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Abstract

In this paper, SRJ iteration process has been defined for class of generalized nonexpansive operators.
By means of an numerical example we show that our iteration process converges at a rate faster then
some of the leading multi-step iterative algorithm in the existing literature which have been used recently
to find the solutions of a nonlinear integral equation.

1 Introduction

We know that analytical methods may fail to find exact solution of mathematical problems. Therefore,
fixed point theory recommends some alternate techniques for solving these problems. First, we expressed
the solution of the problem as the fixed point of a certain map (the map may be contraction, nonexpansive,
or generalized nonexpansive [29]). In this situation, an existence of a solution and the existence of a fixed
point have the same meanings. We used some suitable iterative methods to find approximate unique fixed
point (see, e.g., [3] and others). The Banach Contraction Principle indicates, among other things, that if the
operator is a contraction and the subset is a closed subset of a Banach space, there may be a single fixed
point. As an operator P on a subset G of a Banach space B is called a contraction, if for all a, b ∈ G, we
have the following equation:

||Pa− Pb|| ≤ θ||a− b|| (1)

where θ ∈ [0, 1).
A nonexpansive mapping P is a mapping that satisfies equation (1) for θ = 1. Actually, the Picard

iteration method (An+1 = PAn) was suggested by the Banach contraction principle proof to determine the
estimated value of the unique fixed point of the contraction P. If G is closed bounded and convex and B is a
uniformly convex Banach space (uniformly convex Banach space). Then P has a fixed point (see, e.g., Kirk
[17], Browder [8], and Gohde [14]). In applied sciences, nonexpansive mappings have a key role for solving
fixed points problems. Therefore, we tried to use some extensions of these mappings.
Suppose P is a self-map, that is, P : G → G and a, b ∈ G, where G is any subset of a Banach space, then

P is called as follows:

(a) Suzuki generalized nonexpansive [26] if

1

2
||a− Pa|| ≤ ||a− b|| =⇒ ||Pa− Pb|| ≤ ||a− b||.
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(b) Generalized α-nonexpansive [22] if

1

2
||a− Pa|| ≤ ||a− b|| =⇒ ||Pa− Pb|| ≤ ||a− b|| ≤ α||a− Pa||+ α||a− Pb||+ (1− 2α)||a− b||.

(c) Generalized (α, β)-nonexpansive [29] if

1

2
||a− Pa|| ≤ ||a− b||,

then

||Pa− Pb|| ≤ ||a− b|| ≤ α||a− Pb||+ α||b− Pa||+ β||a− Pa||+ β||b− Pb||+ (1− 2α− 2β)||a− b||.

The classes of Generalized α-nonexpansive and Generalized (α, β)-nonexpansive self-maps properly in-
clude the class of Suzuki nonexpansive self-maps.
Ullah et al. [30] presented a new class of nonlinear mapping.

Definition 1 A self-map P on a subset G of a Banach space is said to be (α, β, γ)-nonexpansive if for all
a, b ∈ G,

||Pa− Pb|| ≤ α||a− b||+ β||a− Pa||+ γ||a− Pb||,

where α, β, γ ∈ R+ such that α+ γ ≤ 1.

The class of (α, β, γ)-nonexpansive mappings includes all these mappings, and thus, the concept of
(α, β, γ)-nonexpansive mappings is more diffi cult but more important than the other mappings mentioned
above. In this work we present a numerical example to illustrate our main result and then display the
effi ciency of the proposed algorithm compared to different iterative algorithms in the literature. Our results
obtained in this paper improve, extend and unify some related result Ullah et al. [30].

2 Preliminaries

We need some of the known results. Suppose a Banach space B is equipped with ||.||. The space B will
be called a uniformly convex Banach space [10] provided that for each choice of 0 ≤ ε < 1, a real number
0 < δ <∞ can be found satisfying

∥∥a+b
2

∥∥ ≤ 1− δ, for all two elements a, b ∈ B with ||a|| ≤ 1, ||b|| ≤ 1 and
||a + b|| ≥ ε. On the other side, if B satisfies the property that ||a + b|| < 2 for all two different a, b ∈ B
with ||a|| = ||b|| = 1. Then B is called strictly convex.
The space B is said to be equipped with the Opial’s property [21], if and only if for any given weakly

convergent sequence, namely, {An} in B having limit a0 ∈ B. Then for all b0 ∈ B− a0, one has

lim sup
n→∞

||An − a0|| < lim sup
n→∞

||An − b0||.

