On Milne Type Inequalities For h-Convex Functions Via Conformable Fractional Integral Operators*

Bouharket Benaissa[†], Mehmet Zeki Sarikaya[‡]

Received 5 March 2024

Abstract

In this study, Milne-type inequalities for h-convex functions involving conformable operators are established. In addition, new results are presented that generalize various inequalities known in the literature.

1 Introduction

Convexity theory offers powerful processes and notions for dealing with a wide range of pure and applied mathematics problems. Convex functions have been employed in a range of mathematical disciplines, resulting in the discovery of many inequalities in the literature. In [1], the author presents a new class of functions, h-convex functions.

Definition 1 Let $h: J \subseteq \mathbb{R} \to \mathbb{R}$, where $(0,1) \subseteq J$, be a non-negative function, $h \neq 0$. We say that $f: I \subseteq \mathbb{R} \to \mathbb{R}$ is an h-convex function, if f is non-negative and for all $x, y \in I$ and $\lambda \in (0,1)$, then we have

$$f(\lambda x + (1 - \lambda)y) \le h(\lambda)f(x) + h(1 - \lambda)f(y). \tag{1}$$

If inequality (1) is reversed. Then f is said to be h-concave.

By setting

- $h(\lambda) = \lambda$, Definition 1 reduces to convex function [2].
- $h(\lambda) = 1$, Definition 1 reduces to P-functions [3, 4].
- $h(\lambda) = \lambda^s$, Definition 1 reduces to s-convex functions [5].

Let $f \in L[a, b]$. The left and right-sided conformable fractional integral operators of order $\alpha > 0$ and $\rho \in (0, 1]$ are expressed as follows [6]:

$${}^{\rho}\mathfrak{I}_{a^{+}}^{\alpha}f(x)=\frac{1}{\Gamma(\alpha)}\int_{a}^{x}\left(\frac{(x-a)^{\rho}-(t-a)^{\rho}}{\rho}\right)^{\alpha-1}(t-a)^{\rho-1}f(t)dt,\quad x>a,$$

$${}^{\rho} \mathfrak{I}^{\alpha}_{b^{-}} f(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{b} \left(\frac{(b-x)^{\rho} - (b-t)^{\rho}}{\rho} \right)^{\alpha-1} (b-t)^{\rho-1} f(t) dt, \quad x < b.$$

For $\rho = 1$, the previous operators are reduced to Riemann-Liouville fractional operators with order $\alpha > 0$ as follows:

$$\mathfrak{I}_{a^{+}}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} (x-t)^{\alpha-1} f(t)dt, \quad x > a,$$

^{*}Mathematics Subject Classifications: 26D10, 26A51, 26A33, 26D15.

[†]Faculty of Material Sciences, University of Tiaret. Laboratory of Informatics and Mathematics, University of Tiaret-Algeria

[‡]Department of Mathematics, Faculty of Science and Arts, Düzce University, Konuralp Campus, Düzce, Turkey

$$\mathfrak{I}^{\alpha}_{b^{-}} f(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{b} (t - x)^{\alpha - 1} f(t) dt, \quad x < b.$$

The Beta-Euler function $\beta(\cdot,\cdot)$ is defined for any $x,\,y>0$ as follows:

$$\beta(x,y) = \int_{0}^{1} (1-t)^{x-1} t^{y-1} dt.$$

In 2022, Djenaoui and Meftah presented a Milne inequality for convex functions with Riemann integral as follows [7, Corollary 2.4.]

$$\left| \frac{1}{3} \left[2f(a) - f\left(\frac{a+b}{2}\right) + 2f(b) \right] - \frac{1}{b-a} \int_{a}^{b} f(t)dt \right| \le \frac{5(b-a)}{24} \left(|f'(a)| + |f'(b)| \right). \tag{2}$$

In 2023, Budak et al. presented new Milne-type inequalities for fractional integrals for convex functions using Riemann-Liouville fractional operators [8, Theorem 2]

$$\left| \frac{1}{3} \left[2f(a) - f\left(\frac{a+b}{2}\right) + 2f(b) \right] - \frac{2^{\alpha-1}\Gamma(\alpha+1)}{(b-a)^{\alpha}} \left[\Im_{b^{-}}^{\alpha} f\left(\frac{a+b}{2}\right) + \Im_{a^{+}}^{\alpha} f\left(\frac{a+b}{2}\right) \right] \right| \\
\leq \frac{b-a}{12} \left(\frac{\alpha+4}{\alpha+1} \right) \left(|f'(a)| + |f'(b)| \right). \tag{3}$$

