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Abstract

In this paper, we study Berezin number inequalities by using Hardy-Hilbert type inequality for self-
adjoint operator in reproducing kernel Hilbert spaces. Also, we give an inequality for the Berezin symbol
of self-adjoint operators in a reproducing kernel Hilbert space H = H (Θ). These results essentially
improve and extend the most known results on this topic including some results.

1 Introduction and Notations

If {am} and {bn} are two real sequences such that 0 <
∞∑
m=0

a2
m < ∞ and 0 <

∞∑
n=0

b2m < ∞, then the
Hardy-Hilbert inequality is given by

∞∑
n=0

∞∑
m=0

ambn
m+ n+ 1

< π

{ ∞∑
n=0

a2
n

∞∑
n=0

b2n

} 1
2

, (1)

where the constant factor π is the best possible (see [16]). Recently, a lot of results with applications of
Hardy-Hilbert’s inequality were obtained by mathematicians [14, 15, 20].
Let Tp : `p → `p be a linear operator such that for any non-negative sequence a = {am}∞m=1 ∈ `p, then

there exists Tpa = c = {cn}∞n=1 ∈ `p satisfying

cn = (Tpa) (n) =

∞∑
m=0

am
m+ n+ 1

, n ∈ N0 = N ∪ {0} . (2)

Suppose that H is a separable Hilbert space and T : H → H is a bounded self-adjoint semi-positive define
operator. In 2002, Zhang [32] proved the following inequality:

〈a, Tb〉2 ≤ ‖T‖
2

2

(
‖a‖2 ‖b‖2 + 〈a, b〉2

)
(3)

where 〈a, b〉 is the inner product of a and b. Since the operator Tp defined by (2) (for p = q = 2) satisfies
the condition of (3) (see [35]), we may improve (1) to the following form:

∞∑
n=0

∞∑
m=0

ambn
m+ n+ 1

<
π√
2


∞∑
n=0

a2
n

∞∑
n=0

b2n +

( ∞∑
n=0

anbn

)2


1
2

. (4)

More information about Hardy and Hardy type inequalities the readers can be found, for example, in
[7, 22, 24].
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Let R be a selfadjoint linear operator on a complex Hilbert space H. The Gelfand map establishes a ∗-
isometrically isomorphism Φ between the set C (Gp (R)) of all continuous functions defined on the spectrum
of R, denoted by Gp (R), and the C∗-algebra C∗ (R) generated by R and the identity operator 1H on H as
follows [9]:
For any f, g ∈ C (Gp (R)) and any α, β ∈ C we have

(i) Φ (αf + βg) = αΦ (f) + βΦ (g) ;

(ii) Φ (fg) = Φ (f) Φ (g) and Φ
(
f
)

= Φ (f)
∗

;

(iii) ‖Φ (f)‖ = ‖f‖ = sup
t∈Gp(R)

|f (t)| ;

(iv) Φ (f0) = 1H and Φ (f1) = R, where f0 (t) = 1 and f1 (t) = t, for t ∈ Gp (R) .

With this concept we define f (R) = Φ (f) for all f ∈ C (Gp (R)) and we call it the continuous functional
calculus for a selfadjoint operator R. If f is a real-valued continuous function on Gp (R) and R is a selfadjoint
operator, then f (t) ≥ 0 for any t ∈ Gp (R) means that f (R) ≥ 0. Furthermore, if both f and g are real-
valued functions on Gp (R) then the following important property holds:

f (t) ≥ g (t) for any t ∈ Gp (R) means that f (R) ≥ g (R)

in the operator order of B (H) .
Let Θ be an arbitrary set. Denote by F (Θ) the set of all complex valued functions on Θ. A reproducing

kernel Hilbert space (RKHS for short) on the set Θ is a Hilbert space H = H (Θ) ⊂ F (Θ) with a function
kµ : Θ×Θ→ H, which is called the reproducing kernel enjoying the reproducing property kµ := k (., µ) ∈ H
for all µ ∈ Θ and

f(µ) = 〈f, kµ〉H
holds for all µ ∈ Θ and all f ∈ H (see [25]). As it is known (see [1, 25]),

kµ (z) =

∞∑
n=0

en (µ)en (z)

for any orthonormal basis {en (z)}n≥0 of the space H (Θ) .

