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Abstract

In this paper, SRJ iteration process has been defined for class of generalized nonexpansive operators.
By means of an numerical example we show that our iteration process converges at a rate faster then
some of the leading multi-step iterative algorithm in the existing literature which have been used recently
to find the solutions of a nonlinear integral equation.

1 Introduction

We know that analytical methods may fail to find exact solution of mathematical problems. Therefore,
fixed point theory recommends some alternate techniques for solving these problems. First, we expressed
the solution of the problem as the fixed point of a certain map (the map may be contraction, nonexpansive,
or generalized nonexpansive [29]). In this situation, an existence of a solution and the existence of a fixed
point have the same meanings. We used some suitable iterative methods to find approximate unique fixed
point (see, e.g., [3] and others). The Banach Contraction Principle indicates, among other things, that if the
operator is a contraction and the subset is a closed subset of a Banach space, there may be a single fixed
point. As an operator P on a subset G of a Banach space 9B is called a contraction, if for all a,b € G, we
have the following equation:

|IPa —Pb|| < ff|a —b]] (1)

where 6 € [0,1).

A nonexpansive mapping P is a mapping that satisfies equation (1) for § = 1. Actually, the Picard
iteration method (A1 = PA,) was suggested by the Banach contraction principle proof to determine the
estimated value of the unique fixed point of the contraction P. If G is closed bounded and convex and ‘B is a
uniformly convex Banach space (uniformly convex Banach space). Then P has a fixed point (see, e.g., Kirk
[17], Browder [8], and Gohde [14]). In applied sciences, nonexpansive mappings have a key role for solving
fixed points problems. Therefore, we tried to use some extensions of these mappings.

Suppose P is a self-map, that is, P: G — G and a,b € G, where G is any subset of a Banach space, then
P is called as follows:

(a) Suzuki generalized nonexpansive [26] if

1
glla="Pal| < la=bl] = ||Pa—Pb| < |la - b]|.
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(b) Generalized a-nonexpansive [22] if
1
glla=Pall < fla=bl = [[Pa—Pbl| < la - btl| < afla —Pal| + alla = Pbl| + (1 - 2a)||a — b]].
(¢) Generalized (a, 8)-nonexpansive [29] if
1
*la —Pall < lla — 8],

then

IPa —Pb|| < [la —b|| < alla = Pbl| + a[b — Pal| + Blla — Pal| + I[b — Pbl[ + (1 — 2a — 2)[|a — b]|.

The classes of Generalized a-nonexpansive and Generalized (¢, f)-nonexpansive self-maps properly in-
clude the class of Suzuki nonexpansive self-maps.
Ullah et al. [30] presented a new class of nonlinear mapping.

Definition 1 A self-map P on a subset G of a Banach space is said to be («, 3,7)-nonexpansive if for all
a,beqg,
|Pa —Pb|| < alla = bl| + Blla — Pal| + ~lla — Pb]|,

where a, 3,y € RY such that o+ < 1.

The class of (o, 3,7)-nonexpansive mappings includes all these mappings, and thus, the concept of
(a, B, 7)-nonexpansive mappings is more difficult but more important than the other mappings mentioned
above. In this work we present a numerical example to illustrate our main result and then display the
efficiency of the proposed algorithm compared to different iterative algorithms in the literature. Our results
obtained in this paper improve, extend and unify some related result Ullah et al. [30].

2 Preliminaries

We need some of the known results. Suppose a Banach space 9B is equipped with ||.||. The space B will
be called a uniformly convex Banach space [10] provided that for each choice of 0 < € < 1, a real number
0 < § < 0o can be found satisfying ||%£2|| < 1 — 6, for all two elements a,b € B with ||a|| < 1, ||b|| < 1 and
[la + b|| > €. On the other side, if B satisfies the property that ||a + b|| < 2 for all two different a,b € B
with ||a|| = ||b]| = 1. Then B is called strictly convex.