Definition 2 ([2, 27]) Suppose {An} denotes any bounded sequence in a closed convex subset G of a uni-
formly convex Banach space B. In this case, one denotes and defines the asymptotic radius of {An} on the
set G by

u(G, {An}) = inf{lim sup
n→∞

||An − a|| : a ∈ G},

while the asymptotic center of {An} on the set G is denoted and defined as

K(G, {An}) = {a ∈ G : lim sup
n→∞

||An − a|| = u(G, {An})}.

Furthermore, in a uniformly convex Banach space, the asymptotic center K(G, {An}) contains exactly one
element.
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Remark 1 The set K(G, {An}) contains only one point provided that B is a uniformly convex Banach
space. The property that K(G, {An}) is convex is also known in the setting of weakly compact convex sets
(e.g., [23, 27] and others).

Every uniformly convex Banach space has the following important property [24].

Lemma 1 Consider two sequences {An} and {Bn} in a uniformly convex Banach space B with

lim sup
n→∞

||An|| ≤ κ and lim sup
n→∞

||Bn|| ≤ κ.

In addition, if 0 < µ ≤ µn ≤ ν < 1 and limn→∞ ||µnAn + (1 − µn)Bn|| = κ for some κ ≥ 0. Then
limn→∞ ||An − Bn|| = 0.

Proposition 1 Suppose P is nonexpansive self-map whose domain of definition is possibly a subset G of B.
Then P is (α, β, γ)-nonexpansive.

Example 1 We now suggest a self-map P : [0, 2]→ [0, 2] by the formula

Pa =
{
0 if a 6= 0,
1 if a = 0.

Here P is discontinuous and so not nonexpansive but P is (α, β, γ)-nonexpansive. Accordingly, the class
of (α, β, γ)-nonexpansive self-maps properly contains as a subset the class of all nonexpansive self-maps.

Lemma 2 Suppose P is (α, β, γ)-nonexpansive self-map whose domain of definition is possibly a subset G
of B with a fixed point, namely, ρ. In such a case, the estimate ||Pa − Pρ|| ≤ ||a − ρ|| holds for all a ∈ G
and ρ ∈ F(P).

Now Lemma 2 suggests the following result.

Lemma 3 Suppose P is (α, β, γ)-nonexpansive self-map whose domain of definition is possibly a subset G
of a Banach space B. Consequently, the set F(P) is closed. Also, the set F(P) is convex provided that G is
convex and the space B is strictly convex.

The next lemma shows a very basic property of the (α, β, γ)-nonexpansive mappings.

Lemma 4 ([30]) Suppose P is (α, β, γ)-nonexpansive self-map whose domain of definition is possibly a
subset G of B. Then for all a, b ∈ },

||a− Pb|| ≤ (1 + β)
1− γ ||a− Pa||+

α

1− γ ||a− b||.

This is what we need. Now we prove a demiclosedness principle.

Lemma 5 ([30]) Suppose P is (α, β, γ)-nonexpansive self-map whose domain of definition is possibly a
subset G of B. If the given B satisfies the Opial’s property. Then the following implication holds:

An ∈ G, ||PAn −An|| → 0 and An → ρ =⇒ ρ ∈ F(P).

Proof. From Lemma 4, we have

||An − Pρ|| ≤
(1 + β)

1− γ ||An − PAn||+
α

1− γ ||An − ρ||.

Since α+ γ ≤ 1, we see that α ≤ 1− γ. It follows that

lim sup
n→∞

||An − Pρ|| < lim sup
n→∞

||An − ρ||.

Since the underlying space has the Opial’s property, one get Pρ = ρ. This finishes the proof.
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3 SRJ Iteration Process and its Convergence Analysis

The study of iterative scheme is an important area of research on its own [31, 32]. As we know Picard iteration
is not necessarily convergent in the case of nonexpansive operators. This example suggests that we use other
iterative methods. In the literature of fixed-point iterations, one can search for many iterative methods that
converge in the case of nonexpansive operators and also suggest better accuracy as compared to the Picard
iteration method. If G is a closed and convex subset of a Banach space, n ∈ N and an, bn, cn ∈ (0, 1). Then
for A1 = A ∈ G, Mann [19], Ishikawa [16], Noor [20], Agarwal [2], Abbas [1], Thakur [28] and Ullah [15]
iterative methods respectively read as follows:

{An+1 = anPAn + (1− an)An, (2)
An+1 = anPBn + (1− an)An,

Bn+1 = bnPAn + (1− bn)An,
(3)



An+1 = anPBn + (1− an)An,

Bn = bnPCn + (1− bn)An,

Cn = cnPAn + (1− cn)An,

(4)


An+1 = anPBn + (1− an)An,

Bn = bnPAn + (1− bn)PAn,
(5)



An+1 = anPCn + (1− an)PBn,

Bn = bnPCn + (1− bn)PAn,

Cn = cnPAn + (1− cn)An,

(6)



An+1 = PBn,

Bn = P(anCn + (1− an)An),

Cn = bnPAn + (1− bn)An,

(7)



An+1 = PBn,

Bn = P(anPCn + (1− an)PAn),

Cn = bnPAn + (1− bn)An.