Let k̂µ =
kµ
‖kµ‖ be the normalized reproducing kernel of the space H. For any bounded linear operator R

on H, the Berezin symbol of R is the function R̃ defined by (see [4, 23])

R̃(µ) :=
〈
Rk̂µ, k̂µ

〉
H

(µ ∈ Θ).

The Berezin symbol is a very useful tool in studying operators on the RKHS, including Hardy, Bergman
and Fock spaces. For example, boundedness, invertibility, compactness and positivity of some operators are
characterized or related with their Berezin symbols (see [5, 17, 19, 33, 34]).
The Berezin set and Berezin number for operator R are defined by (see Karaev [17, 18])

Ber (R) := Range
(
R̃
)

=
{
R̃ (µ) : µ ∈ Θ

}
and

ber (R) := sup
{∣∣∣R̃ (µ)

∣∣∣ : µ ∈ Θ
}
,

respectively. Important results for the Berezin number of operators were obtained by authors in [2, 3, 10,
12, 26, 27].
The numerical range and numerical radius of R in B (H) are respectively defined by

W (R) := {〈Rf, f〉 : f ∈ H, ‖f‖ = 1}
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and
w (R) := sup {|〈Rf, f〉| : f ∈ H, ‖f‖ = 1} .

There is a relationship between Berezin set, Berezin number, numerical range and numerical radius as follows:

Ber (R) ⊂W (R) and ber (R) ≤ w (R) ≤ ‖R‖ .

For the numerical radius and its applications, we refer to [6, 8, 11, 21], and references therein. A fundamental
inequality for the numerical radius is the power inequality

w (Rn) ≤ w (R)
n
, n ≥ 1,

(see, e.g., [11, 13]). So, the following questions are natural:
Is it true that the above inequality is also provided for Berezin number of operators? For which operator

classes, there exists a number C > 0 such that

ber (R)
n ≤ C (ber (Rn)) for all n? (5)

Of course, an example with a nonzero nilpotent operator shows that there exists operators for which inequality
(5) does not hold.
In this paper, we study inequality (5) by using Hardy-Hilbert type inequality for self-adjoint operator

in reproducing kernel Hilbert spaces (Corollary 1 and Theorem 2). Also, we give an analog of inequality
(2) for the Berezin symbol of self-adjoint operators in a RKHS H = H (Θ) (see Theorem 1). These results
essentially improve and extend the most known results on this topic including some results of the papers
[28, 29, 30, 31].

2 Hardy-Hilbert Type Inequality for Self-Adjoint Operators, Con-
vex Functions and Berezin Number Inequalities

Now, we give an analog of inequality (4) for the Berezin symbol of self-adjoint operators on a RKHS
H = H(Θ).

Theorem 1 Let f, g be positive continuous functions on an interval ∆ ⊂ (0,∞). If R,Q : H(Θ)→H(Θ) are
self-adjoint operators on a RKHS H(Θ) with spectrum contained in ∆, then

˜f (R) g (R) (µ) +
1

2
f̃(Q) (µ) g̃ (R) (µ) +

1

2
f̃ (R) (µ) g̃(Q) (µ) +

1

3
˜f(Q)g (Q) (µ)

<
π√
2

{(
f̃2 (R) (µ) + f̃2(Q) (µ)

)(
g̃2 (R) (µ) + g̃2(Q) (µ)

)
+
(

˜f (R) g (R) (µ) + ˜f(Q)g (Q) (µ)
)2
}2

(6)

for µ, ν ∈ Θ.

Proof. Suppose that an, bn = 0 for all n ≥ 2 in inequality (4). Since an, bn ≥ 0, we have from inequality
(4) that

a0b0 +
a1b0

2
+
a0b1

2
+
a1b1

3
<

π√
2

{(
a2

0 + a2
1

) (
b20 + b21

)
+ (a0b0 + a1b1)

2
} 1

2

. (7)

Let z, w ∈ J . Since f, g ≥ 0 from hypothesis of theorem, we can put a0 = f (z), a1 = f (w), b0 = g (z),
b1 = g (w) in (7). Hence, we get

f(z)g(z) +
1

2
f(w)g(z) +

1

2
f(z)g(w) +

1

3
f(w)g(w)