In [9], Çelik et al. presented the following interesting Lemma 2.1 involving conformable fractional integral operators as follows:

Lemma 1 If $\alpha > 0$ and $f : [a,b] \to \mathbb{R}$ is a differentiable mapping such that $f' \in L_1([a,b])$. Then the following identity holds.

$$\begin{split} &\frac{1}{3\,\rho^\alpha}\left[2f(a)-f\left(\frac{a+b}{2}\right)+2f(b)\right]-\frac{2^{\alpha\rho-1}\Gamma(\alpha+1)}{(b-a)^{\alpha\rho}}\left[{}^\rho\mathfrak{I}_{a^+}^\alpha f\left(\frac{a+b}{2}\right)+\,{}^\rho\mathfrak{I}_{b^-}^\alpha f\left(\frac{a+b}{2}\right)\right]\\ &=\;\;\frac{(b-a)}{4}\,\int_0^1\left(\left(\frac{1-(1-t)^\rho}{\rho}\right)^\alpha+\frac{1}{3\rho^\alpha}\right)\times\left[f'\left(\left(\frac{1-t}{2}\right)a+\left(\frac{1+t}{2}\right)b\right)-f'\left(\left(\frac{1+t}{2}\right)a+\left(\frac{1-t}{2}\right)b\right)\right]dt. \end{split}$$

Based on previous research, we developed an additional version of Milne inequality for h-convex functions using conformable fractional integral operators.

2 Milne Type Inequalities

Taking $\tau = 1 - t$, we can rewrite the above Lemma 1 as follows:

Lemma 2 If $\alpha > 0$ and $f:[a,b] \to \mathbb{R}$ is a differentiable mapping such that $f' \in L_1([a,b])$. Then the following identity holds:

$$\frac{1}{3} \left[2f(a) - f\left(\frac{a+b}{2}\right) + 2f(b) \right] - \frac{\rho^{\alpha} 2^{\alpha\rho-1} \Gamma(\alpha+1)}{(b-a)^{\alpha\rho}} \left[{}^{\rho} \Im_{a^{+}}^{\alpha} f\left(\frac{a+b}{2}\right) + {}^{\rho} \Im_{b^{-}}^{\alpha} f\left(\frac{a+b}{2}\right) \right]$$

$$= \frac{(b-a)}{4} \int_{0}^{1} \left((1-t^{\rho})^{\alpha} + \frac{1}{3} \right) \left[f'\left(\left(\frac{t}{2}\right)a + \left(1-\frac{t}{2}\right)b\right) - f'\left(\left(1-\frac{t}{2}\right)a + \left(\frac{t}{2}\right)b\right) \right] dt. \tag{4}$$

We present the first result for Milne inequality with conformable fractional integral operators.

Theorem 3 Assume that the assumptions of Lemma 2 hold. If |f'| is a h-convex mapping on [a,b]. Then the following Milne-type inequality for conformable fractional integral operators holds:

$$\left| \frac{1}{3} \left[2f(a) - f\left(\frac{a+b}{2}\right) + 2f(b) \right] - \frac{\rho^{\alpha} 2^{\alpha\rho - 1} \Gamma(\alpha + 1)}{(b-a)^{\alpha\rho}} \left[{}^{\rho} \mathfrak{I}_{a^{+}}^{\alpha} f\left(\frac{a+b}{2}\right) + {}^{\rho} \mathfrak{I}_{b^{-}}^{\alpha} f\left(\frac{a+b}{2}\right) \right] \right| \\
\leq \frac{b-a}{4} \left[|f'(a)| + |f'(b)| \right] \int_{0}^{1} \left((1-t^{\rho})^{\alpha} + \frac{1}{3} \right) \left[h\left(\frac{t}{2}\right) + h\left(1-\frac{t}{2}\right) \right] dt. \tag{5}$$