(8)

It is known from [15] that the Ullah iterative method (8) converges faster than the iterative methods (2)-(7)
under certain assumptions.
A natural question arises: does there exist an iterative method that is essentially better than all of the

above iterative methods, including the Ullah iterative method (8)? To answer this question, Dashputre et
al. [12] introduced and studied the following SRJ -iterative method:
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Let G be a nonempty, closed and convex subset of a uniformly convex Banach space B and P : G → G
be a mapping and the sequence {An} generated iteratively by

An+1 = P(cnPBn + (1− cn)Bn),

Bn = P(bnPCn + (1− bn)Cn),

Cn = P(anPAn + (1− an)An).

(9)

Now, we apply the previously established properties of (α, β, γ)-nonexpansive mappings in this paper and
prove the convergence of the SRJ -iterative method (9) to the fixed point of these mappings. After this,
we then provide another example of these mappings, which essentially exceed nonexpansive mappings, to
compare the high accuracy of the SRJ iterative method in this new setting.

4 Main Results

Theorem 1 Let P : G → G be a (α, β, γ)-nonexpansive mapping defined on a nonempty closed convex subset
G of a uniformly convex Banach space B such that F(P) 6= ∅. If {An} is a sequence generated by (9). Then
limn→∞ ||An − ρ|| exists for all ρ ∈ F(P).

Proof. Let ρ ∈ F(P). By Lemma 2, we have

||Cn − ρ|| = ||P((1− an)An + anPAn)− ρ||
≤ ((1− an))||An − ρ||+ an||PCn − ρ||
≤ (1− an)||An − ρ||+ an||An − ρ||
≤ ||An − ρ||. (10)

Using Lemma 2 and (10), we get

||Bn − ρ|| = ||P((1− bn)Cn + bnPCn)− ρ||
≤ (1− bn)||Cn − ρ||+ bn||PCn − ρ||
≤ (1− bn)||Cn − ρ||+ bn||Cn − ρ||
≤ (1− bn)||An − ρ||+ bn||An − ρ||
≤ ||An − ρ||. (11)

Using Lemma 2, (10) and (11), we get

||An+1 − ρ|| = ||P((1− cn)yn + cnPyn), ρ||
≤ (1− cn)||Bn − ρ||+ cn||PBn − ρ||
≤ (1− cn)||Bn − ρ||+ cn||Bn − ρ||
≤ (1− cn)||An − ρ||+ cn||An − ρ||
≤ ||An − ρ||. (12)

Thus, {||An−ρ||} is a non-increasing sequence of reals which is bounded below by zero and hence convergent.
Therefore, limn→∞ ||An − ρ|| exists ∀ρ ∈ F(P).

Theorem 2 Let P : G → G be a (α, β, γ)-nonexpansive mapping defined on a nonempty closed convex subset
G of a uniformly convex Banach space B and {An} is generated by the algorithm (9). Then F(P) 6= ∅ if
and only if {An} is bounded and limn→∞ ||PAn −An|| = 0.



J. Shrivas 413

Proof. Suppose that F(P) 6= ∅ and ρ ∈ F(P).
Then by theorem 1, we see that limn→∞ ||An − ρ|| exists and {An} is bounded. Put

lim
n→∞

||An − ρ|| = r. (13)

By the proof of Theorem 1 and (13), we have

lim
n→∞

sup ||PAn − ρ|| ≤ lim
n→∞

sup ||An − ρ|| = r. (14)

Again by the proof of Theorem 1 from (11), we have ||Bn − ρ|| ≤ ||An − ρ||.
Therefore,

||An+1 − ρ|| = ||P((1− cn)Bn + cnPBn)− ρ||
≤ (1− cn)||Bn − ρ||+ cnd(Pyn, p)
≤ (1− cn)||An − ρ||+ cn||Bn − ρ||.

It follows that

||An+1 − ρ|| − ||An − ρ|| ≤
||An+1 − ρ|| − ||An − ρ||

cn
≤ ||Bn − ρ|| − ||An − ρ||
≤ (1− bn)||Cn − ρ||+ bn||Cn − ρ|| − ||An − ρ||
≤ ||Cn − ρ|| − ||An − ρ||.

