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Abstract

Topological indices work as numerical molecular descriptors in quantitative structure property re-
lationships (QSPR) models. The inverse sum in-degree index (henceforth ISI index) is a degree-based
topological index, defined to design a novel descriptor in modeling molecular properties with higher
accuracy than previously available descriptors. Benzenoids belong to a class of aromatic hydrocarbons
containing at least one benzene ring, with several applications in household goods, electronics, health-
care, textiles, etc. From graph theoretical perspective, the formation of a chain of benzene rings can be
regarded as edge fusion of cycles of length six. In this regard, a detailed study of the structure of ben-
zenoids and their ISI index are presented. The expression and the bounds for the ISI index of benzenoids
are derived in terms of the number of benzene rings present in it. Further, the predictive potential of
the inverse sum in-degree index of Benzenoids is studied with the help of regression analysis. The linear
regression models for the inverse sum in-degree index of benzenoids against various physicochemical and
thermodynamic properties like molecular weight, complexity, density, boiling point, magnetic suscepti-
bility, refractive index, and melting point are obtained. On the whole, the extent of the relationship
between the ISI index and the physicochemical parameters of benzenoids is studied in this article.

1 Introduction

In recent years, chemical graph theory, considered an important branch of both computational chemistry and
graph theory, has attracted much attention from researchers. The results obtained in this field have been
applied to many chemical and pharmaceutical engineering applications. Topological indices are significant
attributes in chemical graph theory to analyze the physicochemical characteristics of chemical compounds
without the help of physical resources. This method of studying the properties of various pharmaceutical
drugs/genetic elements is very suitable and serviceable for developing countries as it can yield and analyze
information about new drugs without expensive chemical experiments.

A graph G(V, E) consists of a vertex set V(G) = {v1,v2,...,v,} and an edge set E(G) = {(vs, vj)|vs,v; €
V(G) and ¢ # j}. The degree of a vertex v; in a graph G, denoted by d¢ (v;) is the number of vertices adjacent
to it. The neighborhood of v;, denoted by N¢(v;) is the set of all vertices adjacent to v;. The distance between
any two vertices v; and v; is the length of the shortest path connecting v;,v;. We write v; ~ v; if v;, v; are
adjacent, and v; » v; if not. The adjacency matrix (also known as classical adjacency matrix) A(G) = (a;;)
is a square matrix of order n where a;; = 1 if v; ~ v; and 0 otherwise. The eigenvalues of A(G) associated
with their multiplicities compose the spectrum of G.

A molecular graph represents the skeleton of non-saturated hydrocarbons of molecular compounds. The
vertices of this graph correspond to non-hydrogen atoms and the edges to covalent bonds between atoms.
Note that hydrogen atoms are often omitted. Topological indices are numerical descriptors of a molecular
graph, used to predict their physicochemical and bioactivity properties.

*Mathematics Subject Classifications: 05C10, 05C30 , 05C90

fDepartment of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education,
Manipal- 576104, Karnataka, India. Corresponding author: Shahistha Hanif.

fDepartment of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education,
Manipal- 576104, Karnataka, India

455



456 QSPR Analysis of Benzenoids by Linear Regression Modeling

The Wiener index is the first topological index, introduced by H. Wiener in 1947 to determine the physical
properties of paraffins [1]. The Wiener index of a graph G is the sum of distances between every pair of
vertices in G. Hundreds of topological indices are currently being researched and developed since then. These
topological indices have many applications in the field of chemistry and graph theory, precisely in QSAR and
QSPR studies. Topological indices are divided majorly into eccentricity-based, degree-based, distance-based
and spectrum-based categories. The first topological index, the Wiener index is the distance-based one.

