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Abstract

In this paper, the notion of minimal topological group, a generalization of topological group was
presented and obtain characterizations of minimal topological groups with their basic properties. Gen-
eralized Rough set approximation was used to model the inter-trading of industries.

1 Introduction

Topological Algebra is incorporation of an algebraic structure and a topology in which the operations are
continuous. The circumstance of generalizing topological group by generalized open sets via decomposition
of continuity and endowment of a structure [3, 4] is colossal and inevasible in the literature. The existence
and characteristics of those generalized versions rely on the coherence between those generalized open sets.
To dispense this, the theory of minimal open sets [8] and maximal open sets [2] can be used which are
independent of those generalized open sets. One of the most endowed tool to model via a topology is
the rough set approximation. Pawlak introduced the notion of Rough sets [9]. The equivalence relation
is the establishment of its object identification where the upper and lower approximation operations are
caused by equivalent relation. Pawlak Rough sets was extended to generalized rough sets by Lin [5] using
neighbourhood systems and it was utilized on decision making [7]. In this paper, minimal topological group
is defined and its characteristics are discussed.

2 Terminology

Through out this work, M connotes a group and �a topology on space M with no separation axioms assumed.
We follow mn instead of m · n for m,n ∈ M and m−1 indicates the inverse of m for m ∈ M. Let

ST = {st : s ∈ S, t ∈ T} and S−1 = {s−1 : s ∈ S}

where S,T ⊆ M. We denote Left translation, right translation and inversion by λm(a) = ma, ρm(a) = am,
i(m) = m−1 and S symmetric if S = S−1. The power set of R is notated by P(R) for a set R. The notions
int(S), cl(S) connotes the interior, closure of S in M and O(M) denotes the collection of open sets in M,
respectively. K ⊆ M is minimal-open [8] if either int(K) = ∅ or int(K) = K. The minimal-open sets are
closed under union and intersection of minimal-open with an open set is minimal open. The agglomeration of
closed (respectively, minimal-open, minimal-closed) sets is signified by C(M) (respectively, Omin(M),Cmin(M)).
For minimal interior and minimal closure we use Intmin and Clmin. A group M binded with a topology �is
denoted by the tuple (M,�). In addition, we set forth some preliminaries for the sequel.

Definition 1 The function f : M 7→ N is
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156 Minimal Topological Groups

(i) minimal-continuous if inverse image of an open set is minimal-open

(ii) minimal open if image of an open set is minimal-open

(iii) minimal-irresolute if inverse image of a minimal open set is minimal-open

Definition 2 The topological space M is

(i) minimal-irresolute if every minimal-open set of M is open.

(ii) minimal-regular if there is disjoint E,F ∈ Omin(M) such that C ⊆ E and k ∈ F for a closed set C of
M and k ∈ M \ C.

Lemma 1 The following are equivalent in a topological space M:

(i) M is minimal-regular.

(ii) There exists F ∈ Omin(M) of x such that Clmin(F) ⊆ E for E ∈ O(M) and x ∈ E.

(iii) ∩{Clmin(F) : C ⊆ F,F ∈ Omin(M)} = C for C ∈ C(M).

(iv) There exists F ∈ Omin(M) such that K ∩ F 6= ∅ and Clmin(F) ⊆ E, for K ⊆ M and E ∈ O(M) with
K ∩ E 6= ∅.

(v) There exists E,F ∈ Omin(M) such that K∩E 6= ∅, C ⊆ F and E∩F = ∅, for K 6= ∅, K ⊆ M and C ∈ C(M)
with K ∩ C = ∅.

Proof. Let E ∈ O(M) with x ∈ E. Then D = M \ E ∈ C(M) and x /∈ D. By (i), there exist F,H ∈ Omin(M)
such that x ∈ F∩D ⊆ H and F∩H = ∅. Thus, Clmin(F)∩H = ∅. So x ∈ F ⊆ Clmin(F) ⊆ E. Hence (i)⇒ (ii).

Let C ∈ C(M). Then

∩{Clmin(F) : C ⊆ F,F ∈ Omin(M)} ⊆ C

since, a closed set is minimal closed. Conversely, let x /∈ C. Then K = M \ C ∈ O(M) and x ∈ K. Then there
exists R ∈ Omin(M) such that x ∈ R ⊆ Clmin(R) ⊆ K, by (ii). Let F = M \ Clmin(R). Then C ⊆ F ∈ Omin(M)
and x /∈ Clmin(F). Thus,

∩{Clmin(F) : C ⊆ F,F ∈ Omin(M)} = C

and hence (ii)⇒ (iii).
Let K ⊆ M, E ∈ O(M) such that K ∩ E 6= ∅ and x ∈ K ∩ E. Then C = M \ E ∈ C(M) and x /∈ C. There

exists H ∈ Omin(M) such that C ⊆ H and x ∈ Clmin(H), by (iii). Let F = M \ Clmin(H). Then F ∈ Omin(M),
x ∈ F ∩ K and

Clmin(F) ⊆ Clmin(M \ H) = M \ H ⊆ E.