So, we can get ||An+1 − ρ|| ≤ ||Cn − ρ|| and from (13), we have

r ≤ lim
n→∞

inf ||Cn − ρ||. (15)

Hence, from (14) and (15), we obtain
r = lim

n→∞
||Cn − ρ||. (16)

Therefore, from (16), we have

r = lim
n→∞

||Cn − ρ|| = lim
n→∞

||P((1− an)An + anPAn)− ρ||

≤ lim
n→∞

(1− an)||An − ρ||+ an||PAn − ρ||

≤ lim
n→∞

(1− an)||An − ρ||+ lim
n→∞

an||PAn − ρ||

≤ r. (17)

Hence,
lim
n→∞

(1− an)||An − ρ||+ an||PAn − ρ|| = c. (18)

Now, from (15),(18) and Lemma 1, we conclude that

lim
n→∞

||PAn −An|| = 0.

Conversely, suppose that {An} is bounded and limn→∞ ||PAn − An|| = 0 and ρ ∈ K({An}). By Lemma 4
and Definition 2, we have

u(Pρ, {An}) = lim
n→∞

sup ‖An − Pρ‖

≤ lim
n→∞

sup

[
(1 + β)

1− γ ||An − PAn||+
α

1− γ ||An − ρ||
]
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≤
(
1 + β

1− γ

)
lim
n→∞

sup ||An − PAn||+
(

α

1− γ

)
lim
n→∞

sup ||An − ρ||

≤ lim
n→∞

sup ||An − ρ||

= u(ρ, {An}).

So, Pρ ∈ K(G, {An}). As B is uniformly convex Banach space. Therefore, K(G, {An}) consists of a single
point. Hence, Pρ = ρ, that is the fixed point of P is nonempty.
Sometimes the strong convergence for a certain operator is not possible in general; therefore, we need the

weak convergence in such a case. Under the following conditions, we establish the weak convergence result
for (α, β, γ)-nonexpansive self-maps.

Theorem 3 Let P : G → G be a (α, β, γ)-nonexpansive mapping defined on a nonempty closed convex subset
G of a uniformly convex Banach space B such that F(P) 6= ∅. If {An} is a sequence generated by (9) and
B satisfies Opial’s property, then it converges weakly to some fixed point of P.

Proof. It has been established in Theorem 1 that limn→∞ ||An−ρ|| exists and that {An} is bounded. Now,
since B is uniformly convex, we can find a subsequence say {Anm} of {An} that converges weakly in G.
We establish that {An} has a unique weak subsequential limit in F(P). Let ρ and ρ0 be weak limits of the
subsequences {Anm} and {Anr} of {An} respectively. By Theorem 2, we have that limn→∞ ||An−PAn|| = 0
and I −P is demiclosed with respect to zero by Lemma 5. Therefore, we have that Pρ = ρ. Using a similar
approach, we can show that ρ0 = Pρ0. It follows from Theorem 1 that limn→∞ ||An − ρ0|| exists. Now,
suppose that ρ 6= ρ0. Then by the Opial condition, we have

lim sup
n→∞

||An − ρ|| = lim sup
m→∞

||Anm − ρ|| < lim sup
m→∞

||Anm − ρ0||

= lim sup
n→∞

||An − ρ0|| < lim sup
r→∞

||Anr − ρ0||

< lim sup
r→∞

||Anr − ρ|| < lim sup
n→∞

||An − ρ||.

This is a contradiction. So ρ 6= ρ0. Hence, {An} converges weakly to a fixed point of F(P) and this completes
the proof.

The next result is related to the strong convergence, which is based on the assumption that the domain
of P is a compact set.

Theorem 4 Let P : G → G be a (α, β, γ)-nonexpansive mapping defined on a nonempty closed convex subset
G of a uniformly convex Banach space B such that F(P) 6= ∅. If {An} is a sequence generated by (9), then
the sequence {An} converges strongly to some fixed point of P.

Proof. Since the set G is convex and compact, {An} contained in G and has a convergent subsequence.
We denote this subsequence by {Anm} with a strong limit ρ ∈ G, that is, limnm→∞ ||Anm − ρ||. Suppose
a = Anm and b = ρ, then applying Lemma 4, one has

||Anm −Fρ|| ≤
(1 + β)

1− γ ||Anm − PAnm ||+
α

1− γ ||Anm − ρ||. (19)

By Theorem 2, limnm→∞ ||Anm−PAnm || = 0 and also from the above limnm→∞ ||Anm−ρ|| = 0. Accordingly,
(19) provides thatAnm → Pρ. It follows that Pρ = ρ. By Theorem 1, limn→∞ ||An−ρ|| exists. Consequently,
we have proved that ρ ∈ F(P) and An → ρ. This finishes proof.
In the following result, we drop the assumption that the domain of P is a compact set.