The ISI index is found to have a special impetus as a predictor of the total surface area of octane isomers.
The inverse sum in-degree index of a graph G, is defined as

dG ’Ul dG ’UJ)
ISI1(G -
Z dG ’Ul =+ dg(’UJ)

i~Uj

A modification of the classical adjacency matrix corresponding to the ISI index is proposed in [2] and is
defined as follows: The ISI-matrix Ars;(G) = (arsr)ij of a graph G of order n is an n x n matrix where

dg (vi)dg(v;)
= de(v) + de(v;)

The eigenvalues of IST matrix A;gr(G) associated with their multiplicities are called the ISI-spectrum of G.
If &, &, ..., &, are the eigenvalues of the IST matrix A;sr(G), then the ISI-Energy can be defined as

Ersi(G) =>_I&l.
1=1

Extremal values of inverse sum in-degree index across several graph classes, including connected graphs,
chemical graphs, trees and chemical trees were determined in [3]. Several upper and lower bounds on the
inverse sum in-degree index in terms of some molecular structural parameters and relate this index to various
well-known molecular descriptors are presented in [4]. A problem posed by Sedlar, Stevanovic, and Vasilyev
(2015) to characterize the structure of chemical trees with the maximal inverse sum in-degree index is resolved
in [5]. The bounds related to this index for some graph operations, including the Kronecker product, join,
corona product, Cartesian product, disjunction, and symmetric difference are provided in [6] and [7]. Sharp
bounds for IST index of graph operations like Cartesian product, tensor product, strong product, composition,
disjunction, symmetric difference, corona product, Indu-Bala product, union of graphs, double graph, and
strong double graph are determined in [8]. The ISI index of some unary graph operations and their extremal
cases are studied in [9]. In [10] and [11], some properties and the bounds for the ISI eigenvalues and the
energy are obtained. Authors have also constructed pairs of ISI equi-energetic graphs for each n > 9.
Coming to the applications in Molecular chemistry, the inverse sum in-degree index of some nanotubes is
computed in [12]. The ISI index and energy of Hyaluronic Acid-Paclitaxel conjugates used in the production
of drugs used in the treatment of cancer disease are studied in [13] and hence giving information about
the physicochemical properties and biological characteristics. QSPR analysis of some anti-cancer drugs like
Aminopterin, Degueline, etc is carried out through ISI index/energy with the help of statistical modeling
(linear, logarithmic and quadratic models) in [14]. Authors of [15] have recently introduced the generalized
form of the degree-based inverse sum in-degree index which is defined as follows:

(arsr)ij if v; ~v;, and 0 otherwise.

o« (do(i)ds(v)"
S p(G) = U;Jj (da(vi) + dG(vj))ﬁ |

where a, 3 are real numbers. Many degree-based topological invariants can be derived from the generalized
form of this index.

2 DMotivation and Significance of the Work

Topological indices provide a pathway to determine molecular characteristics without using the long-chain
process of chemical methods. Since the experiments are expensive and time-consuming, it would be practi-
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cally convenient to evaluate various topological indices and conclude about the physical /biological properties
of the molecule. The mathematical convergence in the study serves as a motivation for us to carry out the
structure-properties analysis of benzenoids through one of the hundreds of available topological indices,
named the IST index. Further, the studies carried out in [13] and [14] also serve as a great source of motiva-
tion to choose the ISI index to analyze the physicochemical properties of a significant class of hydrocarbons.

3 ISI Index of Benzenoids

In molecular chemistry, we encounter chains of molecules joined by fusing vertices or edges. For example,
two atoms/molecules joined by fusing an edge from each give rise to a new molecule. Keeping this practical
convenience in mind, the graph operation of fusing the edges is considered in this section. Firstly, the linear
chain of cycles joined by fusing the edges is considered in the following section.

Theorem 1 Let Cy,Cs,...,Ck be cycles of length my, ma, ..., my, respectively, where each m; > 6. Let G
be a graph of a linear chain of cycles connected by the operation of edge fusion, where every cycle C; shares
an edge with the adjacent cycle Cipq for all1 <i < (k—1). Then

k
ISI(G) = mi+ 3(’“1751)
1=1

Proof. Clearly, the graph G has Zle m; — 2(k — 1) vertices and Zle m; — (k — 1) edges. Further, G
has 2(k — 1) vertices of degree 3 and the rest of degree 2. The non-zero entries of the ISI matrix Arsr(G)
are %(corresponding to the pair of adjacent vertices both having degree 3), g (corresponding to the pair of
adjacent vertices in which one vertex is of degree 3 and the other of degree 2) and 1 (corresponding to the
pair of adjacent vertices in which both vertices are of degree 2). There are (k — 1) pairs of adjacent vertices
with each having degree 3, 4(k — 1) pairs of adjacent vertices with one having degree 3 and the other 2.
Further, since G has Zle m; — (k — 1) edges, the number of remaining pairs of adjacent vertices are given

by
k k
> omi—(k—1)—(k—1)—4(k—1)=> m; —6k+6.