Thus, (iii)⇒ (iv).
Let K 6= ∅ and C ∈ C(M) such that K ∩ C = ∅. Since M \ C ∈ O(M) and K 6= ∅, there exists E ∈ Omin(M)

such that K ∩ E 6= ∅ and Clmin(E) ⊆ M \ C, by (iv). Let F = M \ Clmin(E). Then C ⊆ F ∈ Omin(M) and
E ∩ F = ∅. Hence, (iv)⇒ (v).

By the Definition 2 of minimal-regular. Hence, (v)⇒ (i).

Lemma 2 Let (M,�) be a minimal topological space.

(i) For K ∈ O(M) of xy, there exist E,F ∈ Omin(M) of x, y with EF ⊆ K if and only if f : M×M 7→ M by
f(x, y) = xy is minimal-continuous.

(ii) For ϑ ∈ O(M) of x−1, there exists Q ∈ Omin(M) of x with Q−1 ⊆ ϑ if and only if i : M 7→ M by
i(x) = x−1 is minimal-continuous.
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Proof. (I) Suppose, for K ∈ O(M) of xy, there exist E,F ∈ Omin(M) of x, y with EF ⊆ K. Let D = E× F ⊆
M ×M. Then int(D) = int(E × F) = int(E) × int(F) which is either ∅ or E × F. In both cases, int(D) is
either ∅ or D. Thus, (x, y) is an element of D ∈ Omin(M×M) and f(D) ⊆ K. Hence, for K ∈ O(M) of xy,
the inverse image D ∈ Omin(M×M) and thus f is minimal-continuous. The converse holds by reversing the
argument.

(II) Suppose, for ϑ ∈ O(M) of x−1, there exists Q ∈ Omin(M) of x with Q−1 ⊆ ϑ. Then i(Q) = Q−1 ⊆ ϑ.
Thus, i is minimal-continuous. The converse holds by reversing the argument.

3 Minimal Topological Group

Definition 3 A pair (M,�) is minimal topological group if:

� for K ∈ O(M) of xy, there exist S,T ∈ Omin(M) of x , y with ST ⊆ K.

� for S ∈ O(M) of x−1, there exists T ∈ Omin(M) of x with T−1 ⊆ S.

In a minimal topological group, multiplication and inversion are minimal-continuous (by Lemma 2).

Example 1 Consider the addition modulo group (Z3,⊕) with � = {∅, {1 , 2},Z3}. Then, Omin(Z3) =
P(Z3) \ {0} and thus (Z3,�) is a minimal topological group.

Example 2 Consider the symmetric group on three symbols S3 with � = {∅, {e, (12), (13), (23)}, S3}. Then,
(S3,�) is a minimal topological group.

Proposition 1 Let (M,�) be a minimal topological group. Then the following statements hold:

(i) K−1 ∈ Omin(M) if and only if K ∈ Omin(M).

(ii) If K ∈ O(M) and N ⊆ M, then KN and NK are in Omin(M).

Proof. (I) Let K ∈ Omin(M). Then either int(K) = K or int(K) = ∅. Suppose int(K) = K then by Definition
3.1, K−1 ∈ Omin(M). Suppose int(K) = ∅ then int(K) = ∅ = int(K−1) and so K−1 ∈ Omin(M).

(II) Let n ∈ N, a ∈ nK. Then a = nk for some k ∈ K. Now, k = n−1a and by Definition 3, there exist
E,F ∈ Omin(M) of n−1 and a such that EF ⊆ K. Thus, a ∈ F ⊆ nK and hence nK is minimal-open. Now,
NK ∈ Omin(M), since minimal-open sets are closed under union. By the same token, KN ∈ Omin(M) can be
proved.

Proposition 2 Let C ∈ C(M) be a minimal topological group M. Then aC and Ca are minimal-closed, for
a ∈ M.