Theorem 5 Let P : G → G be a (α, β, γ)-nonexpansive mapping defined on a nonempty closed convex subset
G of a uniformly convex Banach space B such that F(P) 6= ∅. Assume that {An} is a sequence generated
by (9). If lim infn→∞ ds(An,F(P)) holds. Then the sequence {An} converges strongly to some fixed point of
P.
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Proof. If the sequence {An} converges to a point ρ ∈ F(P), then

lim
n→∞

inf ||An − ρ|| = 0.

So
lim
n→∞

||An −F(P)|| = 0.

For converse part, assume that limn→∞ inf ||An −F(P)|| = 0. From Theorem 1, we have

||An+1 − ρ|| ≤ ||An − ρ|| for any ρ ∈ F(P).

So we have,
||An+1 −F(P)|| ≤ ||An −F(P)||. (20)

Thus, ||An−F(P)|| forms a decreasing sequence which is bounded below by zero as well, thus limn→∞ ||An−
F(P)|| exists. Since limn→∞ inf ||An −F(P)|| = 0, we see that limn→∞ ||An −F(P)|| = 0.

Now, there exists a subsequence {Anj} of {An} and a sequence {Aj} in F(P) such that ||Anj −Aj || ≤ 1
2j

for all j ∈ N. From the proof of Theorem 1, we have

||Anj+1 −Aj || ≤ ||Anj −Aj || ≤
1

2j
.

Using triangle inequality, we get

||Anj+1 −Aj || ≤ ||Aj+1 −Anj+1 ||+ ||Anj+1 −Aj ||

≤ 1

2j+1
+
1

2j

≤ 1

2j−1

→ 0 as j →∞.

So, {Aj} is a Cauchy sequence in F(P). From Lemma 3 F(P) is closed, so {Aj} converges to some ρ ∈ F(P).
Again, owing to triangle inequality, we have

||Anj − ρ|| ≤ ||Anj −Aj ||+ ||Aj − ρ||.

Letting j →∞, we have {Anj} converges strongly to x ∈ F(P). Since limn→∞ inf ||An, ρ) exists by Theorem
1, we observe that {An} converges to ρ ∈ F(P).
Now, we establish the main result of this section, which is related to the work of Senter and Dotson [25].

Theorem 6 Let P : G → G be a (α, β, γ)-nonexpansive mapping defined on a nonempty closed convex subset
G of a uniformly convex Banach space B such that F(P) 6= ∅. If {An} is a sequence generated by (9) and
B satisfies condition (1). Then the sequence {An} converges strongly to same fixed point of P.

Proof. It follows from Theorem 2 the lim infn→∞ ||An − PAn|| = 0. By condition (1) of P, we have
lim infn→∞ d(An,F(P)). Theorem 4 leads to the conclusions.

5 Numerical Example

This section presents a novel example of a (α, β, γ)-nonexpansive mapping and proves that it is not nonex-
pansive. In this example, we compare our strategy to various iterative approaches (see tables and graphs
below). According to the data, the SRJ -iterative approach represents a novel class of mappings that
converges quicker than the comparable iterative methods.
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Example 2 Let G = [0, 1] and set P on G as:

Pa =
{

a
3 if a ∈ [0, 12 ),
a
4 if a ∈ [ 12 , 1].

Case (I). If a, b ∈ [0, 12 ), then

||Pa− Pb|| =

∣∣∣∣∣∣∣∣a− b3
∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣a− b2

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣a− b2
∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣2(a− a

3 )

3

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣a− b2
∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣2(a− a

3 )

3

∣∣∣∣∣∣∣∣+
∣∣∣∣∣
∣∣∣∣∣ (a− b

3 )

2

∣∣∣∣∣
∣∣∣∣∣

= α||a− b||+ β||a− Pa||+ γ||a = Pb||.

Case (II). If a, b ∈ [ 12 , 1], then

||Pa− Pb|| =

∣∣∣∣∣∣∣∣a− b4
∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣a− b2

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣a− b2
∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣2(a− a

4 )

3

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣a− b2
∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣2(a− a

4 )

3

∣∣∣∣∣∣∣∣+
∣∣∣∣∣
∣∣∣∣∣ (a− b

4 )

2

∣∣∣∣∣
∣∣∣∣∣

= α||a− b||+ β||a− Pa||+ γ||a = Pb||.