Proof. By using the absolute value of identity 4 and the h-convexity of the function |f'|, we get

$$\begin{split} &\left|\frac{1}{3}\left[2f(a)-f\left(\frac{a+b}{2}\right)+2f(b)\right]-\frac{\rho^{\alpha}\,2^{\alpha\rho-1}\Gamma(\alpha+1)}{(b-a)^{\alpha\rho}}\left[\,^{\rho}\mathfrak{I}_{a+}^{\alpha}f\left(\frac{a+b}{2}\right)+\,^{\rho}\mathfrak{I}_{b-}^{\alpha}f\left(\frac{a+b}{2}\right)\right]\right|\\ &\leq &\left|\frac{b-a}{4}\,\int_{0}^{1}\left((1-t^{\rho})^{\alpha}+\frac{1}{3}\right)\left[\left|f'\left(\left(\frac{t}{2}\right)a+\left(1-\frac{t}{2}\right)b\right)\right|+\left|f'\left(\left(1-\frac{t}{2}\right)a+\left(\frac{t}{2}\right)b\right)\right|\right]dt\\ &\leq &\left|\frac{b-a}{4}\,\int_{0}^{1}\left((1-t^{\rho})^{\alpha}+\frac{1}{3}\right)\right.\\ &\left.\times\left[h\left(\frac{t}{2}\right)|f'(a)|+h\left(1-\frac{t}{2}\right)|f'(b)|+h\left(1-\frac{t}{2}\right)|f'(a)|+h\left(\frac{t}{2}\right)|f'(b)|\right]dt\\ &=&\left|\frac{b-a}{4}\,\left[|f'(a)|+|f'(b)|\right]\int_{0}^{1}\left((1-t^{\rho})^{\alpha}+\frac{1}{3}\right)\left[h\left(\frac{t}{2}\right)+h\left(1-\frac{t}{2}\right)\right]dt. \end{split}$$

This completes the proof. ■

The following Lemma is required to prove the main results.

Lemma 4 Let $t \in (0,1)$. Then

for all
$$s \in (0,1]: (1+s)^{\frac{1}{s}} \ge 2,$$
 (6)

and

for all
$$s \in [0,1]$$
: $\left(\frac{t}{2}\right)^s + \left(1 - \frac{t}{2}\right)^s \le \left(\frac{1}{2}\right)^{s-1}$. (7)

Proof. Let $\Psi(s) = \ln(s+1)$ and $A(1, \ln 2)$. On the interval [0, 1], the graph of the function Ψ appears over the line (OA). This gives us for all $s \in (0, 1]$

$$\ln(s+1) \ge s \ln 2 \Leftrightarrow (1+s)^{\frac{1}{s}} \ge 2.$$

Taking s = 0 in (7), we get equality. To demonstrate inequality (7) for $s \in (0, 1]$, we use absurdity. Suppose that exist $s \in (0, 1]$ verified

$$\left(\frac{t}{2}\right)^s + \left(1 - \frac{t}{2}\right)^s > \left(\frac{1}{2}\right)^{s-1}.$$

Hence.

$$\int_0^1 \left\lceil \left(\frac{t}{2}\right)^s + \left(1 - \frac{t}{2}\right)^s \right\rceil dt > \left(\frac{1}{2}\right)^{s-1}.$$

This gives

$$2\left(\frac{1}{s+1}\right) > \left(\frac{1}{2}\right)^{s-1} \Leftrightarrow s+1 < 2^s.$$

Therefore,

$$(1+s)^{\frac{1}{s}} < 2$$

which is contrary to (6).

Next, consider some particular cases of Theorem 3 with h-convexity involving conformable fractional integral operators.

1. Given $h(\lambda) = \lambda^s$ with $s \in [0, 1]$ in Theorem 3 and using (7), we obtain

$$I_{1} = \int_{0}^{1} \left((1 - t^{\rho})^{\alpha} + \frac{1}{3} \right) \left[h \left(\frac{t}{2} \right) + h \left(1 - \frac{t}{2} \right) \right] dt$$

$$= \int_{0}^{1} \left((1 - t^{\rho})^{\alpha} + \frac{1}{3} \right) \left[\left(\frac{t}{2} \right)^{s} + \left(1 - \frac{t}{2} \right)^{s} \right] dt$$

$$\leq \left(\frac{1}{2} \right)^{s-1} \int_{0}^{1} \left((1 - t^{\rho})^{\alpha} + \frac{1}{3} \right) dt$$

$$\leq \left(\frac{1}{2} \right)^{s-1} \left(\frac{1}{3} + \frac{1}{\rho} \beta \left(\alpha + 1, \frac{1}{\rho} \right) \right),$$

where we used

$$\int_0^1 (1 - t^{\rho})^{\alpha} dt = \frac{1}{\rho} \int_0^1 (1 - t)^{\alpha} t^{\frac{1}{\rho} - 1} dt = \frac{1}{\rho} \beta \left(\alpha + 1, \frac{1}{\rho} \right).$$

