to d-point.

Example 5 Let $X = [0, \infty)$ and let $\sigma_b(x, y) = (x + y)^2$, $\forall x, y \in X$. Then (X, σ_b) is a dislocated bmetric space with coefficient s = 2. Let $h : X \to \mathbb{R}$ be defined by $h(x) = x^2$ for all $x \in X$. Then, $h(0) - h(x) = -x^2 < \frac{1}{2}\sigma_b(0, x)$ for every $x \in X$ with $x \neq 0$. Therefore, 0 is a σ_b -point for h. We now consider another mapping $g : X \to \mathbb{R}$ defined by $g(x) = \frac{x^2}{5}$ for all $x \in X$. Then it is easy to verify that every point of X is a σ_b -point for g.

Theorem 1 If the dislocated b-metric space (X, σ_b) with coefficient $s \ge 1$ is 0-complete then any lower semicontinuous function $h: X \to \mathbb{R}$ which is bounded below has a σ_b -point.

Proof. For any point $x_1 \in X$, we can construct a sequence (x_n) in the following way:

For each $n \in \mathbb{N}$, let

$$c_n = \inf\{h(x) : h(x_n) - h(x) \ge \frac{1}{s^2}\sigma_b(x_n, x), \ x_n \ne x\}$$

and let x_{n+1} be a point such that

$$h(x_n) - h(x_{n+1}) \ge s^{n+1} \sigma_b(x_n, x_{n+1}) \tag{1}$$

and

$$h(x_{n+1}) < c_n + n^{-1}.$$
 (2)

We now clarify that if the set $\{h(x) : h(x_n) - h(x) \ge \frac{1}{s^2} \sigma_b(x_n, x), x_n \ne x\}$ is empty, then for every $x \in X$ other than x_n ,

$$h(x_n) - h(x) < \frac{1}{s^2} \sigma_b(x_n, x) \le \frac{1}{s} \sigma_b(x_n, x).$$

So, in this case x_n becomes a σ_b -point for h and the theorem is proved. Therefore, we assume that the set

$$\{h(x): h(x_n) - h(x) \ge \frac{1}{s^2}\sigma_b(x_n, x), \ x_n \ne x\}$$

is nonempty.

In other words, in above construction, we have considered none of x_n as a σ_b -point for h. Because, if x_n is a σ_b -point for h, then we have nothing to prove. It follows from condition (1) that the sequence $(h(x_n))$ is nonincreasing in \mathbb{R} . Also, it is bounded below by assumed hypothesis. So, the sequence $(h(x_n))$ is convergent and hence it is Cauchy.

For $m \geq n$, we have

$$h(x_{n}) - h(x_{m}) = h(x_{n}) - h(x_{n+1}) + h(x_{n+1}) - h(x_{n+2}) + \dots + h(x_{m-2}) - h(x_{m-1}) + h(x_{m-1}) - h(x_{m}) \geq s^{n} [s\sigma_{b}(x_{n}, x_{n+1}) + s^{2}\sigma_{b}(x_{n+1}, x_{n+2}) + \dots + s^{m-n-1}\sigma_{b}(x_{m-2}, x_{m-1}) + s^{m-n}\sigma_{b}(x_{m-1}, x_{m})] \geq s\sigma_{b}(x_{n}, x_{n+1}) + s^{2}\sigma_{b}(x_{n+1}, x_{n+2}) + \dots + s^{m-n-1}\sigma_{b}(x_{m-2}, x_{m-1}) + s^{m-n-1}\sigma_{b}(x_{m-1}, x_{m}) \geq \sigma_{b}(x_{n}, x_{m}).$$
(3)

Hence,

$$\sigma_b(x_n, x_m) \le h(x_n) - h(x_m) \to 0 \text{ as } m, n \to \infty.$$

This proves that the sequence (x_n) is 0-Cauchy in (X, σ_b) . By 0-completeness of (X, σ_b) , it follows that the sequence (x_n) converges to a point $x_0 \in X$ such that $\sigma_b(x_0, x_0) = 0$. Thus, $\sigma_b(x_n, x_0) \to \sigma_b(x_0, x_0) = 0$. We now compute that for each $y \in X$,

$$\sigma_b(x_0, y) \le s[\sigma_b(x_0, x_n) + \sigma_b(x_n, y)]$$

This implies that

$$\sigma_b(x_0, y) \le s \limsup_{n \to \infty} [\sigma_b(x_0, x_n) + \sigma_b(x_n, y)] = s \limsup_{n \to \infty} \sigma_b(x_n, y)$$