Proof. Let x ∈ Clmin(aC), b = a−1x and D ∈ O(M) of b. Then there exist E,F ∈ Omin(M) of a−1 and
x in M such that EF ⊆ D, by Definition 3. Now, F ∩ aC 6= ∅, since x ∈ Clmin(aC). Let c ∈ F ∩ aC. Then
a−1c ∈ C ∩ EF ⊆ C ∩ D and so C ∩ D 6= ∅. Thus b is a limit point of C. Since C ∈ C(M) and b ∈ C, we have
x = ab and so x ∈ aC. Thus, Clmin(aC) ⊆ aC and aC = Clmin(aC), since aC ⊆ Clmin(aC) is trivial. Hence
aC ∈ Cmin(M). Proof of Ca is similar.

Theorem 1 Let K and N be subsets of minimal topological group M. Then Clmin(K).Clmin(N) ⊆ Cl(KN).

Proof. Let a ∈ Clmin(K).Clmin(N) and D ∈ O(M) of a where a = kn for some k ∈ Clmin(K) and n ∈
Clmin(N). Then there exists E,F ∈ Omin(M) containing k and n, respectively such that EF ⊆ D, by Definition
3. Since k ∈ Clmin(K) and n ∈ Clmin(N) there exist c ∈ K∩E and d ∈ N∩F. Now cd ∈ (MN)∩(EF) ⊆ KN∩D
and so KN ∩ D 6= ∅. Hence a ∈ Cl(KN).

Definition 4 A map f : S 7→ T is minimal-homeomorphism if f is bijective, minimal-continuous and
minimal-open.
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Theorem 2 Let (M,�) be a minimal topological group. Then left (right) translations and inversion are
minimal-homeomorphisms.

Proof. Let a, b ∈ M and D1 ∈ O(M) with ab ∈ D1. Then, for D1 ∈ O(M) of ab there exist E1,F1 ∈ Omin(M)
of a and b such that E1F1 ⊆ D1, by Definition 3. Thus, aF1 ⊆ D1 and left translation is minimal-continuous.
Let g ∈ M and D2 ∈ O(M) of g . Now, g can be written as g = a−1ag . Then, there exist E2,F2 ∈ Omin(M)
of a−1 and ag such that E2F2 ⊆ D2, since left translation is minimal-continuous. Hence, left translation is
minimal-homeomorphism. The proof is similar for right translations.

Let S1 ∈ O(M) a−1. Then there exists T1 ∈ Omin(M) of a such that T−11 ⊆ S1, by Definition 3. Thus, the
inversion mapping is minimal-continuous. Let S2 ∈ O(M) of a. Then there exists T2 ∈ Omin(M) of a−1 such
that T−12 ⊆ S2,since inversion is minimal-continuous. Hence the inversion is minimal-homeomorphism.

Theorem 3 Let (M,�) be a minimal topological group and Be be the base at identity e of M. Then there
exists:

(i) T ∈ Omin(M)e such that T2 ⊆ S, for S ∈ Be.

(ii) T ∈ Omin(M)e such that T−1 ⊆ S, for S ∈ Be.

(iii) T ∈ Omin(M)e such that g .T ⊆ S (T.g ⊂ S), for S ∈ Be, g ∈ S.

Proof. (I) Let S ∈ Be . Then S ∈ O(M) of e. Then there exist O,P ∈ Omin(M) of e such that OP ⊆ S, by
Definition 3. Let T ∈ {O,P} such that T2 ⊆ S.

(II) Let S ∈ Be . Then S ∈ O(M) of e. Then, there exists T ∈ Omin(M) of e such that T−1 ⊆ S, since
inversion is minimal-continuous on M.

(III) Let S ∈ Be and g ∈ S. Now, g = g .e (g = e.g). Then there exist P ∈ Omin(M) of g and T ∈ Omin(M)
of e such that PT(TP) ⊆ S, by Definition 3. Thus, there is a T ∈ Omin(M)e such that gT ⊆ S (Tg ⊆ S), for
g ∈ S.

Theorem 4 Let (M,�,P) be a minimal topological group and K a subgroup of M.

(i) If S ∈ O(M) and S ⊆ K,S 6= ∅ then K ∈ Omin(M).

(ii) An open subgroup K of M is minimal-closed and itself is a minimal topological group.

Proof. (I) Suppose S ∈ O(M) and S ⊆ K,S 6= ∅. Then, Sm ∈ Omin(M) for m ∈ M, by Proposition 1. Then
K = ∪m∈KSm ∈ Omin(M), since minimal-open sets are closed under union.