Corollary 5 Assume α and f are defined according to Theorem 3. If |f'| is a s-convex function on [a,b]. Then

$$\left| \frac{1}{3} \left[2f(a) - f\left(\frac{a+b}{2}\right) + 2f(b) \right] - \frac{\rho^{\alpha} 2^{\alpha\rho - 1} \Gamma(\alpha+1)}{(b-a)^{\alpha\rho}} \left[{}^{\rho} \mathfrak{I}_{a^{+}}^{\alpha} f\left(\frac{a+b}{2}\right) + {}^{\rho} \mathfrak{I}_{b^{-}}^{\alpha} f\left(\frac{a+b}{2}\right) \right] \right| \\
\leq \frac{b-a}{4} \left(\frac{1}{2} \right)^{s-1} \left(\frac{1}{3} + \frac{1}{\rho} \beta \left(\alpha+1, \frac{1}{\rho}\right) \right) \left[|f'(a)| + |f'(b)| \right]. \tag{8}$$

Remark 1 1. • Corollary 5 is a generalization of Theorem 2.2 in [9], simply by setting s = 1.

• Taking $\rho = 1$ in inequality (8), we get Milne inequality via Riemann-Liouville operators

$$\left| \frac{1}{3} \left[2f(a) - f\left(\frac{a+b}{2}\right) + 2f(b) \right] - \frac{2^{\alpha-1}\Gamma(\alpha+1)}{(b-a)^{\alpha}} \left[\mathfrak{I}_{a+}^{\alpha} f\left(\frac{a+b}{2}\right) + \mathfrak{I}_{b-}^{\alpha} f\left(\frac{a+b}{2}\right) \right] \right| \\
\leq \frac{b-a}{4} \left(\frac{1}{2} \right)^{s-1} \left(\frac{\alpha+4}{3(\alpha+1)} \right) \left[|f'(a)| + |f'(b)| \right]. \tag{9}$$

The inequality (9) is a new generalization of the inequality (3).

• Putting $\rho = 1$ and $\alpha = 1$ in inequality (8), we get Milne inequality via Riemann integral

$$\left| \frac{1}{3} \left[2f(a) - f\left(\frac{a+b}{2}\right) + 2f(b) \right] - \frac{1}{b-a} \int_{a}^{b} f(t)dt \right| \le \frac{5(b-a)}{24} \left(\frac{1}{2} \right)^{s-1} \left[|f'(a)| + |f'(b)| \right]. \tag{10}$$

The inequality (10) is a new generalization of the inequality (2).

2. Setting $h(\lambda) = 1$ in Theorem 3 gives the following new result about the class P-function: Take s = 0 in the above inequalities (8), (9) and (10).

Corollary 6 Assume α and f are defined according to Theorem 3. If |f'| is a P-function on [a,b]. Then

$$\begin{split} &\left|\frac{1}{3}\left[2f(a)-f\left(\frac{a+b}{2}\right)+2f(b)\right]-\frac{\rho^{\alpha}\,2^{\alpha\rho-1}\Gamma(\alpha+1)}{(b-a)^{\alpha\rho}}\left[\,^{\rho}\mathfrak{I}_{a^{+}}^{\alpha}f\left(\frac{a+b}{2}\right)+\,^{\rho}\mathfrak{I}_{b^{-}}^{\alpha}f\left(\frac{a+b}{2}\right)\right]\right|\\ \leq &\left.\frac{b-a}{2}\left(\frac{1}{3}+\frac{1}{\rho}\beta\left(\alpha+1,\frac{1}{\rho}\right)\right)\left[|f'(a)|+|f'(b)|\right]. \end{split}$$

Remark 2 Taking $\rho = 1$, we derive the following Milne inequality via Riemann-Liouville operators, where |f'| is a P-function:

$$\left| \frac{1}{3} \left[2f(a) - f\left(\frac{a+b}{2}\right) + 2f(b) \right] - \frac{2^{\alpha-1}\Gamma(\alpha+1)}{(b-a)^{\alpha}} \left[\Im_{a^+}^{\alpha} f\left(\frac{a+b}{2}\right) + \Im_{b^-}^{\alpha} f\left(\frac{a+b}{2}\right) \right] \right|$$

$$\leq \frac{(b-a)(\alpha+4)}{6(\alpha+1)} \left[|f'(a)| + |f'(b)| \right].$$

Remark 3 Setting $\rho = 1$ and $\alpha = 1$ yields the Milne inequality for the Riemann integral.

