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Abstract

In this paper, we obtained results regarding the location of the zeros of quaternionic polynomials and
the bound so obtained is without any restriction on the coeffi cients of the polynomial. An analogous
result of Cauchy’s classical result for the zeros of complex polynomial has been derived for quaternions.

1 Introduction

The study of the distribution of zeros of polynomials indeed holds a significant place in the history of mathe-
matics, fostering theoretical advancements with broad applications. Limiting polynomials serve as a valuable
tool for understanding zero behavior, particularly when traditional methods encounter diffi culties. Pioneers
like Gauss and Cauchy made seminal contributions to this field, laying the groundwork for subsequent devel-
opments. The introduction of complex numbers and their geometric interpretation marked a pivotal moment
in this domain’s evolution. Complex analysis, in particular, provided powerful tools for understanding the
distribution of zeros and their behavior. Cauchy’s classical result [2] on the distribution of zeros of complex
polynomials is a cornerstone of this area of study. His theorem, elegantly phrased below, offers insights into
the arrangement of zeros within the complex plane and remains foundational in contemporary mathematical
analysis.

Theorem 1 If p(z) =
∑n
v=0 avz

v is a polynomial of degree n, then all the zeros of p lie in

|z| < 1 + max
1≤v≤n−1

∣∣∣av
an

∣∣∣.
The exploration of bounds for polynomial zeros represents a fundamental aspect of mathematical analysis,

offering insights into the behavior of polynomial functions across the complex plane. While numerous results
exist in the literature, Theorem 1 stands out for its remarkable ease of computation and its applicability
without imposing restrictions on the polynomial coeffi cients. Indeed, the study of polynomial zeros, whether
with or without constraints on coeffi cients, has garnered significant attention. The continuous relationship
between the zeros and the coeffi cients of a polynomial underscores the complexity inherent in deriving
precise bounds. Given this intricate relationship, imposing restrictions on polynomial coeffi cients often
proves beneficial in attaining sharper bounds on zero locations. In this direction, the following elegant result
on the location of zeros of a polynomial with restricted coeffi cients is known as Eneström-Kakeya Theorem
(see [4], [5], [6]) which states that:

Theorem 2 If p(z) =
∑n
v=0 avz

v is a polynomial of degree n such that 0 < a0 ≤ a1 ≤ ... ≤ an, then all the
zeros of p lie in |z| ≤ 1.

In literature (see [5], [6]), there exists several generalizations and refinements of Theorem 1. By leveraging
Theorem 1’s computational simplicity and its lack of coeffi cient restrictions, mathematicians gain a powerful
tool for analyzing polynomial zeros effi ciently and effectively. This theorem’s ability to provide accurate
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bounds without cumbersome computational burdens renders it invaluable in both theoretical investigations
and practical applications and it will be interesting and useful if we shall be able to extend Theorem 1 to
the class of quaternionic polynomials. The aim of this paper is to present an extension to the quaternion
polynomials of some known results related to Cauchy’s Classical theorem.

Background: With the interpretation of the complex numbers as a two-dimensional number system, Sir
Rowan William Hamilton spent years trying to find a three dimensional number system. He failed at this,
however he was fortunate in succeeding to find a four dimensional number system on 16th of October-1843.
This number system is the quaternions which we denote as H in honour of Hamilton. We shall use the
standard notation

H = {α+ βi+ γj + δk|α, β, γ, δ ∈ R}

where i, j, k satisfy i2 = j2 = k2 = ijk = −1. The quaternions are the standard example of non-commutative
division ring and also forms a four dimensional vector space over R with {1, i, j, k} as a basis.
For q = α+ βi+ γj + δk ∈ H, the real part of q is α and β, γ, δ are the imaginary parts. The conjugate

is q∗ = α− βi− γj − δk and modulus is

|q| =
√
qq∗ =

√
α2 + β2 + γ2 + δ2.

The modulus is then a norm on H. For r > 0, we define the ball B(0, r) = {q ∈ H | |q| < r}.
We define the indeterminate for a quaternionic polynomial as q. Without commutativity we are left with

the polynomial aqn and the polynomial a0qa1q · · · qan, where a = a0a1 · · · an, as different. To alleviate this
problem, we adopt the standard that polynomials have indeterminate on the left and coeffi cients on the right

so that we have the quaternionic polynomial p1(q) =
m∑
l=0

qlal. For such a p1 and p2(q) =
n∑
l=0

qlbl, the regular

product of p1 and p2 is defined by

(p1 ∗ p2) (q) =
n,m∑
i,j=0

qi+jaibj .