Case (III). If a ∈ [0, 12 ) and b ∈ [
1
2 , 1], then

||Pa− Pb|| =

∣∣∣∣∣∣∣∣a3 − b

4

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣ b4
∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣a3 ∣∣∣∣∣∣

≤
∣∣∣∣∣∣∣∣3b8

∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣4a9
∣∣∣∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣ (b− b

4 )

2

∣∣∣∣∣
∣∣∣∣∣+
∣∣∣∣∣∣∣∣4a9

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
∣∣∣∣∣ ((a− b)− (a− b

4 ))

2

∣∣∣∣∣
∣∣∣∣∣+
∣∣∣∣∣∣∣∣2(a− a

3 )

3

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣a− b2
∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣2(a− a

3 )

3

∣∣∣∣∣∣∣∣+
∣∣∣∣∣
∣∣∣∣∣ (a− b

4 )

2

∣∣∣∣∣
∣∣∣∣∣

= α||a− b||+ β||a− Pa||+ γ||a = Pb||.

Case (IV). If b ∈ [0, 12 ) and a ∈ [
1
2 , 1], then

||Pa− Pb|| =

∣∣∣∣∣∣∣∣a4 − b

3

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣ b3
∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣a4 ∣∣∣∣∣∣

≤
∣∣∣∣∣∣∣∣2b6

∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣a2 ∣∣∣∣∣∣
=

∣∣∣∣∣
∣∣∣∣∣ (b− b

3 )

2

∣∣∣∣∣
∣∣∣∣∣+
∣∣∣∣∣∣∣∣6a12

∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣
∣∣∣∣∣ ((a− b)− (a− b

3 ))

2

∣∣∣∣∣
∣∣∣∣∣+
∣∣∣∣∣∣∣∣2(a− a

4 )

3

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣a− b2
∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣2(a− a

4 )

3

∣∣∣∣∣∣∣∣+
∣∣∣∣∣
∣∣∣∣∣ (a− b

3 )

2

∣∣∣∣∣
∣∣∣∣∣

= α||a− b||+ β||a− Pa||+ γ||a = Pb||.

As a result, all of the preceding cases indicate that the operator P is (α, β, γ)-nonexpansive.
By using example (2), we tried to show that the rate of convergence of the SRJ iteration is better

then some known iteration processes for (α, β, γ)-nonexpansive mapping. Parameters are an = 1 − 1
(2n+8) ,

bn =
n

16n+1 and cn =
n

(n+5) , ∀n ∈ N.

Table 1: Convergence of SRJ iteration (9) for fixed point 0.
No. of
iteration Agrawal Thakur K SRJ

1 0.5 0.5 0.5 0.5
2 0.158481 0.052984 0.018082 0.001869
3 0.050654 0.005645 0.000657 0.000009
4 0.01619 0.000601 0.000023 0
5 0.005174 0.000064 0.000008 0
6 0.001653 0.000006 0 0
7 0.000528 0 0 0
8 0.000168 0 0 0
9 0.000054 0 0 0
10 0.000017 0 0 0

Clearly ρ = 0 is a fixed point of (α, β, γ)-nonexpansive mapping. Table 1 shows that behaviour of some
iteration processes to fixed point of P for initial value 0.50. Furthermore, we have examined the influence
of parameters an, bn and cn. For this we have considered various sets of parameters and present a study
regarding the number of iterations required. Each iteration starts with a particular initial value and the
respective number of iterations, average of the number of iterations for different initial points are given in
Figure 5. We have examined the fastness and stability of different iterations relative to above mentioned set
of parameters.

In what follows, we numerically compare our new iteration process (9) with some existing iteration
processes.

Case I: Taking, an = 1√
n+9

, bn = 1
n+1 and cn =

n
n+5 .

Case II: Taking, an = 3n
8n+4 , bn =

1
n+4 and cn =

n
(2n+6)2 .

Case III: Taking, an = n
n+1 , bn =

1
(n+7)2 and cn =

2n
(5n+2) .

Case IV: Taking, an = 1− 1
(2n+8) , bn =

n
16n+1 and cn =

n
(n+5) .
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Table depicting comparison of various iteration process under distinct parameters for Example 2.

Average no. of iterations under distinct parameters for Example 2.