$$\left| \frac{1}{3} \left[2f(a) - f\left(\frac{a+b}{2}\right) + 2f(b) \right] - \frac{1}{b-a} \int_a^b f(t)dt \right| \le \frac{5(b-a)}{12} \left(|f'(a)| + |f'(b)| \right).$$

Theorem 7 Let p > 1, $\frac{1}{p'} + \frac{1}{p} = 1$ and assume that α , f are defined as in Lemma 2. If $|f'|^p$ is a h-convex mapping on [a,b], we get the following Milne type inequality:

$$\left| \frac{1}{3} \left[2f(a) - f\left(\frac{a+b}{2}\right) + 2f(b) \right] - \frac{\rho^{\alpha} 2^{\alpha\rho - 1} \Gamma(\alpha+1)}{(b-a)^{\alpha\rho}} \left[{}^{\rho} \mathfrak{I}_{a^{+}}^{\alpha} f\left(\frac{a+b}{2}\right) + {}^{\rho} \mathfrak{I}_{b^{-}}^{\alpha} f\left(\frac{a+b}{2}\right) \right] \right| \\
\leq \frac{b-a}{4} \left(2 \int_{0}^{1} \left((1-t^{\rho})^{\alpha} + \frac{1}{3} \right)^{p'} dt \right)^{\frac{1}{p'}} \left(\int_{0}^{1} \left[h\left(\frac{t}{2}\right) + h\left(1-\frac{t}{2}\right) \right] dt \right)^{\frac{1}{p}} \left[|f'(a)|^{p} + |f'(b)|^{p} \right]^{\frac{1}{p}} \\
\leq \frac{b-a}{4} \left(2 \int_{0}^{1} \left((1-t^{\rho})^{\alpha} + \frac{1}{3} \right)^{p'} dt \right)^{\frac{1}{p'}} \left(\int_{0}^{1} \left[h\left(\frac{t}{2}\right) + h\left(1-\frac{t}{2}\right) \right] dt \right)^{\frac{1}{p}} \left[|f'(a)| + |f'(b)| \right]. \tag{11}$$

Proof. By applying the absolute value of identity 4, we obtain that

$$\begin{split} &\left|\frac{1}{3}\left[2f(a)-f\left(\frac{a+b}{2}\right)+2f(b)\right]-\frac{\rho^{\alpha}\,2^{\alpha\rho-1}\Gamma(\alpha+1)}{(b-a)^{\alpha\rho}}\left[{}^{\rho}\mathfrak{I}_{a^{+}}^{\alpha}f\left(\frac{a+b}{2}\right)+{}^{\rho}\mathfrak{I}_{b^{-}}^{\alpha}f\left(\frac{a+b}{2}\right)\right]\right|\\ &\leq &\left.\frac{b-a}{4}\int_{0}^{1}\left((1-t^{\rho})^{\alpha}+\frac{1}{3}\right)\left|f'\left(\left(\frac{t}{2}\right)a+\left(1-\frac{t}{2}\right)b\right)\right|dt\\ &\left.+\frac{b-a}{4}\int_{0}^{1}\left((1-t^{\rho})^{\alpha}+\frac{1}{3}\right)\left|f'\left(\left(1-\frac{t}{2}\right)a+\left(\frac{t}{2}\right)b\right)\right|dt, \end{split}$$

using the Hölder inequality and $A^{\frac{1}{p}}+B^{\frac{1}{p}}=2^{1-\frac{1}{p}}(A+B)^{\frac{1}{p}}.$ Hence, we conclude