(II) Let K be an open subgroup of M. Then γ = {Kai : ai ∈ M} is the family of right cosets of K which
is disjoint minimal-open covering of M. Thus, M = ∪ai∈MKai and so Kai =

(
∪aj 6=ai∈MKaj

)c
. Therefore an

element of γ is both minimal-open and minimal-closed. In particular, K = Ke is minimal-closed in M. Now,
We have to show that for a, b ∈ K and D ∈ O(K) of ab−1 in K, there exist S ∈ Omin(K) of a and T ∈ Omin(K)
of b such that ST−1 ⊆ D. There exist E ∈ Omin(M) of a and F ∈ Omin(M) of b such that EF−1 ⊆ D, by
Definition 3. The sets S = K ∩ E,T = K ∩ F ∈ Omin(M), since K ∈ O(M). Thus, ST−1 ⊆ EF−1 ⊆ D.

Theorem 5 Let M and S be minimal topological groups, S minimal irresolute and f be a homomorphism
which is minimal-irresolute at identity eM. Then f is minimal-irresolute.

Proof. Let a ∈ M and E ∈ Omin(S) with f (a) = b ∈ E. Since S is minimal irresolute, E ∈ O(S). Thus
b−1E ∈ Omin(S) with eS ∈ b−1E. Then there exists F ∈ Omin(M) of eM such that f (F) ⊆ b−1E, since f
is minimal-irresolute at eM. It follows that f (aF) = f (a)f (F) ⊆ E, by f is homomorphism and hence f is
minimal-irresolute.

Theorem 6 Let M be a minimal topological group with base Be at identity e such that for S ∈ Be there is
ϑ ∈ O(M) of e which is symmetric with ϑ2 ⊆ S. Then M satisfies minimal-regularity at e.
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Proof. Let S ∈ O(M) with e ∈ S. By hypothesis, there is ϑ ∈ O(M) of e which is symmetric with ϑ2 ⊆ S.
Let a ∈ Clmin(ϑ). Then aϑ ∈ Omin(M) of a, and aϑ ∩ ϑ 6= ∅. Thus, there exist b, c ∈ ϑ with c = ab and so
a = cb−1 ∈ ϑϑ−1 = ϑϑ ⊆ S. Thus Clmin(ϑ) ⊆ S.

Definition 5 A minimal topological group M is minimal-connected if it is impossible to split M as union of
two disjoint non-void minimal-open sets in M.

Theorem 7 Let M be a minimal topological group which is minimal irresolute and K be a subgroup of M. If
K, M/K are minimal-connected, then M is minimal-connected.

Proof. Suppose M is not minimal-connected. Assume M = E ∪ F with E,F 6= ∅,E ∩ F = ∅,E,F ∈ Omin(M).
Now, coset of K is a subset of either E or F, since K is minimal-connected. Thus,

M/K = {aK : aK ⊆ E} ∪ {aK : aK ⊆ F} = {aK : a ∈ E} ∪ {aK : a ∈ F}

and so M/K is not minimal connected, a contradiction. Thus, M is minimal-connected.

Theorem 8 Let M be a minimal topological group which is minimal-connected and minimal irresolute with
identity e. If S ∈ Omin(M) of e, then M is induced by S.

Proof. Let S ∈ Omin(M) of e. Denote Sn = s1.s2....sn where si ∈ S,n ∈ N. Let T = ∪∞n=1S
n . Since

Sn ∈ Omin(M) for all n ∈ N, T ∈ Omin(M). Now, let a ∈ Clmin(T). Since aS−1 ∈ Omin(M) of a, T∩ aS−1 6= ∅.
Let b ∈ T ∩ aS−1. Then b = a.s−1 for some s ∈ S, since b ∈ aS−1. Also, b ∈ Sn for some n ∈ N since b ∈ T
and so b = s1s2...sn with si ∈ S. Now, a = s1s2...sn.s. Thus, a ∈ Sn+1 ⊆ T. and hence T ∈ Cmin(M). Since
M is minimal-connected with T ∈ Omin(M) and T ∈ Cmin(M), we see that T = M. Thus, M is induced by S.

Theorem 9 If M is a minimal topological group which is minimal-connected and minimal irresolute with H,
a discrete invariant subgroup of M, then H ⊆ Z(M), with Z(M) indicates the center of M.