The space 9B is said to be equipped with the Opial’s property [21], if and only if for any given weakly
convergent sequence, namely, {4, } in B having limit ag € B. Then for all by € B — ap, one has

limsup ||A,, — ag|| < limsup ||A,, — bol|.
n—oo

n—oo

Definition 2 ([2, 27]) Suppose {A,} denotes any bounded sequence in a closed conver subset G of a uni-
formly convex Banach space B. In this case, one denotes and defines the asymptotic radius of {A,} on the
set G by

u(G,{A,}) = inf{limsup || A4, — a||: a € G},

while the asymptotic center of {A,} on the set G is denoted and defined as

K(G.{An}) = {a € G: limsup[|A, —af| = u(G, {An})}

Furthermore, in a uniformly convex Banach space, the asymptotic center K(G,{A,}) contains exactly one
element.
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Remark 1 The set K(G,{A,}) contains only one point provided that B is a uniformly convex Banach
space. The property that K(G,{A,}) is convez is also known in the setting of weakly compact convex sets

(e.g., [23, 27] and others).
Every uniformly convex Banach space has the following important property [24].
Lemma 1 Consider two sequences { A} and {B,} in a uniformly convex Banach space B with

n—oo

limsup ||A,|| <k and limsup||B,|| < k.
n—oo

In addition, if 0 < p < p, < v <1 and lim,_ ||pt, An + (1 — p,,)Brll = &k for some k > 0. Then
lim, o || An — By|| = 0.

Proposition 1 Suppose P is nonexpansive self-map whose domain of definition is possibly a subset G of 5.
Then P is («, B8, 7)-nonexpansive.

Example 1 We now suggest a self-map P: [0,2] — [0,2] by the formula

[0 ifato,
Pa_{1 ifa=0.

Here P is discontinuous and so not nonexpansive but P is («, 5, v)-nonexpansive. Accordingly, the class
of (a, B, v)-nonexpansive self-maps properly contains as a subset the class of all nonexpansive self-maps.

Lemma 2 Suppose P is («, B,7)-nonexpansive self-map whose domain of definition is possibly a subset G
of B with a fized point, namely, p. In such a case, the estimate ||Pa — Pp|| < ||a — pl|| holds for all a € G
and p € F(P).

Now Lemma 2 suggests the following result.

Lemma 3 Suppose P is (a, 3,7v)-nonexpansive self-map whose domain of definition is possibly a subset G
of a Banach space B. Consequently, the set F(P) is closed. Also, the set F(P) is convex provided that G is
convex and the space B is strictly convex.

The next lemma shows a very basic property of the («, 5, v)-nonexpansive mappings.

Lemma 4 ([30]) Suppose P is («,B,7)-nonexpansive self-map whose domain of definition is possibly a
subset G of B. Then for all a,b € },

lla = Pb|| < ———=|la = Pal| +

1—

(1+5)
v 1 -

o
[la = b]l.
v

This is what we need. Now we prove a demiclosedness principle.

Lemma 5 ([30]) Suppose P is («,3,v)-nonexpansive self-map whose domain of definition is possibly a
subset G of B. If the given B satisfies the Opial’s property. Then the following implication holds:

An€G, ||IPA, — Aull =0 and A, — p = p e F(P).
Proof. From Lemma 4, we have

(14 8)
-~
Since a + v < 1, we see that o < 1 — ~. It follows that

A = Ppl| <

a
An = PAL| + ——|[An — pl].
| I+ 1= ol

limsup ||A,, — Ppl| < limsup ||A,, — p||.

n—oo n—oo

Since the underlying space has the Opial’s property, one get Pp = p. This finishes the proof. m



J. Shrivas 411

3 SRJ Iteration Process and its Convergence Analysis

The study of iterative scheme is an important area of research on its own [31, 32]. As we know Picard iteration
is not necessarily convergent in the case of nonexpansive operators. This example suggests that we use other
iterative methods. In the literature of fixed-point iterations, one can search for many iterative methods that
converge in the case of nonexpansive operators and also suggest better accuracy as compared to the Picard
iteration method. If G is a closed and convex subset of a Banach space, n € N and ay,, b,, ¢, € (0,1). Then
for Ay = A € G, Mann [19], Ishikawa [16], Noor [20], Agarwal [2], Abbas [1], Thakur [28] and Ullah [15]
iterative methods respectively read as follows:

{-An-l—l - CL’rL,P~A'rL + (1 - a'n)-A’ru (2)
An—i—l = anPBn + (1 - an)Ana

Bn+1 = anAn + (1 - bn)Ana

B, =b,PCp, + (1 —b,)A,, (4)
Chn = cnPA, + (1 —cp) Ay,

A1 = anPB, + (1 —an)A,,

B, =b,PA, + (1 —b,)PA,,

[Anﬂ =ap,PB, + (1 —an)A,,

Ani1 = anPCp + (1 — ay)PB,,
[Bn =b,PCp, + (1 —b,)PA,, (6)
Cn =cPA, + (1 —cn)An,
An+1=PB,,
By, = P(anCn + (1 — an)An), (7)
Cpn =0, PA, + (1 —b,)An,
Api1 = PB,,

B, =P(anPCp+ (1 —an)PA,), (8)

Cn == an-An + (1 - bn)An

It is known from [15] that the Ullah iterative method (8) converges faster than the iterative methods (2)-(7)
under certain assumptions.

A natural question arises: does there exist an iterative method that is essentially better than all of the
above iterative methods, including the Ullah iterative method (8)? To answer this question, Dashputre et
al. [12] introduced and studied the following SRJ-iterative method:
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Let G be a nonempty, closed and convex subset of a uniformly convex Banach space 8 and P: G — G
be a mapping and the sequence {A,} generated iteratively by

Api1 =P(enPB, + (1 —cn)By),

Cn - P(anPAn + (1 - an)-An)-

Now, we apply the previously established properties of («, 8,7)-nonexpansive mappings in this paper and
prove the convergence of the SRJ-iterative method (9) to the fixed point of these mappings. After this,
we then provide another example of these mappings, which essentially exceed nonexpansive mappings, to
compare the high accuracy of the SR.J iterative method in this new setting.

4 Main Results

Theorem 1 Let P: G — G be a («, B,7)-nonexpansive mapping defined on a nonempty closed convex subset
G of a uniformly convexr Banach space B such that F(P) # 0. If {A,} is a sequence generated by (9). Then
lim,, o || An — pl|| exists for all p € F(P).

Proof. Let p € F(P). By Lemma 2, we have

||Cn - p” ||P((1 - aTL)A’rL + a'nPAn) - pH
(1 = an)|An = pll + an|[PCp, — pl|
(1 = an)||An = pl| + anl[An — pl|

|lAn = pll. (10)

INIAIA

Using Lemma 2 and (10), we get

1By — pl|

[[P((1 = bn)Cr + b, PCr) — pl|

(1 = ba)[ICr = pl| + bn|[PCr — p

(1 =0)lICr = pll + bul[Cr = pl|

(1= bn)[An = pl| + b | An — pl]

14, — gl (11)

VAN VAN VAN VAN

Using Lemma 2, (10) and (11), we get

[[P((1 = en)yn + caPyn), ol

(1 = e)lIBn = pl| + cul[PBn — pl|

(1= ca)l[Bn = pll + callBn — pl|

(1 —ca)llAn = pl| + cnllAn — pl|

|[An — pl|- (12)

[ An+1 = pl|

VAN VAN VAN VAN

Thus, {||.A,, —p||} is a non-increasing sequence of reals which is bounded below by zero and hence convergent.
Therefore, lim,, . || A, — pl| exists Vp € F(P). m

Theorem 2 Let P: G — G be a («, B, 7)-nonexpansive mapping defined on a nonempty closed convex subset
G of a uniformly convex Banach space B and {A,} is generated by the algorithm (9). Then F(P) # 0 if
and only if {A,} is bounded and lim, ., ||PA, — A,|| = 0.
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Proof. Suppose that F(P) # () and p € F(P).
Then by theorem 1, we see that lim,,_, ||An, — p|| exists and {A,,} is bounded. Put

lim ||A, — p|| = . (13)