If p1 has real coeffi cients then so called ∗ multiplication coincides with the usual point-wise multiplication.
One should note that the product rule ∗ is associative and not commutative, in general. The absence of
commutativity leads to a behaviour of polynomials rather unlike their behaviour in the real or complex case.
For example, a real or complex polynomial of degree n can have at most n zeros, This follows from the
Factor theorem which states that a being a zero of p(z) is equivalent z− a being a divisor of p(z). However,
the Factor Theorem only holds in a commutative ring (see Theorem III. 6.6 of [1]). In the Quaternion case,
the second degree polynomial q2 + 1 has an infinite number of zeros namely q0 = i, j, k and all those given
by w0 = h−1q0h ∀h ∈ H.

2 Main Results

Let

Pn :=

{
p : p(q) =

n∑
l=0

qlal, q ∈ H
}

denote the set of quaternionic polynomials with quaternion coeffi cients al ∈ H, 0 ≤ l ≤ n. In general, an nth
degree quaternionic polynomial has infinite number of zeros and to locate all those zeros will be interesting. In
this direction, Carney et al. [3] proved the following extension of Theorem 2 for the quaternionic polynomial
p ∈ Pn. More precisely they proved the following result:

Theorem 3 If p ∈ Pn is a quaternionic polynomial of degree n with real coeffi cients satisfying 0 < a0 ≤
a1 ≤ ... ≤ an, then all the zeros of p lie in |q| ≤ 1.
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Recently, number of results have been obtained by various authors regarding the location of zeros of
quaternionic polynomials (see [7], [8], [9]) and have extended various results of zeros of complex polynomial
to quaternions. In this paper, we will prove the following result which extends Theorem 1 to the quaternionic
polynomials and gives a bound for the zeros of quaternionic polynomial without any restriction on the
coeffi cients:

Theorem 4 All the zeros of the quaternion polynomial p ∈ Pn of degree n lie in |q| < 1 + M where

M = max1≤l≤n

∣∣∣an−lan

∣∣∣.
Instead of proving Theorem 4, we prove following result for quaternionic polynomials with quaternionic

coeffi cients which refines the Theorem 4.

Theorem 5 All the zeros of the quaternion polynomial p ∈ Pn of degree n lie in |q| < [(1 +M)n − 1]
1
n ,

where M is given in Theorem 4.

Now [(1 +M)n − 1]
1
n < 1+M , if (1+M)n− 1 < (1+M)n, which is true, therefore Theorem 5 provides

better bound than Theorem 4. Note that Theorem 3 holds for class of quaternionic polynomials with positive
coeffi cients satisfying monotonicity , however Theorem 5 is true for all quaternionic polynomials without any
restriction on the coeffi cients.

3 Lemma

Lemma 1 For λ1, λ2, · · · , λn ∈ H such that
n∑
l=1

|λl| ≤ 1, all the zeros of nth degree polynomial p ∈ Pn lie in

the region S =
{
q ∈ H|r1 ≤ |q| ≤ r2

}
, where

r1 = min
1≤l≤n

∣∣∣∣∣λl a0al
∣∣∣∣∣
1
l

and r2 = max
1≤l≤n

∣∣∣∣∣ 1λl an−lan

∣∣∣∣∣
1
l

.

Proof. From the definition of r2, we have for all 1 ≤ l ≤ n∣∣∣an−l
an

∣∣∣ ≤ |λl|rl2
and hence

n∑
l=1

∣∣∣an−l
an

1

rl2

∣∣∣ ≤ n∑
l=1

|λl|. (1)

As quaternions do not satisfy commutative property, we have

p(q) = qnan + q
n−1an−1 + q

n−2an−2 · · ·+ qa1 + a0

= qn
(
1 +

1

q

an−1
an

+
1

q2
an−2
an

+ · · ·+ 1

qn−1
a1
an
+
1

qn
a0
an

)
an. (2)