That is, there are Zle m; — 6k + 6 pairs of adjacent vertices each having degree 2. Thus

9 6 k k 3(k—1)

]

Benzene (C6H6) is the best-known aromatic compound and the parent to which numerous other aromatic
compounds are related. Benzenoids are organic compounds that are derived from or have a benzene group
in their molecular structure. Benzenoids have increased stability due to resonance in the benzene rings.
It is found that the operation of edge fusion is one of the most commonly occurring operations among
benzenoids. For example, the edge fusion of two benzene rings gives rise to Naphthalene, and three benzene
rings to Phenantherene. In order to focus on benzenoids, where the length of the benzene cycle m; in
the above theorem is taken as 6. That is, m; = 6 for 1 < ¢ < k gives the ISI index of a special type of
benzenoids when k benzene rings are linearly connected (Example: Naphthalene, Anthracene, Naphthacene
and Pentacene in Figure 1). That is ISI(G) = %0*3.

Using the expression derived above, one can obtain the ISI index of Anthracene, Naphthalene, etc.
Benzenoids have benzene rings connected with each other in various manners. The next theorem in this
section gives the bounds for the ISI index of benzenoids containing k benzene rings. Before the theorem, a
detailed note on the structural and other properties of benzenoids is given, which are required for proving
the next theorem.
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Figure 1: Some benzenoids.
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One can think of formation of benzenoid structures as the addition of benzene rings one by one succes-
sively. This recurrence operation can be considered as adding the rings R, Ro, ..., Ri, respectively. The
following are the possibilities.

e Let the first ring be R;. The second ring Ry added shares exactly one edge (hence 2 vertices) with Rj.
Thus benzenoid with exactly 2 rings has 11 edges (10 vertices).

e The third ring Rs added shares one edge either with Ry or Rs (case 1) or one edges each from both
R; and Ry (case 2). Thus a benzenoid with 3 rings has 16 edges (in case 1) or 15 edges (case 2).

Soe

Case 1: Anthrecene

Case2: Phenalene

Figure 2: Benzenoids with 3 benzene rings.

e Continuing like this, at each step, a new ring added shares either one edge or 2 edges with the old
rings. That is, at i!” step, R; shares either one edge or two edges with any of Ry, Ra, ..., R;_1. Thus if
n;—1, m;—1 are the number of vertices and the number of edges in a benzenoid containing (i — 1) rings,
then the number of vertices n; and the number of edges m; in a benzenoid with ¢ rings are given by

n;—1 +4 if R; shares one edge with any of Ry, Ro, ..., R;—1,
n; =
n;—1+3 if R; shares two edges with any of Ry, Ro, ..., R;_1,

and

m;—1 +5 if R; shares one edge with any of Ry, Ro, ..., R;—1,
m; =
m;—1 +4 if R; shares two edges with any of Ry, Ra, ..., R;—1.

e Further, at each step, the vertices with degree 3 are increased during the addition of rings. If d;_1 is
the number of vertices with degree 3 in a benzenoid containing (¢ — 1) rings, then after the addition
of i*" ring, the number of vertices with degree 3 in a benzenoid containing 4 rings is d; 1 + 2. The
number of vertices with degree 3 is increased by 2 irrespective of the number of edges it shares.

Next, the bounds for the ISI index of benzenoids are derived.