By the proof of Theorem 1 and (13), we have

lim sup [|PA, —p|| < lim sup||A4, —p|| = (14)
n— oo n—oo
Again by the proof of Theorem 1 from (11), we have ||B,, — p|| < || An — p||-
Therefore,
[[Ant1 —pll = [IP((A = cn)By + caPBy) — pl|
< (I =c)lBn = pll + cnd(Pyn, p)
< (A=)l An = pl| + cal|Bn = pl|-

It follows that
[[Ant1 = pll = [[An — pl|

Cn
1Br — pl| = [[An — pl|
(1 =0)ICn = pl| + bal|Cr = pl| = [|An — pl|
[1Cn = pll = |[An = pll-

[l Ant1 = pll = [[An = pll

INININ A

So, we can get || An+1 — p|| < ||ICr — p|| and from (13), we have

r < lim inf||C, — pl|. (15)
n—oo
Hence, from (14) and (15), we obtain
r= lim [|C, —pl|. (16)

Therefore, from (16), we have

r = lim ||C, —p|| = lim |[|P((1 - a,)A, + a,PA,) — pll
< nh_)rgo(l_an)HAn_pH'i'anH,P-An_pH
< lim (1= ap)|]An — p|| + lim a,]|PA, — pl|
n—oo n—oo
< r (17)
Hence,
Tim (1 a,)[| A~ pll + anl [PA, —pl| = . (18)

Now, from (15),(18) and Lemma 1, we conclude that
lim [|PA, —A,|| = 0.

Conversely, suppose that {A4,,} is bounded and lim,, . |[|PA, — A,|| = 0 and p € K({A4,}). By Lemma 4
and Definition 2, we have

u(Pp,{An}) = lim sup|lA, —Pp

1
< tim sup | S 4 P AL+ A —
n—c0 1—7 I—v
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1
<+6> lim sup||A, — PA,|| + (a) lim sup || A, — p||
1 — ’y n—oo 1 — ’y n— oo

Jim sup || A, — pl]
u(p, {An}).

So, Pp € K(G,{A,}). As B is uniformly convex Banach space. Therefore, K(G,{A,}) consists of a single
point. Hence, Pp = p, that is the fixed point of P is nonempty. =

Sometimes the strong convergence for a certain operator is not possible in general; therefore, we need the
weak convergence in such a case. Under the following conditions, we establish the weak convergence result
for («, B, 7)-nonexpansive self-maps.

IN

Theorem 3 Let P: G — G be a (a, 3, 7)-nonexpansive mapping defined on a nonempty closed convex subset
G of a uniformly convexr Banach space B such that F(P) # 0. If {A,} is a sequence generated by (9) and
B satisfies Opial’s property, then it converges weakly to some fixed point of P.

Proof. Tt has been established in Theorem 1 that lim,,_, ||A, — p|| exists and that {A,} is bounded. Now,
since B is uniformly convex, we can find a subsequence say {A,, } of {A,} that converges weakly in G.
We establish that {.A,} has a unique weak subsequential limit in F(P). Let p and p, be weak limits of the
subsequences { A, }and {4, } of {A,} respectively. By Theorem 2, we have that lim,,_, || A, —PA,|| =0
and I — P is demiclosed with respect to zero by Lemma 5. Therefore, we have that Pp = p. Using a similar
approach, we can show that p, = Pp,. It follows from Theorem 1 that lim, . ||A, — pol| exists. Now,
suppose that p # p,. Then by the Opial condition, we have

limsup [[A, —pl| = limsup|lA,, — pl| <limsup|[A,, — pol
m—o0

n—00 m— oo

= limsup||A, — pyl| < limsup ||A,,. — pol|
r—00

n— o0

A

limsup ||A,,. — p|| < limsup ||A, — pl|-
T—00 n—oo
This is a contradiction. So p # p,. Hence, {A,} converges weakly to a fixed point of F(P) and this completes
the proof. m
The next result is related to the strong convergence, which is based on the assumption that the domain
of P is a compact set.