$$\begin{split} & \left| \frac{1}{3} \left[2f(a) - f\left(\frac{a+b}{2}\right) + 2f(b) \right] - \frac{\rho^{\alpha} \, 2^{\alpha \rho - 1} \Gamma(\alpha+1)}{(b-a)^{\alpha \rho}} \left[\, {}^{\rho} \mathfrak{I}_{a+}^{\alpha} f\left(\frac{a+b}{2}\right) + \, {}^{\rho} \mathfrak{I}_{b-}^{\alpha} f\left(\frac{a+b}{2}\right) \right] \right| \\ & \leq \, \frac{b-a}{4} \, \left(\int_{0}^{1} \left((1-t^{\rho})^{\alpha} + \frac{1}{3} \right)^{p'} dt \right)^{\frac{1}{p'}} \left(\int_{0}^{1} \left| f'\left(\left(\frac{t}{2}\right)a + \left(1 - \frac{t}{2}\right)b \right) \right|^{p} dt \right)^{\frac{1}{p}} \\ & + \frac{b-a}{4} \, \left(\int_{0}^{1} \left((1-t^{\rho})^{\alpha} + \frac{1}{3} \right)^{p'} dt \right)^{\frac{1}{p'}} \left(\int_{0}^{1} \left| f'\left(\left(1 - \frac{t}{2}\right)a + \left(\frac{t}{2}\right)b \right) \right|^{p} dt \right)^{\frac{1}{p}} \\ & \leq \, \frac{b-a}{4} \, \left(\int_{0}^{1} \left((1-t^{\rho})^{\alpha} + \frac{1}{3} \right)^{p'} dt \right)^{\frac{1}{p'}} 2^{1-\frac{1}{p}} \\ & \times \left[\int_{0}^{1} \left| f'\left(\left(\frac{t}{2}\right)a + \left(1 - \frac{t}{2}\right)b \right) \right|^{p} dt + \int_{0}^{1} \left| f'\left(\left(1 - \frac{t}{2}\right)a + \left(\frac{t}{2}\right)b \right) \right|^{p} dt \right]^{\frac{1}{p}}. \end{split}$$

Assuming $|f'|^p$ is a h-convex function, we get

$$\begin{split} & \left| \frac{1}{3} \left[2f(a) - f\left(\frac{a+b}{2}\right) + 2f(b) \right] - \frac{\rho^{\alpha} \, 2^{\alpha \rho - 1} \Gamma(\alpha + 1)}{(b-a)^{\alpha \rho}} \left[{}^{\rho} \mathfrak{I}^{\alpha}_{a^{+}} f\left(\frac{a+b}{2}\right) + {}^{\rho} \mathfrak{I}^{\alpha}_{b^{-}} f\left(\frac{a+b}{2}\right) \right] \right| \\ & \leq \quad \frac{b-a}{4} \left(2 \, \int_{0}^{1} \left((1-t^{\rho})^{\alpha} + \frac{1}{3} \right)^{p'} dt \right)^{\frac{1}{p'}} \left[\int_{0}^{1} \left(h\left(\frac{t}{2}\right) |f'(a)|^{p} + h\left(1-\frac{t}{2}\right) |f'(b)|^{p} \right) dt \\ & \quad + \int_{0}^{1} \left(h\left(1-\frac{t}{2}\right) |f'(a)|^{p} + h\left(\frac{t}{2}\right) |f'(b)|^{p} \right) dt \right]^{\frac{1}{p}} \\ & \leq \quad \frac{b-a}{4} \left(2 \, \int_{0}^{1} \left((1-t^{\rho})^{\alpha} + \frac{1}{3} \right)^{p'} dt \right)^{\frac{1}{p'}} \left(\int_{0}^{1} \left[h\left(\frac{t}{2}\right) + h\left(1-\frac{t}{2}\right) \right] dt \right)^{\frac{1}{p}} \left[|f'(a)|^{p} + |f'(b)|^{p} \right]^{\frac{1}{p}}. \end{split}$$

This results in the first inequality noticed in (11).

For p > 1 and $A, B \ge 0$, we deduce $A^p + B^p \le (A + B)^p$, which yields the second inequality in (11). \blacksquare Next, let's study some particular cases of Theorem 7. Then that involve conformable fractional integral operators and h-convexity.

1. Given $h(\lambda) = \lambda^s$ with $s \in (0, 1]$ in Theorem 7 and using (7), we obtain that

$$I_{2} = \int_{0}^{1} \left[h\left(\frac{t}{2}\right) + h\left(1 - \frac{t}{2}\right) \right] dt$$

$$= \int_{0}^{1} \left[\left(\frac{t}{2}\right)^{s} + \left(1 - \frac{t}{2}\right)^{s} \right] dt$$

$$\leq \left(\frac{1}{2}\right)^{s-1}.$$

Corollary 8 Assume that α, ρ and f are defined according to Theorem 7. If $|f'|^p$ is a s-convex function on [a,b], then