Theorem 2 Let B be a benzenoid with k benzene rings with the ISI index ISI(B). Then

63k —3 < ISI(B) < 54k+15'
10 10
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Proof. Let B be a benzenoid with k£ benzene rings. By definition, the ISI index is maximum when the
number of vertices/edges is as maximum as possible. On constructing a benzenoid with k rings, starting
with Ry (say), the number of vertices/edges becomes the maximum if the following condition is satisfied: at
each step ¢, the new ring added shares only one edge with any of the old rings for 2 < i < k. Then the total
number of edges is (5k + 1) and the total number of vertices is (4k 4+ 2). Furthermore, this structure has
2(k —1) vertices of degree 3. The structure of such a benzenoid is a linear chain of k benzene rings connected
by edge fusion. The IST index of benzenoid with k linearly connected benzene rings is ISI(G) = 63{“5 3

Similarly, the ISI index is minimum when at each step i, the newly added ring shares the maximum
number of edges with any of the old rings. But from the above notes, for every i > 3, at the i-th step, the
i-th ring added shares at most 2 edges with old rings, i.e., R; has 6 edges, the 2" ring shares only one edge
with R, the 37¢ ring shares 2 edges with old rings, and so on. Finally, even the last k-th ring shares 2 edges
with old rings. Thus, the number of vertices in the 2"% step is 6 + 4, and from the 3"% step onwards, three
vertices are being added until the last. Similarly, the number of edges in the 2" step is 6 + 4, and 4 edges
are being added after the 3" step during every addition of a new ring. Thus, a benzenoid of this type having
k benzene rings has 3k 4 4 vertices and 4k + 3 edges. Further, it has 2(k — 1) vertices of degree 3, and the
remaining (3k +4) — 2(k — 1) = k + 6 vertices of degree 2.

Let G be the benzenoid with k rings obtained as mentioned above. Let S be the set of all vertices of
degree 3, where |S| = 2(k — 1). The subgraph G induced by S has only vertices of degree 3 and 1, in
particular, (k — 2) vertices of degree 3 and k vertices of degree 1. The neighborhood of all the vertices which
have degree 3 in G; (and G as well) contains only those vertices which have degree 3 in G. The neighborhood
of all the vertices which have degree 1 in G (degree 3 in GG) contains one vertex of degree 3 and two vertices
of degree 2 in G. Further, the neighborhood of all the other vertices of degree 2 in G has vertices of degree
2 only (which are not in Gy). The IST matrix Aigr(G) has (4k + 3) non-zero entries due to the combination
of vertices with both degree 3, vertices with both degree 2, and vertices with degree 2, 3. There are (2k — 3)
entries given by % (corresponding to vertices both of degree 3), 2k entries given by g (corresponding to
vertices of degree 3 and 2), and 6 entries given by 1 (corresponding to vertices both of degree 2). Thus,

4k +1
ISI(G):6+(2k—3)g+2kg - %

[
Figure 3: Benzenoids with 6 benzene rings attaining the minimum (right) and maximum (left) IST index.

4 Correlation Analysis

Correlation analysis is a statistical method that is used to discover if there is a relationship between two
variables/datasets, and how strong that relationship may be. In terms of market research, this means that
the correlation analysis is used to analyze quantitative data gathered from research methods such as surveys
and polls, to identify whether there are any significant connections, patterns, or trends between the two.
Correlation coefficients provide a numerical summary of the direction and strength of the linear relationship
between two variables. The correlation between two variables is contemplated either graphically through
a scatter plot or quantified as a coefficient R? (known as the coefficient of determination) and its value
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ranges from 0 to 1. The coefficient R? measures the strength of the relationship between the model and the
dependent variable on a convenient 0 — 100% scale. That is, the value of R? evaluates the scatter of the
data points around the fitted regression line. Usually, the larger the R?, the better the regression model fits
your observations. In practice, we never see a regression model with an R? of 100%. In that case, the fitted
values equal the data values and, consequently, all the observations fall exactly on the regression line. In this
article, we first fit a linear regression model for the ISI index of benzenoids and some of their physicochemical
parameters and determine how well the data fits the regression model (the goodness of fit) using R2.

The graphs below present the relationship between the ISI index and some of the physicochemical proper-
ties of benzenoids namely, Molar mass m (g/mol), Complexity C, Boiling point BP(°C'), density p (g/mL),
Refractive Index RI, Melting Point MP (°C), Log(P), where P is the partition coefficient) and Magnetic
susceptibility x (in em?3/mol). The empircial data used for the analysis is given in the table below (Source:
PubChem database).