The observations are given in Figures 5 and 5. We have concluded that the new iteration process (9) not
only converges faster than the known iterations but also is stable with respect to the parameters an, bn and
cn. From Figure 5, we also observe that the average number of iterations of the new iteration process (9) is
the smallest with respect to other processes.
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6 An Application to Volterra-Fredholm Integral Equation

In this section, we use iteration (9) to solve the following Volterra-Fredholm integral equation given by Lungu
and Rus [18]:

f(x, y) = g(x, y, h(f(x, y))) +

∫ x

0

∫ y

0

K(x, y, u, v, f(u, v))dudv, (21)

where x, y ∈ R+. Let (W, ||.||) be a Banach space. Let τ > 0 and

Xτ = {f ∈ G(R2,W)| ∃M(f) > 0: |f(x, y)|eτ(x+y) ≤M(f)}.

Now, we consider BieleckiáÂŹ norm on Xτ as follows:

||f ||τ = sup
x,y∈R+

(|f(x, y)|eτ(x+y)).

Obviously, (Xτ , ||.||τ ) is a Banach space (see [7]).
The following result will play a major role in proving the main result.

Theorem 7 ([18]) Suppose the following conditions are fulfilled

(A) g ∈ G(R2+ ×W,W), K ∈ G(R4+ ×W,W);

(B) h : Xτ → Xτ such that

∃ lh > 0: |h(f1(x, y))− h(f1(x, y))| ≤ ||f1 − f2||eτ(x+y),

for all x, y ∈ R+ and f1, f2 ∈ Xτ ;

(C) ∃ lg > 0: |g(x, y, u1)− g(x, y, u2)| ≤ lg||u1 − u2||, for all x, y ∈ R+ and u1, u2 ∈ W;

(D) ∃ lK(x, y, u, v) : |K(x, y, u, v, u1) − K(x, y, u, v, u1)| ≤ lK(x, y, u, v)|u1 − u2|, for all x, y ∈ R+ and
u1, u2 ∈ W;

(E) lK ∈ G(R4+,R+) and ∫ x

0

∫ y

0

lK(x, y, u, v)e
τ(x+y)dudv ≤ leτ(x+y),

for all x, y ∈ R+.

(F) (lglh + l) < 1.

Then the equation (21) has a unique solution z ∈ Zτ and the sequence of successive approximations

fn+1(x, y) = g(x, y, h(fn(x, y))) +

∫ x

0

∫ y

0

K(x, y, u, v, fn(u, v))dudv, (22)

for all n ∈ N converges uniformly to z.

Our main result is as follows:

Theorem 8 If all the conditions from (A) to (F) in Theorem 7 are satisfied, then the equation (22) has
a unique fixed point ρ ∈ Xτ and the iteration (9) with sequence {an}, {bn} and {cn} ∈ (0, 1) such that∑∞
n=0 an =∞ converges strongly to ρ.



420 Approximating Fixed Points for Class of Generalized Nonexpansive Operators

Proof. Let {An} be the sequence defined by the SRJ iteration process (9) for the operator P : Xτ → Xτ
defined by

P(f(x, y)) = g(x, y, h(f(x, y))) +

∫ x

0

∫ y

0

K(x, y, u, v, fn(u, v))dudv.

We have to show that {An} → 0 as n→∞. By (9)

||An+1 − ρ||τ = sup
x,y∈R+

(|P(cnPBn + (1− cn)Bn)(x, y)− P(ρ(x, y))|eτ(x+y)).

Now

|P(cnPBn + (1− cn)Bn)(x, y)− P(ρ(x, y))|
≤ |g(x, y, h(cnPBn + (1− cn)Bn)(x, y))− g(x, y, h(ρ(x, y)))|

+|
∫ x

0

∫ y

0

K(x, y, u, v, (cnPBn + ((1− cn)Bn)(u, v))du dv −
∫ x

0

∫ y

0

K(x, y(ρ(u, v))dudv|

≤ lg|h((cnPBn + (1− cn)Bn)(x, y)− h(ρ(x, y))|

+

∫ x

0

∫ y

0

|K(x, y, u, v, (cnPBn + ((1− cn)Bn)(u, v))−K(x, y(ρ(u, v))|dudv

≤ lglh||((cnPBn + ((1− cn)Bn)− ρ||τeτ(x+y)

+

∫ x

0

∫ y

0

lK(x, y, u, v, |(cnPBn + ((1− cn)Bn)(u, v)− ρ(u, v)|dudv

≤ lglh||(cnPBn + ((1− cn)Bn)− ρ||τeτ(x+y)

+l||(cnPBn + ((1− cn)Bn)− ρ||τeτ(x+y)

= (lglh + l)||(cnPBn + ((1− cn)Bn)− ρ||τeτ(x+y)

(lglh + l)||(cnPBn + ((1− cn)Bn)− ρ||τ , (23)

and

||(cnPBn + ((1− cn)Bn)− ρ||τ = ||cn(PBn − ρ) + (1− cn)(Bn − ρ)||τ
≤ cn||PBn − ρ||τ + (1− cn)||Bn − ρ||τ . (24)

So
||PBn − ρ|| ≤ sup

x,y∈R+
(|PBn(x, y)− Pρ(x, y)|eτ(x+y)).