$$\left| \frac{1}{3} \left[2f(a) - f\left(\frac{a+b}{2}\right) + 2f(b) \right] - \frac{\rho^{\alpha} 2^{\alpha\rho - 1} \Gamma(\alpha + 1)}{(b-a)^{\alpha\rho}} \left[{}^{\rho} \mathfrak{I}_{a^{+}}^{\alpha} f\left(\frac{a+b}{2}\right) + {}^{\rho} \mathfrak{I}_{b^{-}}^{\alpha} f\left(\frac{a+b}{2}\right) \right] \right| \\
\leq \frac{b-a}{2} \left(\int_{0}^{1} \left((1-t^{\rho})^{\alpha} + \frac{1}{3} \right)^{p'} dt \right)^{\frac{1}{p'}} \left(\frac{1}{2} \right)^{\frac{s}{p}} \left[|f'(a)|^{p} + |f'(b)|^{p} \right]^{\frac{1}{p}} \\
\leq \frac{b-a}{2} \left(\int_{0}^{1} \left((1-t^{\rho})^{\alpha} + \frac{1}{3} \right)^{p'} dt \right)^{\frac{1}{p'}} \left(\frac{1}{2} \right)^{\frac{s}{p}} \left[|f'(a)| + |f'(b)| \right]. \tag{12}$$

- 1. With s = 1, Corollary 8 improves Theorem 2.4 from [9].
 - Taking $\rho = 1$ in the inequality (12), we get Milne inequality via Riemann-Liouville operators.

$$\left| \frac{1}{3} \left[2f(a) - f\left(\frac{a+b}{2}\right) + 2f(b) \right] - \frac{2^{\alpha-1}\Gamma(\alpha+1)}{(b-a)^{\alpha}} \left[\Im_{a^{+}}^{\alpha} f\left(\frac{a+b}{2}\right) + \Im_{b^{-}}^{\alpha} f\left(\frac{a+b}{2}\right) \right] \right| \\
\leq \frac{b-a}{2} \left(\int_{0}^{1} \left((1-t)^{\alpha} + \frac{1}{3} \right)^{p'} dt \right)^{\frac{1}{p'}} \left(\frac{1}{2} \right)^{\frac{s}{p}} \left[|f'(a)|^{p} + |f'(b)|^{p} \right]^{\frac{1}{p}} \\
\leq \frac{b-a}{2} \left(\int_{0}^{1} \left((1-t)^{\alpha} + \frac{1}{3} \right)^{p'} dt \right)^{\frac{1}{p'}} \left(\frac{1}{2} \right)^{\frac{s}{p}} \left[|f'(a)| + |f'(b)| \right]. \tag{13}$$

• By putting $\rho = 1$ and $\alpha = 1$ in inequality (12), we get Milne inequality via Riemann integral.

$$\left| \frac{1}{3} \left[2f(a) - f\left(\frac{a+b}{2}\right) + 2f(b) \right] - \frac{1}{b-a} \int_{a}^{b} f(t)dt \right|$$

$$\leq \frac{b-a}{2} \left[\frac{1}{1+p'} \left(\left(\frac{4}{3}\right)^{1+p'} - \left(\frac{1}{3}\right)^{1+p'} \right) \right]^{\frac{1}{p'}} \left(\frac{1}{2} \right)^{\frac{s}{p}} \left[|f'(a)|^{p} + |f'(b)|^{p} \right]^{\frac{1}{p}}$$

$$\leq \frac{b-a}{2} \left[\frac{1}{1+p'} \left(\left(\frac{4}{3}\right)^{1+p'} - \left(\frac{1}{3}\right)^{1+p'} \right) \right]^{\frac{1}{p'}} \left(\frac{1}{2} \right)^{\frac{s}{p}} \left[|f'(a)| + |f'(b)| \right].$$

$$(14)$$

2. The following new result regarding the class P-function is obtained by setting $h(\lambda) = 1$ in the Theorem 7. Consider s = 0 in the inequalities (12), (13) and (14).