Theorem 4 Let P: G — G be a («, 3, 7)-nonexpansive mapping defined on a nonempty closed convex subset
G of a uniformly convex Banach space B such that F(P) # 0. If {A,} is a sequence generated by (9), then
the sequence {A,} converges strongly to some fixed point of P.

Proof. Since the set G is convex and compact, {A,} contained in G and has a convergent subsequence.
We denote this subsequence by {A,, } with a strong limit p € G, that is, lim, o |[|An,, — p||- Suppose
a=A,, and b= p, then applying Lemma 4, one has

1+ @
o, = Foll < S22, = P 1+ 12 1A, = ol (19)

L=n
By Theorem 2, lim,,, .o |[|An,, —PAp,, || = 0and also from the above lim,, .o [|An,, —p|| = 0. Accordingly,
(19) provides that A,,,, — Pp. It follows that Pp = p. By Theorem 1, lim,,_, ||A,—p|| exists. Consequently,
we have proved that p € F(P) and A,, — p. This finishes proof. =
In the following result, we drop the assumption that the domain of P is a compact set.

Theorem 5 Let P: G — G be a («, B8, 7)-nonexpansive mapping defined on a nonempty closed convex subset
G of a uniformly convex Banach space B such that F(P) # 0. Assume that {A,} is a sequence generated
by (9). If liminf, . ds(A,, F(P)) holds. Then the sequence { A, } converges strongly to some fixed point of
P.
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Proof. If the sequence { A, } converges to a point p € F(P), then

lim inf||A, —p|| =0.

So
lim [l 4, = F(P)|| = 0.
For converse part, assume that lim,_, inf || A, — F(P)|| = 0. From Theorem 1, we have
s — pll < [1An — gl for any p € F(P).
So we have,

MAnt1 = F(P)]| < || An = F(P)]|- (20)

Thus, ||A, —F(P)|| forms a decreasing sequence which is bounded below by zero as well, thus lim,, . ||A, —
F(P)|| exists. Since lim,,_, inf |[.A,, — F(P)|| = 0, we see that lim,, . || A, — F(P)|| = 0.

Now, there exists a subsequence {Ay,} of {A,} and a sequence {A;} in F(P) such that ||A,, — A;|| < &
for all j € N. From the proof of Theorem 1, we have

1
HATL]'+1 _‘Aj|| < HAnJ _Aj|| < 27

Using triangle inequality, we get

||Anj+1 - 'AJH < H‘Aj+1 - A7lj+1 || + HATL]'+1 - 'AJ”
_o1
-  9j+1 27
< 1
= 91

— 0 as j — oo.

So, {A;} is a Cauchy sequence in F(P). From Lemma 3 F(P) is closed, so {A;} converges to some p € F(P).
Again, owing to triangle inequality, we have

AR, = pll < [[An; = Ajll +[1A; = pl|-

Letting j — oo, we have {A,,} converges strongly to x € F(P). Since lim,, .o inf|[An, p) exists by Theorem
1, we observe that {A,,} converges to p € F(P). m
Now, we establish the main result of this section, which is related to the work of Senter and Dotson [25].

Theorem 6 Let P: G — G be a («, B8, 7)-nonexpansive mapping defined on a nonempty closed convex subset
G of a uniformly convexr Banach space B such that F(P) # 0. If {A,} is a sequence generated by (9) and
B satisfies condition (1). Then the sequence {A,} converges strongly to same fized point of P.

Proof. It follows from Theorem 2 the liminf,,_. [|A, — PA,|| = 0. By condition (1) of P, we have
liminf,, o d(A,, F(P)). Theorem 4 leads to the conclusions. m

5 Numerical Example

This section presents a novel example of a («a, £, v)-nonexpansive mapping and proves that it is not nonex-
pansive. In this example, we compare our strategy to various iterative approaches (see tables and graphs
below). According to the data, the SRJ-iterative approach represents a novel class of mappings that
converges quicker than the comparable iterative methods.
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Example 2 Let G =[0,1] and set P on G as:

_ %zfae[(),%),
Pa {Z ifaeli]
Case (I). If a,b € [0, 5), then
a—b a—b
— — <
[|Pa — PU|| 3 < 5 )
a—1b 2(a— %)
< 3
< =772
a—1b 2(a— %) (a—2)
< 3 3
< 1520 P2+ |1
= alla = b|[ + Blla — Pal| +7[|la = Pb]|.
Case (II). If a,b € [%, 1], then
a—b a—b
—_— = <
[|Pa — PU|| 1 < 5 '
a—b 2a — 2)
< 4
< =72
a—b 2(a— %) (a—2)
< 2 47
< |15 12 {1

= alla —b|| + Blla — Pal| + 7||a = Pb||.
Case (III). If a € [0, 1) and b € [1, 1], then

oo = [5-2<[-1
< [31-Is
N
[z b)) ey
: st

alla = bl| + Blla — Pal| + vlla = Pb|.
Case (IV).If b€ [0,3) and a € [3,1], then

a b b a
_ — Z_ < |2 -
pa-pil = |53 <[5+ 15
< |55l
- 6 2
b— 2% 6
— ( 3)‘_’_’@
2 12
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As a result, all of the preceding cases indicate that the operator P is («, 8, v)-nonexpansive.

H((a—b)—(a—g»
2

(a—3)
2
alla = bl| + Blla — Pal| + vlla = Pb|.

a=b|| ,[|2a= %)
o

K

417

By using example (2), we tried to show that the rate of convergence of the SRJ iteration is better

then some known iteration processes for («, 3, v)-nonexpansive mapping. Parameters are a,, = 1 —

_ n
b" T~ 16n+1

n
(n+5)?

Vn € N.

Table 1: Convergence of SRJ iteration (9) for fixed point 0.

. No. o f Agrawal | Thakur K SRJ
iteration
1 0.5 0.5 0.5 0.5
2 0.158481 | 0.052984 | 0.018082 | 0.001869
3 0.050654 | 0.005645 | 0.000657 | 0.000009
4 0.01619 0.000601 | 0.000023 0
5 0.005174 | 0.000064 | 0.000008 0
6 0.001653 | 0.000006 0 0
7 0.000528 0 0 0
8 0.000168 0 0 0
9 0.000054 0 0 0
10 0.000017 0 0 0

1
(2n+8)°

Clearly p = 0 is a fixed point of («, 3,7)-nonexpansive mapping. Table 1 shows that behaviour of some
iteration processes to fixed point of P for initial value 0.50. Furthermore, we have examined the influence
of parameters a,, b, and c,. For this we have considered various sets of parameters and present a study
regarding the number of iterations required. Each iteration starts with a particular initial value and the
respective number of iterations, average of the number of iterations for different initial points are given in
Figure 5. We have examined the fastness and stability of different iterations relative to above mentioned set

of parameters.

In what follows, we numerically compare our new iteration process (9) with some existing iteration

processes.

Case I: Taking, a, =

1 _ _1 )
\/ﬁ’ bn = i and Cp = P

Case II: Taking, a,, = 823_4, by, = %4—4 and ¢p, = Faigz-
Case III: Taking, a, = 7, b, = ﬁ and ¢, = (572112)'

Case IV: Taking, a, =1 —

1 _ n _ n
@ni8) On = Tengr and cn = iy
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Comparison of various iteration processes for example 2.

Iterations
Inmit. 0.25 0.50 0.75 1 Iteration Average
Value
Case 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Agarwal | 31 | 31 | 31 | 30 | 32 | 32 |32 |31 |32 |32 |32 |31 |32 |32 323130753175 | 3175 | 3175

Thakur | 16 | 16 | 16 [ 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 16 16 16 16
K 15 |14 |11 |11 |15 | 14 |11 |11 |16 | 14 |11 |11 |16 |15 [ 11 [ 11 | 12.75 | 12.75 13 13.75
SRJ 8 10 8 7 Y 10 ] 7 9 9 8 7 9 9 8 7 8.25 11 8.25 8.25

Table depicting comparison of various iteration process under distinct parameters for Example 2.

