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Abstract
Let r(z) be a rational function with at most n poles a1, a2, . . . , an, where |av| > 1, 1 ≤ v ≤ n.

For rational functions, we use simple but elegant techniques to strengthen generalizations of certain
results which extend some widely known polynomial inequalities to rational functions r. In return these
reinforced results, in the limiting case, lead to the corresponding refinements of the said polynomial
inequalities. In this paper we establish some inequalities that estimate the modulus of the derivative of a
rational function r(z) in the complex plane. We produce some sharper results by investigating an upper
bound of r(z) when all zeros lie in {z ∈ C : |z| ≥ k}.

1 Introduction

Let Pn denote the set of all complex polynomials p(z) of degree at most n and p′(z) is the derivative of p(z).
Let Tk =

{
z ∈ C : |z| = k

}
and Dk− and Dk+ denote the regions inside and outside Tk. For av ∈ C with

v = 1, 2, . . . , n, let

w(z) =

n∏
v=1

(z − av)

and let B(z) =
n∏
v=1

(
1− avz
z − av

)
, Rn := Rn(a1, a2, . . . , an) =

{
p(z)

w(z)
: p ∈ Pn

}
, where product B(z) is the

finite Blaschke product. Then Rn is the set of rational functions with poles a1, a2, . . . , an at most and with
finite limit at infinty. Note that B(z) ∈ Rn and |B(z)| = 1 for z ∈ T1. Throughout this paper we assume
that all poles are in Dk+, k ≥ 1.
Definitions and Notations:

1) For p(z) =
n∑
v=0

avz
v, the conjugate transpose (reciprocal) p∗ of p is defined by

p∗(z) = znp

(
1

z

)
.

Therefore, if p(z) =
n∏
v=1
(z − zv), then p∗(z) =

n∏
v=1
(1− zvz).

2) For r(z) =
p(z)

w(z)
∈ Rn, the conjugate transpose r∗ of r is defined by

r∗(z) = B(z)r

(
1

z

)
.

Note that if r(z) =
p(z)

w(z)
∈ Rn, then r∗(z) =

p∗(z)

w(z)
, hence r∗(z) ∈ Rn.
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3) For w(z) =
n∏
v=1
(z − av), we denote by b the product of roots of w(z), i.e., b = a1 × a2 × · · · × an.

4) If p(z) =
n∑
v=0

bvz
v, then p(z) is defined as

p(z) = b0 + b1z + b2z
2 + · · ·+ bnzn,

where, p(z) = p(z).

In the past few years, several papers pertaining to derivatives of rational functions with prescribed poles
have appeared in the study of rational approximation problems. Li, Mohapatra and Rodriguez [1] obtained
Bernstein-type inequalities for rational functions with prescribed poles in the Chebyshev norm on the unit
circle (for a function f defined on T1 in complex plane, we write ‖f‖ = sup

z∈T1
|f(z)|, the Chebyshev norm of

f on T1).
In 1995, Li, Mohapatra and Rodriguez [1] proved if r(z) 6= 0 in T1 ∪D1−, then for z ∈ T1 we have

|r′(z)| ≤ |B
′(z)|
2
‖r‖, (1)

whereas, if r ∈ Rn has exactly n zeros in T1 ∪D1−, then for z ∈ T1 we have

|r′(z)| ≥ |B
′(z)|
2
‖r‖, (2)

where ‖r‖ = max
z∈T1

|r(z)| and equality holds for r(z) = aB(z) + b with a, b ∈ T1.

In 1997, inequalities (1) was improved by Aziz and Shah [3] under the same hypothesis. They proved if
r ∈ Rn and r(z) 6= 0 in D1−, then for z ∈ T1,

|r′(z)| ≤ |B
′(z)|
2

(‖r‖ −m), (3)

where, m = min
z∈T1
|r(z)|. Equality holds for r(z) = B(z) + heιβ where h ≤ 1 and β is real.

Further, as a generalization of (1), Aziz and zargar [2] obtained that if r ∈ Rn and r(z) 6= 0 in Dk−,
k ≥ 1; then for z ∈ T1 we have

|r′(z)| ≤ 1
2

{
|B′(z)| − n · k − 1

k + 1

|r(z)|2
‖r‖2

}
‖r‖. (4)

Equality holds for r(z) =
(
z+k
z−a

)n
and B(z) =

(
1−az
z−a

)n
evaluated at z = 1, where a > 1, k ≥ 1.