<
π√
2

{(
f2 (z) + f2 (w)

) (
g2 (z) + g2 (w)

)
+ (f (z) g (z) + f (w) g (w))

2
} 1

2

(8)
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for all z, w ∈ ∆. Applying the functional calculus for R to the inequality (8), we obtain

f (R) g (R) +
1

2
f(w)g (R) +

1

2
f (R) g(w) +

1

3
f(w)g(w)

<
π√
2

{(
f2 (R) + f2 (w)

) (
g2 (R) + g2 (w)

)
+ (f (R) g (R) + f (w) g (w))

2
} 1

2

and hence

˜f (R) g (R) (µ) +
1

2
f(w)g̃ (R) (µ) +

1

2
f̃ (R) (µ) g(w) +

1

3
f(w)g(w)

<
π√
2

{(
f̃2 (R) (µ) + f2 (w)

)(
g̃2 (R) (µ) + g2 (w)

)
+
(
f̃ (R) (µ) g̃ (R) (µ) + f (w) g (w)

)2
} 1

2

for all µ ∈ Θ and any w ∈ ∆.
By applying the functional calculus for Q to the inequality (because Q is self-adjoint operator), we get

˜f (R) g (R) (µ) +
1

2
f(Q)g̃ (R) (µ) +

1

2
f̃ (R) (µ) g(Q) +

1

3
f(Q)g(Q)

<
π√
2

{(
f̃2 (R) (µ) + f2 (Q)

)(
g̃2 (R) (µ) + g2 (Q)

)
+
(

˜f (R) g (R) (µ) + f (Q) g (Q)
)2
} 1

2

.

Therefore, we have from above inequality that

˜f (R) g (R) (µ) +
1

2
f̃(Q) (µ) g̃ (R) (µ) +

1

2
f̃ (R) (µ) g̃(Q) (µ) +

1

3
˜f(Q)g (Q) (µ)

<
π√
2

{(
f̃2 (R) (µ) + f̃2(Q) (µ)

)(
g̃2 (R) (µ) + g̃2(Q) (µ)

)
+
(

˜f (R) g (R) (µ) + ˜f(Q)g (Q) (µ)
)2
} 1

2

for all self-adjoint operators R,Q ∈ B (H) and all µ, ν ∈ Θ. This gives the desired result.

Corollary 1

(ber (R))2 <

[
2π − 4

3

]
ber
(
f2 (R)

)
for any self-adjoint operator R ∈ B (H) with spectrum contained in ∆.

Proof. We particularly obtain from inequality (6) for Q = R, g = f and ν = µ that

f̃2 (R) (µ) +
1

2

[
f̃ (R) (µ)

]2
+

1

2

[
f̃ (R) (µ)

]2
+

1

3
f̃2 (R) (µ)

<
π√
2

{
4
(
f̃2 (R) (µ)

)2

+ 4
(
f̃2 (R) (µ)

)2
} 1

2

and thus [
f̃ (R) (µ)

]2
<

[
2π − 4

3

]
f̃2 (R) (µ)

for all µ ∈ Θ. Since f̃ (R) (µ) ≥ 0
(
because R̃ (µ) is a real number for all µ ∈ Θ

)
and f̃2 (R) (µ) ≥ 0, we

have from above inequality,

sup
µ∈Θ

[
f̃ (R) (µ)

]2
<

[
2π − 4

3

]
sup
µ∈Θ

f̃2 (R) (µ)

for all µ ∈ Θ. This inequality clearly gives that

(ber (R))2 <

[
2π − 4

3

]
ber
(
f2 (R)

)
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for any self-adjoint operator R ∈ B (H) with spectrum contained in ∆, which proves the theorem.
Now, we give an Berezin number inequality for self-adjoint operators and convex functions on a RKHS

H = H(Ω).

Theorem 2 Let f : ∆ → (0,∞) be a convex and continuous function and R : H(Θ)→H(Θ) be self-adjoint
operator on a RKHS H(Θ) with spectrum contained in ∆. Then we have

[f(ber (R))]
2
<

(
π − 1

6

)
ber
(
f2 (R)

)
.