Therefore, for each $y \in X$, we have

$$\limsup_{n \to \infty} \sigma_b(x_n, y) \ge \frac{1}{s} \sigma_b(x_0, y).$$
(4)

From condition (3), it follows that

$$h(x_m) \le h(x_n) - \sigma_b(x_n, x_m) \tag{5}$$

for all $m \ge n$. By using conditions (4), (5) and lower semicontinuity of the function h, one can obtain that

$$h(x_0) \leq \liminf_{m \to \infty} h(x_m)$$

$$\leq \liminf_{m \to \infty} [h(x_n) - \sigma_b(x_n, x_m)]$$

$$= h(x_n) - \limsup_{m \to \infty} \sigma_b(x_n, x_m)$$

$$\leq h(x_n) - \frac{1}{s} \sigma_b(x_n, x_0)$$

for all $n \geq 1$. Thus,

$$h(x_n) - h(x_0) \ge \frac{1}{s} \sigma_b(x_n, x_0) \text{ for all } n \ge 1.$$
 (6)

If x_0 is not a σ_b -point for h, then for some $x \neq x_0 \in X$, we have

$$h(x_0) - h(x) \ge \frac{1}{s}\sigma_b(x_0, x) > 0.$$
(7)

Using conditions (6) and (2), we obtain

$$h(x) \le h(x_{n+1}) + h(x) - h(x_0) < c_n + n^{-1} + h(x) - h(x_0).$$
(8)

In view of condition (7), we can choose n in such a way that condition (8) ensures that $h(x) < c_n$.

From conditions (6) and (7), it follows that

$$h(x_n) - h(x) = h(x_n) - h(x_0) + h(x_0) - h(x)$$

$$\geq \frac{1}{s} [\sigma_b(x_n, x_0) + \sigma_b(x_0, x)]$$

$$\geq 0.$$

which implies that $h(x_n) > h(x)$. So, $x_n \neq x$. Moreover,

$$h(x_n) - h(x) \ge \frac{1}{s} [\sigma_b(x_n, x_0) + \sigma_b(x_0, x)] \ge \frac{1}{s^2} \sigma_b(x_n, x), \ x_n \ne x.$$

It now follows from the definition of c_n that $h(x) \ge c_n$, which contradicts the fact that $h(x) < c_n$. Thus, x_0 is a σ_b -point for h.

The following theorem is an immediate consequence of Theorem 1.

Theorem 2 If the dislocated metric space (X, σ) is 0-complete then any lower semicontinuous function $h: X \to \mathbb{R}$ which is bounded below has a σ -point.

Proof. The proof can be obtained from Theorem 1 by taking s = 1.

The following is the result of Weston [17].

Theorem 3 If the metric space (X, d) is complete then any lower semicontinuous function $X \to \mathbb{R}$ which is bounded below has a d-point.

Proof. The result follows from Theorem 1 by taking $\sigma_b = d$.

Remark 3 It is worthy to mention that the main result is obtained under the weaker assumption that the given dislocated b-metric space is 0-complete. Moreover, the result remains valid in complete b-metric spaces and 0-complete partial b-metric spaces.

4 An Application in Fixed Point Theory

In this section, we give an application of our main Theorem 1 in fixed point theory. We assume that (X, σ) is a dislocated metric space and $h: X \to \mathbb{R}$ is a function.

Remark 4 When σ and h are given, a relation " \ll " can be defined on X as follows:

 $x \ll y$ if and only if $h(y) - h(x) \ge \sigma(x, y)$.

This relation orders X. In fact, " \ll " is transitive, antisymmetric, but it is not reflexive.

Definition 9 A point x_0 in (X, σ) is said to be a minimal point w.r.t. \ll if and only if $x \ll x_0$ implies $x = x_0$.