Assume α , ρ and f are defined according to Theorem 7. If $|f'|^p$ is a P-function on [a,b]. Then

$$\left| \frac{1}{3} \left[2f(a) - f\left(\frac{a+b}{2}\right) + 2f(b) \right] - \frac{\rho^{\alpha} 2^{\alpha\rho - 1} \Gamma(\alpha+1)}{(b-a)^{\alpha\rho}} \left[{}^{\rho} \mathfrak{I}_{a^{+}}^{\alpha} f\left(\frac{a+b}{2}\right) + {}^{\rho} \mathfrak{I}_{b^{-}}^{\alpha} f\left(\frac{a+b}{2}\right) \right] \right| \\
\leq \frac{b-a}{2} \left(\int_{0}^{1} \left((1-t^{\rho})^{\alpha} + \frac{1}{3} \right)^{p'} dt \right)^{\frac{1}{p'}} \left[\left| f'(a) \right|^{p} + \left| f'(b) \right|^{p} \right]^{\frac{1}{p}} \\
\leq \frac{b-a}{2} \left(\int_{0}^{1} \left((1-t^{\rho})^{\alpha} + \frac{1}{3} \right)^{p'} dt \right)^{\frac{1}{p'}} \left[\left| f'(a) \right| + \left| f'(b) \right| \right].$$

Taking $\rho = 1$, we derive the following Milne inequality via Riemann-Liouville operators, where $|f'|^p$ is a P-function.

$$\begin{split} & \left| \frac{1}{3} \left[2f(a) - f\left(\frac{a+b}{2}\right) + 2f(b) \right] - \frac{2^{\alpha-1}\Gamma(\alpha+1)}{(b-a)^{\alpha}} \left[\Im_{a^{+}}^{\alpha} f\left(\frac{a+b}{2}\right) + \Im_{b^{-}}^{\alpha} f\left(\frac{a+b}{2}\right) \right] \right| \\ & \leq & \frac{b-a}{2} \left(\int_{0}^{1} \left((1-t)^{\alpha} + \frac{1}{3} \right)^{p'} dt \right)^{\frac{1}{p'}} \left[|f'(a)|^{p} + |f'(b)|^{p} \right]^{\frac{1}{p}} \\ & \leq & \frac{b-a}{2} \left(\int_{0}^{1} \left((1-t)^{\alpha} + \frac{1}{3} \right)^{p'} dt \right)^{\frac{1}{p'}} \left[|f'(a)| + |f'(b)| \right]. \end{split}$$

By setting $\rho = 1$ and $\alpha = 1$, we use the Riemann integral to derive the following Milne inequality for the class P-function.

$$\left| \frac{1}{3} \left[2f(a) - f\left(\frac{a+b}{2}\right) + 2f(b) \right] - \frac{1}{b-a} \int_{a}^{b} f(t)dt \right|$$

$$\leq \frac{b-a}{2} \left[\frac{1}{1+p'} \left(\left(\frac{4}{3}\right)^{1+p'} - \left(\frac{1}{3}\right)^{1+p'} \right) \right]^{\frac{1}{p'}} \left[|f'(a)|^p + |f'(b)|^p \right]^{\frac{1}{p}}$$

$$\leq \frac{b-a}{2} \left[\frac{1}{1+p'} \left(\left(\frac{4}{3}\right)^{1+p'} - \left(\frac{1}{3}\right)^{1+p'} \right) \right]^{\frac{1}{p'}} \left[|f'(a)| + |f'(b)| \right].$$

Acknowledgement. The first author would like to thank the Directorate General for Scientific Research and Technological Development (DGRSDT) -Algeria- for the support of this research.

References

- [1] S. Varosanec, On h-convexity, J. Math. Anal. Appl., 326(2007), 303–311.
- [2] D. S. Mitrinovic, J. E. Pecariç and A. M. Fink, Classical and New Inequalities in Analysis, Springer, Dordrecht, 1993.
- [3] S. S. Dragomir, J. Pecaric and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21(1995), 335–341.
- [4] C. E. M. Pearce and A. M. Rubinov, P-functions, quasi-convex functions and Hadamard-type inequalities, J. Math. Anal. Appl., 240(1999), 92–104.
- [5] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Räumen, Publ. Inst. Math., 23(1978), 13–20.
- [6] F. Jarad, E. Ugurlu, T. Abdeljawad and D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 247(2017).
- [7] M. Djenaoui and B. Meftah, Milne type inequalities for differentiable s-convex functions, Honam Math. J., 44(2022), 325–338.
- [8] H. Budak, P. Kösem and H. Kara, On new Milne-type inequalities for fractional integrals, J. Inequal. Appl., 10(2023).
- [9] B. Çelik, H. Budak and E. Set, On generalized Milne type inequalities for new conformable fractional integrals, Filomat., 38:5(2024), 1807–1823.