Since modulus of an quaternion is real and real numbers do commute, we obtain from (2)

|p(q)| =
∣∣∣∣qn(1 + 1q an−1an

+
1

q2
an−2
an

+ · · ·+ 1

qn−1
a1
an
+
1

qn
a0
an

)
an

∣∣∣∣
≥ |qn|

(
1−

∣∣∣1
q

an−1
an

+
1

q2
an−2
an

+ · · ·+ 1

qn−1
a1
an
+
1

qn
a0
an

∣∣∣)|an|
≥ |qn|

(
1−

{∣∣1
q

∣∣∣∣an−1
an

∣∣+ ∣∣ 1
q2
∣∣∣∣an−2
an

∣∣+ · · ·+ ∣∣ 1

qn−1
∣∣∣∣ a1
an

∣∣+ ∣∣ 1
qn
∣∣∣∣ a0
an

∣∣∣∣∣}|an|
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=
∣∣qn∣∣∣∣an∣∣{1− n∑

l=1

∣∣∣an−l
an

∣∣∣ 1|q|l
}
.

Now for |q| > r2 so that 1
|q| <

1
r2
, we obtain from above

|p(q)| > |qn| |an|
{
1−

n∑
l=1

∣∣∣∣an−lan

∣∣∣∣ 1rl2
}
.

Using inequality (1) and noting the hypothesis
n∑
l=1

|λl| ≤ 1, we obtain for |q| > r2

|p(q)| >
∣∣qn∣∣∣∣an∣∣{1− n∑

l=1

|λl|
}
≥ 0.

This implies that |p(q)| > 0 for |q| > r2, consequently all the zeros of p(q) lie in |q| ≤ r2. This proves the
second part of Lemma 1.
We shall now prove first part of the Lemma 1. If a0 = 0, then r1 = 0. Therefore, there is nothing to

prove and in this case Lemma 1 is proved completely. So we let a0 6= 0. Consider the reciprocal polynomial
R(q) = qn ∗ p( 1q ). Since q

n is an quaternionic polynomial of degree n with real coeffi cients, we have by the
definition of regular product ∗

R(q) = qn ∗ p(1
q
) = qna0 + q

n−1a1 + · · ·+ qan−1 + an.

By second part of the Lemma 1, all the zeros of R(q) lie in

|q| ≤ r2 = max
1≤l≤n

∣∣∣∣ 1λl ala0
∣∣∣∣ 1l = max

1≤l≤n

∣∣∣∣ 1λl 1a0al
∣∣∣∣ 1l = 1

min1≤l≤n

∣∣∣∣λla0al

∣∣∣∣ 1l
.

Replacing q by 1
q and noting that p(q) = qn ∗R( 1q ), it follows all the zeros of p(q) lie in

|q| ≥ min
1≤l≤n

∣∣∣∣λla0al
∣∣∣∣ 1l .

This proves first part of the lemma and hence the Lemma 1 is completely proved.

4 Proof of Theorem 5

For 1 ≤ l ≤ n, we take

µl =

(
(1 +M)n

(1 +M)n − 1

)(
an−l

an(1 +M)l

)
.

Since M = max1≤l≤n

∣∣∣an−lan

∣∣∣, we obtain
n∑
l=1

∣∣µl∣∣ = n∑
l=1

∣∣∣∣∣
(

(1 +M)n

(1 +M)n − 1

)(
an−l

an(1 +M)l

∣∣∣∣∣
)

≤
(

(1 +M)n

(1 +M)n − 1

) n∑
l=1

1

(1 +M)l

∣∣∣an−l
an

∣∣∣
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≤
(

(1 +M)n

(1 +M)n − 1

)
M

n∑
l=1

1

(1 +M)l

= 1.

Applying Lemma 1, it follows that all the zeros of p(q) lie in

|q| ≤ r2 = max
1≤l≤n

∣∣∣∣∣ 1µl an−lan

∣∣∣∣∣
1
l

= max
1≤l≤n

(
(1 +M)n − 1
(1 +M)n

) 1
l (
1 +M

)
= (1 +M) max

1≤l≤n

(
1− 1

(1 +M)n

) 1
l

=

[(
1 +M

)n − 1] 1
n

.

This completes the proof of Theorem 5.

5 Conclusions

The classic result of Cauchy has been extended to quaternionic polynomials and a refined bound for the
zeros of quaternionic polynomial with quaternion coeffi cients has been found without any restriction on the
coeffi cients of the polynomial.
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