Theorem 4 A point of X is a σ -point for h if and only if it is a minimal point w.r.t. \ll .

Proof. Let $x_0 \in X$ be a σ -point for h. Then,

$$h(x_0) - h(x) < \sigma(x, x_0), \ \forall \ x \in X \text{ and } x \neq x_0.$$

$$\tag{9}$$

Now $x \ll x_0$ implies that $h(x_0) - h(x) \ge \sigma(x, x_0)$. This gives that $x = x_0$. Because if $x \ne x_0$, then by condition (9) it follows that $h(x_0) - h(x) < \sigma(x, x_0)$, a contradiction. Therefore, x_0 is a minimal point w.r.t. \ll .

Conversely, let x_0 be a minimal point w.r.t. \ll . Then $x \ll x_0$ implies that $x = x_0$. That is, $x \ll x_0$ does not hold for all $x \in X$ with $x \neq x_0$. Therefore, $h(x_0) - h(x) < \sigma(x, x_0)$ for all $x \in X$ with $x \neq x_0$. This gives that x_0 is a σ -point for h.

Theorem 5 If a function $f: X \to X$ is such that it may be possible to choose σ and h so that the relation \ll has the property that $fx \neq x$ implies $fx \ll x$, then any σ -point for h is a fixed point for f.

Proof. Let $x_0 \in X$ be a σ -point for h. Then,

$$h(x_0) - h(x) < \sigma(x, x_0), \ \forall \ x \in X \text{ and } x \neq x_0.$$

$$\tag{10}$$

If $fx_0 \neq x_0$, then by hypothesis $fx_0 \ll x_0$ which implies that

$$h(x_0) - h(fx_0) \ge \sigma(fx_0, x_0)$$

which contradicts the condition (10). So, it must be the case that $fx_0 = x_0$. This shows that x_0 is a fixed point of f.

We now apply Theorems 2 and 5 to prove Banach Contraction Principle in 0-complete dislocated metric spaces.

Theorem 6 Let (X, σ) be a 0-complete dislocated metric space and let $f : X \to X$ be a mapping satisfying the following condition:

$$\sigma(fx, fy) \le \alpha \, \sigma(x, y) \tag{11}$$

for all $x, y \in X$, where $0 \le \alpha < 1$ is a constant. Then f has a unique fixed point u(say) in X with $\sigma(u, u) = 0$.

Proof. Let $h(x) = \beta \sigma(fx, x)$, where $\beta = \frac{1}{1-\alpha} > 0$ and $x \in X$. We first show that $h: X \to \mathbb{R}$ is a lower semicontinuous function. Let $y_n \to y$ in (X, σ) with $\sigma(y, y) = 0$. Then, $\lim_{n\to\infty} \sigma(y, y_n) = \sigma(y, y) = 0$. We have to show that

$$h(y) \le \liminf_{n \to \infty} h(y_n)$$

By using condition (11), we have

$$\begin{aligned} h(y) &= \beta \, \sigma(fy, y) \leq \beta \left[\sigma(fy, y_n) + \sigma(y_n, y) \right] \\ &\leq \beta \left[\sigma(fy, fy_n) + \sigma(fy_n, y_n) + \sigma(y_n, y) \right] \\ &\leq \beta \left[\alpha \, \sigma(y, y_n) + \sigma(fy_n, y_n) + \sigma(y_n, y) \right] \\ &= \beta(\alpha + 1) \, \sigma(y, y_n) + h(y_n). \end{aligned}$$

This gives that,

$$h(y) \le \liminf_{n \to \infty} h(y_n).$$

Thus, h is a lower semicontinuous function on a 0-complete dislocated metric space (X, σ) which is also bounded below. Therefore, Theorem 2 ensures the existence of a σ -point u(say) for h.