34 -
4 [ ]
2] w—
- |
30 -
28
0 26 ] —m— Agarwal
o ] —O— Thakur
5 24-_ —A—K
8 22 —v—SRJ
= i
© 20-
o -
C 18 S
(1) i
€ 169 oo
2 14 S
< i
12
10 -
] v\ /
8 - 3%
I T [ T I T [ T I T [ T [ 1
1.0 15 2.0 25 3.0 35 4.0

Set of parameters

Average no. of iterations under distinct parameters for Example 2.

The observations are given in Figures 5 and 5. We have concluded that the new iteration process (9) not
only converges faster than the known iterations but also is stable with respect to the parameters a,, b, and
¢n. From Figure 5, we also observe that the average number of iterations of the new iteration process (9) is
the smallest with respect to other processes.
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6 An Application to Volterra-Fredholm Integral Equation

In this section, we use iteration (9) to solve the following Volterra-Fredholm integral equation given by Lungu
and Rus [18]:

flz,y) =g(z,y, h / / K(z,y,u,v, f(u,v))dudv, (21)
where z,y € Ry. Let (W, ||.||]) be a Banach space. Let 7 > 0 and
= {f € GR*W)| IM(f) > 0: |f(w,y)e” ™ < M(f)}.
Now, we consider Bielecki4AZ norm on X, as follows:

1£ll- = sup (If(z,y)le” ).
z,yER4

Obviously, (X;,]|.]|-) is a Banach space (see [7]).
The following result will play a major role in proving the main result.

Theorem 7 ([18]) Suppose the following conditions are fulfilled
(A) g€ GRE x W W), K € G(RL x W, W);
(B) h: X, — X, such that
3 U > 0: [A(fi(z,y)) = h(fi(@, )| < [1fr = folle™@ ),
forall x,y € Ry and f1, fo € Xp;
(C) 31y >0: |g(z,y,u1) — g(z,y,u2)| < lgllur — ugl|, for all x,y € Ry and ur,us € W;

(D) 3 lk(z,y,u,v): |K(z,y,u,v,u1) — K(z,y,u,v,u1)| < lx(x,y,u,v)|luy — us|, for all z,y € Ry and
ur, ug € W;

(B) Ik € g(Ri,R_,’_) and
T Yy
/ / lK(.’L‘,y,u,v)eT(oﬂ-i-y)dud,U < leT(wJ"l‘/)’
0 Jo
for all z,y € R.
(F) (lglh +l) <1

Then the equation (21) has a unique solution z € Z, and the sequence of successive approrimations

frr1(z,y) = gz, y, h(fn(z, ) / / K(z,y,u,v, frn(u,v))dudv, (22)

for all n € N converges uniformly to z.
Our main result is as follows:

Theorem 8 If all the conditions from (A) to (F) in Theorem 7 are satisfied, then the equation (22) has
a unique fized point p € X, and the iteration (9) with sequence {an}, {bn} and {c,} € (0,1) such that
ZZO:O an, = 00 converges strongly to p.



420 Approximating Fixed Points for Class of Generalized Nonexpansive Operators

Proof. Let {A,} be the sequence defined by the SR.J iteration process (9) for the operator P: X, — X
defined by

P(f(z,y) = g(z,y,h / / K(z,y, u, v, f,(u,v))dudv.

We have to show that {A,} — 0 as n — co. By (9)

[[Ant1 = pll- = sup (|P(caPBn + (1 = cn)Bn)(z,y) — P(p(l’»y))‘eT(I+y))'