Proof. Suppose H = {e}, then it is obvious. Suppose H 6= {e}. Let h 6= e ∈ H. Then, by discreteness of
H there is D ∈ Omin(M) of h with D ∩ H = {h}. Now, E,E.h ∈ Omin(M) of e and h with (E.h).E−1 ⊆ D.
Let b ∈ E be arbitrary. Since H is an invariant, b.H = H.b. Then b.h ∈ H.b and so b.h.b−1 ∈ H. Also,
b.h.b−1 ∈ EhE−1 ⊆ D. Therefore, b.h.b−1 ∈ D ∩ H = {h} which implies b.h.b−1 = h. Thus, b.h = h.b for
b ∈ E. Since En with n ∈ N covers M and M is minimal-connected then a = b1.b2...bn where b1, b2, ..., bn ∈ E
and n ∈ N. Since h commutes with every element of E,

a.h = b1.b2....bn.h = b1.b2....h.bn = · · · = b1.h.b2....bn = h.b1.b2....bn = h.a.

Hence h ∈ H and h ∈ Z(M). Since h is arbitrary, H ⊆ Z(M).

4 Mathematical Modelling via Rough Sets

A country’s economic growth rely on the decision changes of the sectors of an Industry and the decision
making depends on the choices and availability. Let M = {�1,�2, . . . ,�7} be a collection of industries and
K be the group of self trading relationships on M. Then K is a group under the composition of functions.
Let �be the topology generated by minimal neighbourhood of �′is. Then, (K,�) is a minimal topological
group.

Industries �1 �2 �3 �4 �5 �6 �7 Grown
�1 × X X × X × X Yes
�2 X X × × X × X Yes
�3 X × × X × X × No
�4 × X X × × X × Idle
�5 X × × X X X × Yes
�6 × X X X × × X No
�7 X × X X X × × Idle
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From the above table, we obtain

V (�1) = {�2,�3,�5,�7}, V (�2) = {�1,�2,�5,�7},

V (�3) = {�1,�4,�6}, V (�4) = {�2,�3,�6},
V (�5) = {�1,�4,�5,�6}, V (�6) = {�2,�3,�4,�7}

and
V (�7) = {�1,�3,�4,�5}.

Now, we define the relation R by �i ∼ �j if |V (�i) ∩ V (�j)| ≥ 2. Then,

R = {(�1,�1), (�1,�2), (�1,�4), (�1,�6), (�1,�7), (�2,�1), (�2,�2), (�2,�5), (�2,�6),

(�2,�7), (�3,�3), (�3,�5), (�3,�7), (�4,�1), (�4,�4), (�4,�6), (�5,�2), (�5,�3),

(�5,�5), (�5,�7), (�6,�1), (�6,�2), (�6,�4), (�6,�6), (�6,�7), (�7,�1), (�7,�2),

(�7,�3), (�7,�5), (�7,�6), (�7,�7)}.

Now, the minimal neighbourhoods of elements of M are

< �1 >= {�1,�2,�4,�6,�7},

< �2 >= {�1,�2,�5,�6,�7},
< �3 >= {�3,�5,�7},
< �4 >= {�1,�4,�6},

< �5 >= {�2,�3,�5,�7},
< �6 >= {�1,�2,�4,�6,�7}

and
< �7 >= {�1,�2,�3,�5,�6,�7}.

Case 1: Industries which are Grown S = {�1,�2,�5}. Then the upper, lower approximations and
accuracy of S are given by US = M, LS = {∅} and Ω(S) = 0

7 = 0.

Removing
attribute �j

Upper
Approximation

Lower
Approximation

Accuracy Dispensability

�1 �1,�2,�3,�5,�6,�7

∅ 0 No

�2

M�3

�4

�5 �1,�2,�4,�5,�6,�7

�6 M
�7

Case 2: Industries which are not Grown S = {�3,�6}. Then the upper, lower approximations and
accuracy of S are given by US = M, LS = {∅} and Ω(S) = 0

7 = 0.

Removing
attribute �j

Upper
Approximation

Lower
Approximation

Accuracy Dispensability

�1 M

∅ 0 No

�2

�3 �1,�2,�4,�6,�7

�4 M
�5

�6 �3,�5,�7

�7 M
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Case 3: Industries which are Idle S = {�4,�7}. Then the upper, lower approximations and accuracy
of S are given by US = M, LS = {∅} and Ω(S) = 0

7 = 0.

Removing
attribute �j

Upper
Approximation

Lower
Approximation

Accuracy Dispensability

�1

M

∅ 0 No

�2

�3

�4 �1,�2,�3,�5,�6,�7

�5 M
�6

�7 �1,�4,�6

In all the above three cases, the accuracy on removal of attributes does not change and so there will be
no change in the current following policies of the Industries.

5 Conclusion

In this article, we present the notion of generalized topological group by minimal open sets and also proved
some characterizations. We observe that, endowment of such approach will bestow generalized topological
groups with ambivalent properties. Similar generalized version of topological groups were discussed in [6, 7].
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