We now show that $fx \neq x$ implies $fx \ll x$. Let $fx \neq x$. By using condition (11), we obtain

$$h(x) - h(fx) = \beta [\sigma(fx, x) - \sigma(f^2x, fx)]$$

$$\geq \beta [\sigma(fx, x) - \alpha \sigma(fx, x)]$$

$$= \beta (1 - \alpha) \sigma(fx, x)]$$

$$= \sigma(fx, x).$$

Thus f satisfies the condition that $fx \neq x$ implies $fx \ll x$. By applying Remark 5, it follows that the σ -point u for h is a fixed point for f in X. For uniqueness, let $v \in X$ be another fixed point of f. Then, by condition (11), we get

$$\sigma(u, v) = \sigma(fu, fv) \le \alpha \, \sigma(u, v).$$

Since $0 \le \alpha < 1$, it follows that $\sigma(u, v) = 0$ and hence u = v.

Moreover, $\sigma(u, u) = \sigma(fu, fu) \le \alpha \sigma(u, u)$ gives that $\sigma(u, u) = 0$.

We now give an example in support of the above theorem.

Example 6 Let X = [0,1] and $\sigma : X \times X \to [0,\infty)$ be defined by

$$\sigma(x,y) = x + y, \ \forall x, y \in X$$

Then (X, σ) is a 0-complete dislocated metric space. Let $f: X \to X$ be defined by

$$fx = \frac{x^2}{1+x}, \ \forall x \in X.$$

Then,

$$\sigma(fx, fy) = fx + fy = \frac{x^2}{1+x} + \frac{y^2}{1+y}$$
$$= \frac{x}{1+x}x + \frac{y}{1+y}y$$
$$\leq \frac{1}{2}(x+y)$$
$$= \frac{1}{2}\sigma(x, y)$$

for all $x, y \in X$. Therefore, all the conditions of Theorem 6 hold good and 0 is the unique fixed point of f in X with $\sigma(0,0) = 0$.

Remark 5 It is valuable to note that the last result of this section is obtained under the weaker assumption that the given dislocated metric space is 0-complete.

Acknowledgment. The authors are grateful to the referees for their valuable comments and suggestions.

References

- M. A. Alghamdi, N. Hussain and P. Salimi, Fixed point and coupled fixed point theorems on b-metric-like spaces, J. Ineqal. Appl., 402(2013), 1–25.
- [2] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal. Gos. Ped. Inst. Unianowsk, 30(1989), 26–37.
- [3] M. Bukatin, R. Kopperman, S. Matthews and H. Pajoohesh, Partial metric spaces, Am. Math. Mon., 116(2009), 708–718.
- [4] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav, 1(1993), 5–11.
- [5] P. Hitzler and A. K. Seda, Dislocated topologies, J. Electr. Eng., 51(2000), 3–7.
- [6] N. Hussain, J. R. Roshan, V. Parvaneh and Z. Kadelburg, Fixed points of contractive mappings in b-metric-like spaces, The Scientific World Journal, 2014(2014), 15 pages.
- [7] S. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci., 728(1994), 183–197.
- [8] S. K. Mohanta, A fixed point theorem via generalized w-distance, Bull. Math. Anal. Appl., 3(2011), 134–139.
- [9] S. K. Mohanta, Generalized w-distance and a fixed point theorem, Int. J. Contemp. Math. Sciences, 6(2011), 853–860.
- [10] S. K. Mohanta and R. Maitra, A characterization of completeness in cone metric spaces, J. Nonlinear Anal. Appl., 6(2013), 227–233.
- [11] H. K. Nashine and Z. Kadelburg, Cyclic contractions and fixed point results via control functions on partial metric spaces, International J. Anal., 2013(2013).
- [12] S. Park, Characterizations of metric completeness, Colloq. Math., 49(1984), 21–26.
- [13] N. Shobkolaei, S. Sedghi, J. R. Roshan and N. Hussain, Suzuki type fixed point results in metric-like spaces, J. Func. Spaces Appl., 2013(2013), 9 pages.
- [14] S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterr. J. Math., 11(2014), 703–711.
- [15] T. Suzuki and W. Takahashi, Fixed point theorems and characterizations of metric completeness, Topolo. Method. Nonlinear Anal., 8(1996), 371–382.
- [16] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136(2008), 1861–1869.
- [17] J. D. Weston, A characterization of metric completeness, Proc. Amer. Math. Soc., 64(1977), 186–188.