Now

|PBn(x, y)− Pρ(x, y)| ≤ |g(x, y, h(Bn(x, y)))− g(x, y, h(ρ(x, y)))|

+|
∫ x

0

∫ y

0

K(x, y, h(Bn(u, v)))du dv −K(x, y, h(ρn(u, v)))dudv|

≤ lg|h(Bn(x, y))− ρ(x, y)|

+

∫ x

0

∫ y

0

|K(x, y, u, v,Bn(u, v)−K(x, y, u, v, ρ(u, v)|dudv

≤ lglh||Bn − ρ||τeτ(x+y) +
∫ x

0

∫ y

0

lK(x, y, u, v)|Bn − ρ|dudv

≤ lglh||Bn − ρ||τeτ(x+y) + l||Bn − ρ||τeτ(x+y)

≤ (lglh + l)||Bn − ρ||τeτ(x+y)

≤ (lglh + l)||Bn − ρ||τ . (25)
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From equation (24) and (25), we get

||(cnPBn + (1− cn)Bn)− ρ||τ ≤ cn(lglh + l)||Bn − ρ||τ + (1− cn)||Bn − ρ||τ
= [1− cn{1− (lglh + l)}]||Bn − ρ||τ . (26)

Thus, from equation (23) and (26), we obtain

|P(cnPBn + (1− cn)Bn)(x, y)− P(ρ(x, y))| ≤ [1− cn{1− (lglh + l)}]||Bn − ρ||τ .

Therefore,
||An+1 − ρ||τ ≤ (lglh + l)[1− cn{1− (lglh + l)}]||Bn − ρ||τ . (27)

Similarly,

||Bn − ρ||τ = sup
x,y∈R+

(|P(bnPCn + (1− bn)Cn)(x, y)− P(ρ(x, y))|eτ(x+y))

= (lglh + l)[1− bn{1− (lglh + l)}]||Cn − ρ||τ . (28)

From equation (27) and (28), we obtain

||An+1 − ρ||τ ≤ (lglh + l)2[1− cn{1− (lglh + l)}][1− bn{1− (lglh + l)}]||Cn − ρ||τ . (29)

Again,

||Cn − ρ||τ = sup
x,y∈R+

(|P(anPAn + (1− an)An)(x, y)− P(ρ(x, y))|eτ(x+y))

= (lglh + l)[1− an{1− (lglh + l)}]||An − ρ||τ . (30)

Putting equation (29) and (30)

||An+1−ρ||τ ≤ (lglh+ l)3[1− cn{1− (lglh+ l)}][1− bn{1− (lglh+ l)}][1−an{1− (lglh+ l)}]||An−ρ||τ . (31)

Recalling assumption (lglh + l) ≤ 1 and an, bn ∈ (0, 1], it follows that

[1− bn{1− (lglh + l)}][1− an{1− (lglh + l)}] ≤ 1.

Thus, equation (31) becomes.

||An+1 − ρ||τ ≤ [1− cn{1− (lglh + l)}]||An − ρ||τ . (32)

From equation (32), Inductively we obtain

||An+1 − ρ||τ ≤ ||A0 − ρ||τ
i=n∏
i=0

[1− ci{1− (lglh + l)}]. (33)

Since ci ∈ (0, 1] for all i ∈ N and condition (F) we have (lglh + l < 1). Thus, [1− ci{1− (lglh + l)}] ≤ 1. We
also know that 1− θ ≤ e−θ for all θ ∈ [0, 1]. From (33) we have

||An+1 − ρ||τ ≤ ||A0 − ρ||τe−[ci{1−(lglh+l)}]
∑i=n

i=0 ci . (34)

Therefore, limn→∞ ||An − ρ||τ = 0 as
∑i=n
i=0 ci = ∞ whenever n → ∞ and e−∞ = 0. This completes the

proof.

7 Conclusion

In this paper, we use SRJ iteration for (α, β, γ)-nonexpansive mapping in uniformly convex Banach space
B. Our result improves results of Ullah et al. [30] in the sense of faster iteration process. Finally, we used
the SRJ iterative approach to analyze and solve the Volterra-Fredholm integral equation.
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