Compound G | ISI(G) | m C BP p RI MP LogP | x

Benzene 6 78.11 15.5 | 80.1 | 0.8765 | 1.5011 | 5.537 | 2.13 —54.8 x 107°
Naphthalene 12.3 128.17 | 80.6 | 217.9 | 1.0253 | 1.5898 | 78.2 3.34 -91.9x 1076
Phenantherene | 18.6 178.23 | 335 | 338 1.18 1.59427 | 101 4.68 —127.9 x 106
Chrysene 25.1 228.29 | 264 | 448 1.274 | 1.771 448 5.73 —166.7 x 10=6
Tetraphene 25 228.29 294 | 438 1.19 1.771 158 5.8

Triphenylene 25.2 228.294 | 217 | 438 1.308 | 1.5500 | 198 5.146 | —156.6 x 1076
Tetrahelicene 25.1 228.29 | 266 | 436 1.19 1.771 68 4.46

Naphathcene 24.9 228.29 | 304 | 440 1.21 1.771 357 5.91

Pyrene 24.9 202.25 | 236 | 404 1.2721 | 1.85 150.62 | 4.88

Perylene 29.6 252.31 | 217 | 467 1.35 1.62 276 6.3 —168 x 10~°
Benzo[a|pyrene | 36 253.30 | 372 | 495 1.24 1.853 179 6.13 —137.5x 1076
Benzo[e]pyrene | 36 252.31 | 372 | 492.2 | 1.286 | 1.853 177.7 | 6.44

Anthracene 18.6 178.23 154 | 341.3 | 1.28 1.595 216 4.56 —129.8 x 106
Picene 32.7 278.33 | 361 | 693 1.2 1.812 366 7.14

Coronene 38.4 300.35 | 376 | 525 1.371 | 1.48 437 6.05 —243.3 x 1076
Heptacene 43.8 378.45 677.2 | 1.3 1.867

Triangulene 33.9 276.33 410 171

Benzopyrene 36 252.31 | 372 | 496 1.24 1.887 178

Ovalene 53.7 398.45 | 696 | 456.6 | 1.496 1.469 472 0.853 | —353.8 x 1076
Phenalene 17.7 166.22 216 | 70 1.139 1.692 159 —205.5 x 1076
Pentacene 31.2 278.36 42 1.3 1.812 301 7.14 —205.5 x 1076

The scatter plots for the above collection of data are given below. For each of the parameter, a linear
regression model is derived and the coefficient R?, which describes the strength of the model is given.  The
linear relationship of the IST index with the molar mass is found to be the strongest. Also, the relationship
between the ISI index and the complexity is relatively stronger and that with the magnetic susceptibility
and density are fairly good. The details of the regression models along with the coefficient of determination
are listed separately for all the parameters in the next table. The variable x in the above table represents
the ISI index of benzenoids.

5 Concluding Remarks and Future Directions

The article highlights the detailed study of the structure of a special class of polycyclic aromatic hydrocar-
bons, named benzenoids, where the bond formation between benzene rings is considered as the graphical
operation of edge fusion. This may be very useful in further research to investigate many other topological
indices efficiently.
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Parameter P Linear equation modelled R?

Molar mass P =6.5192 + 53.171 0.9333
Complexity P =12.232x + 44.222 0.8507
Boiling Point P =10.089x + 114.47 0.3969
Density P =0.00952 + 0.9689 0.6738
Refractive Index P =0.0028x + 1.6279 0.0462
Meling Point P =8.1593x + 0.0424 0.4146
Log P P =0.0201x + 4.4964 0.0168
Magnetic susceptibility | P = (5 x 107%) z — (3 x 1075) | 0.7560

Analysis of the correlation between physicochemical entities of benzenoids with the ISI index with the
help of linear regression models is made in this article. One can construct other statistical models like
logarithmic and quadratic modeling for the same, which may lead to better conclusions.

In recent years a plethora of various graph energies appeared in the literature. Hundreds of graph
energies related to molecular graphs are proven to be well-known descriptors. In this context, one can think
of a similar analysis with the ISI energy, instead of the ISI index, and correlate the physical properties of
benzenoids with the ISI Energy.
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