z,yeR 4
Now
|P(cnPBr + (1 — cn)Bn) (2, y) — Plp(z,y))]
< gz, y, M(eaPBr + (1 = ca)Bn)(2,y)) — g(x, y, h(p(z,
x oy
+|/ / K(z,y,u,v, (c, PBp, + (1 — ¢n)By)(u,v))du dvf/ / K(z,y(p(u,v))dudv|
o Jo
< lglh((enPBy + (1 = cn)Bn)(,y) — hp(z,y))|
Ty
[ IR0, (ePBy (1= B w.0) = Koyl ) dud
o Jo
< lglh”((cnpgn + ((1 = ¢n)Bn) — p||TeT(x+y)
z oy
[ el P+ (L e)Ba) ,v) = plu,o)duds
o Jo
< lglh”(CnPBn + (1 = cn)Bn) — pH'reT(gH_y)
H[|(enPBp + (1 = cn)Br) — pH'reT(Hy)
= (lglh + l)H(CnPBn + ((1 - Cn)Bn) - p||7’eT(m+y)
(lglh + DI[(cnPBr 4 (1 = cn)Bn) — pll-, (23)
and
[[(cnPBy + (1 = cn)Bn) = pll- = |lea(PBn — p) + (1 — ) (Bn — p)l|+
< elPBu = pllr + (1 = ca)l|Brn — pll-- (24)
So
IPB, = pll < sup (|PBn(z,y) — Ppla,y)le” ).
z,y€R 4
Now
|PB(x,y) — Pp(z,y)| < |9z, y, h(Bu(z,9))) — g9(z,y, h(p(z,y)))]
+|/ / K(z,y, h(By(u,v)))du dv — K(z,y, h(p, (u, v)))dudv|
< lglh(B(z,y)) — plz,y)]
z oy
+/ / |K(z,y, u,v, By (u,v) = K(x,y,u,v, p(u,v)|dudv
o Jo
Ty
< lgly||Br — pl €7 HY) +/ / lc(z, Y, u,v)| By — pldudv
o Jo
< gln||Bn — pll-€™ ") 4 1]|B, — pl| e
< (gl + DlIBy — plleT
< Uyl + DIIBn — pllr- (25)
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From equation (24) and (25), we get

(enPBp + (1 = cn)Bn) = pll < enllgly + DI[Bn = pllz + (1 = cn)lIBn = pll
(1= cu{1 = (gl + DYIIBa — - (26)

Thus, from equation (23) and (26), we obtain
[P(caPBn + (1= cn)Bn)(x,y) = Plp(, y))| < [1 = cafl = (lgln + D}[|Bn — pll--

Therefore,
(M1 = pllr < (gl + D1 = en{l = (gln + DY][|Bn = |- (27)
Similarly,
1Bn=pll- = sup (IP(buPCo+ (1= ba)Ca)(@,5) = Plolz,y)le” )
= (Ll + D1 = b {1 — (Lgln + D}IICh — pll+ (28)
From equation (27) and (28), we obtain
st = pllr < (gl + D1 = ea{l = (gln + DL = ba{L — (gln + DYIICa — pl-- (29)
Again,
o =pll- = sup (PlanPAu+ (1= an)An)(ay) = Plo(z, y)) ")
= (gl + D1 = an{l = (gl + DHI[An = ol (30)

Putting equation (29) and (30)
[ Ans1 = pll- < (Ugln +1°[1 = en{1 = Ugln + D} = b {1 = (gln + D} = an{l = (gln + DHIM. = pll- (31)
Recalling assumption (I4l5 +1) <1 and ay,, by, € (0, 1], it follows that
1 —bp{1 = (Lgln + D} — an{l — (Il + D} < 1.
Thus, equation (31) becomes.
Ant1 = pll- <[1 = en{l = (gln + DA = pll-- (32)

From equation (32), Inductively we obtain

i=n

A1 = pllr < [l Ao = pll TTIL = el = (Ul + D)} (33)

i=0
Since ¢; € (0,1] for all ¢ € N and condition (F) we have (405, +1 < 1). Thus, [1 — ¢;{1 — (Iyln +1)}] < 1. We
also know that 1 — 6 < e~ for all 6 € [0, 1]. From (33) we have

Mns1 = pllr < [l Ao = pllre o1 Uob DN i e (34

Therefore, lim, o [|A, — pl|- = 0 as Y_._ ¢; = co whenever n — oo and e~

proof. m

= 0. This completes the

7 Conclusion

In this paper, we use SRJ iteration for («, 3,~)-nonexpansive mapping in uniformly convex Banach space
$B. Our result improves results of Ullah et al. [30] in the sense of faster iteration process. Finally, we used
the SRJ iterative approach to analyze and solve the Volterra-Fredholm integral equation.
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