Proof. We know from inequality (8) that

f(z)g(z) +
1

2
f(w)g(z) +

1

2
f(z)g(w) +

1

3
f(w)g(w)

<
π√
2

{(
f2 (z) + f2 (w)

) (
g2 (z) + g2 (w)

)
+ (f (z) g (z) + f (w) g (w))

2
} 1

2

(9)

for all z, w ∈ ∆. By putting z = R̃ (µ) in (9), we have that

f(R̃ (µ))g(R̃ (µ)) +
1

2
f(w)g

(
R̃ (µ)

)
+

1

2
f
(
R̃ (µ)

)
g(w) +

1

3
f(w)g(w)

<
π√
2

{(
f2
(
R̃ (µ)

)
+ f2 (w)

)(
g2
(
R̃ (µ)

)
+ g2 (w)

)
+
(
f
(
R̃ (µ)

)
g
(
R̃ (µ)

)
+ f (w) g (w)

)2
} 1

2

for all µ ∈ Θ and any w ∈ ∆. By applying the functional calculus for Q to the inequality (because Q is
self-adjoint operator), we get

f
(
R̃ (µ)

)
g
(
R̃ (µ)

)
+

1

2
f (Q) g

(
R̃ (µ)

)
+

1

2
f
(
R̃ (µ)

)
g(Q) +

1

3
f(Q)g(Q)

<
π√
2

{(
f2
(
R̃ (µ)

)
+ f2 (Q)

)(
g2
(
R̃ (µ)

)
+ g2 (Q)

)
+
(
f
(
R̃ (µ)

)
g
(
R̃ (µ)

)
+ f (Q) g (Q)

)2
} 1

2

and hence

f
(
R̃ (µ)

)
g
(
R̃ (µ)

)
+

1

2
f̃ (Q) (ν) g

(
R̃ (µ)

)
+

1

2
f
(
R̃ (µ)

)
g̃ (Q) (ν) +

1

3
˜f (Q) g (Q) (ν)

<
π√
2

{(
f2
(
R̃ (µ)

)
+ f̃2 (Q) (ν)

)(
g2
(
R̃ (µ)

)
+ g̃2 (Q) (ν)

)
+
(
f
(
R̃ (µ)

)
g
(
R̃ (µ)

)
+ ˜f (Q) g (Q) (ν)

)2
} 1

2

. (10)

By considering power functions and convexity of f , g, we get

f
(
Q̃ (ν)

)
≤ f̃ (Q) (ν) , g

(
Q̃ (ν)

)
≤ g̃ (Q) (ν) (11)

and
f2
(
R̃ (µ)

)
≤ f̃2 (R) (µ) and g2

(
R̃ (µ)

)
≤ g̃2 (R) (µ) . (12)
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By putting (11) and (12) in (10), we get @@@

f
(
R̃ (µ)

)
g
(
R̃ (µ)

)
+

1

2
f
(
Q̃ (ν)

)
g
(
R̃ (µ)

)
+

1

2
f
(
R̃ (µ)

)
g
(
Q̃ (ν)

)
+

1

3
˜f (Q) g (Q) (ν)

<
π√
2

{(
f̃2 (R) (µ) + f̃2 (Q) (ν)

)(
g̃2 (R) (µ) + g̃2 (Q) (ν)

)
+
(

˜f (R) g (R) (µ) + ˜f (Q) g (Q) (ν)
)2
} 1

2

(13)

for all µ, ν ∈ Θ.
We particularly obtain from inequality (13) for Q = R, g = f and ν = µ that[

f
(
R̃ (µ)

)]2
+

1

2

[
f
(
R̃ (µ)

)]2
+

1

2

[
f
(
R̃ (µ)

)]2
+

1

3
f̃2 (R) (µ)

<
π√
2

{
4
(
f̃2 (R) (µ)

)2

+ 4
(
f̃2 (R) (µ)

)2
} 1

2

and hence [
f
(
R̃ (µ)

)]2
<

(
π − 1

6

)
f̃2 (R) (µ)

for all µ ∈ Θ. Since
[
f(R̃ (µ))

]2
≥ 0 and f̃2 (R) (µ) ≥ 0, by taking supremum in the last inequality, we have,

[f(ber (R))]
2
<

(
π − 1

6

)
ber
(
f2 (R)

)
for all self-adjoint operator R and µ ∈ Θ, as required.
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