Recently, Mir [5] refined inequality (1) by proving that if r ∈ Rn and r(z) 6= 0 in D1−, then for z ∈ T1

|r′(z)| ≤ 1
2

{
|B′(z)| − |b0| − |bt||b0|+ |bt|

|r(z)|2
‖r‖2

}
‖r‖. (5)

Equality holds for r(z) =
(
z+1
z−a

)n
and B(z) =

(
1−az
z−a

)n
evaluated at z = 1, where a > 1.

2 Main Results

In this paper, we first estimate an upper bound of the modulus of the derivative of r(z) on the unit circle
when r(z) has all the zeros in Tk ∪Dk+.
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Theorem 1 If r(z) = p(z)
w(z) ∈ Rn, where r has exactly n poles at a1, a2, . . . , an, r(z) 6= 0 in Dk−, k ≥ 1 and

p(z) =
t∑

v=0
bvz

v, then for z ∈ T1,

|r′(z)| ≤ 1
2

[
|B′(z)| −

{
n(k + 1)− 2t

k + 1
+

2

k + 1
· |b0| − k

t|bt|
|b0|+ kt|bt|

}
|r(z)|2
‖r‖2

]
‖r‖, (6)

where t is the number of zeros of r with counting multiplicity. Equality holds for r(z) = (z+k)t

(z−a)n and B(z) =(
1−az
z−a

)n
evaluated at z = 1, where a > 1, k ≥ 1.

Taking k = 1 in, (6) we get the following refinement of inequality (1).

Corollary 1 If r(z) = p(z)
w(z) ∈ Rn, where r has exactly n poles at a1, a2, . . . , an, r(z) 6= 0 in D1−, and

p(z) =
t∑

v=0
bvz

v, then for z ∈ T1,

|r′(z)| ≤ 1
2

[
|B′(z)| −

{
(n− t) + |b0| − |bn||b0|+ |bn|

}
|r(z)|2
‖r‖2

]
‖r‖, (7)

where t is the number of zeros of r with counting multiplicity and equality holds for r(z) = (z+1)t

(z−a)n and

B(z) =
(
1−az
z−a

)n
evaluated at z = 1, where a > 1.

In case p(z) is a polynomial of degree n below result deducted from Theorem 1 directly sharpens (4).

Corollary 2 If r(z) =
p(z)

w(z)
∈ Rn, where r has exactly n poles at a1, a2, . . . , an having no zeros in Dk−, k ≥

1 and p(z) =
n∑
v=0

bvz
v, then for z ∈ T1

|r′(z)| ≤ 1
2

[
|B′(z)| −

{
n(k − 1)
k + 1

+
2

k + 1
· |b0| − k

n|bn|
|b0|+ kn|bn|

}
|r(z)|2
‖r‖2

]
‖r‖. (8)

Equality holds for r(z) =
(
z+k
z−a

)n
and B(z) =

(
1−az
z−a

)n
evaluated at z = 1, where a > 1, k ≥ 1.

Remark 1 Taking k = 1, Corollary 2 reduces to inequality 5.

Next, we prove the following extension and sharpening of (3), which also provides a generalization of
Theorem 1.

Theorem 2 If r(z) = p(z)
w(z) ∈ Rn, where p(z) =

t∑
v=0

bvz
v, t ≤ n, r has exactly n poles at a1, a2, . . . , an

having no zeros in Dk−, k ≥ 1 and |b0| ≤ |c| · |bt|, then for z ∈ T1,

|r′(z)| ≤ 1
2

[
|B′(z)| −

{
n(k + 1)− 2t

k + 1
+

2

k + 1
· |b0| − k

t|bt|
|b0|+ kt|bt|

}(|r(z)| −m)2(
‖r‖ −m

)2 ](‖r‖ −m),
where t is the number of zeros of r with counting multiplicity and m = min

z∈Tk
|r(z)| and equality holds for

r(z) =
(z + k)t

(z − a)n and B(z) =
(
1−az
z−a

)n
evaluated at z = 1, where a > 1, k ≥ 1.
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Corollary 3 If r(z) = p(z)
w(z) ∈ Rn, where p(z) =

n∑
v=0

bvz
v, |b0| ≤ |c| · |bn| r has exactly n poles at

a1, a2, . . . , an having no zeros in Dk−, k ≥ 1, then for z ∈ T1,

|r′(z)| ≤ 1
2

[
|B′(z)| −

{
n(k − 1)
k + 1

+
2

k + 1
· |b0| − k

n|bn|
|b0|+ kn|bn|

}
(|r(z)| −m)2
(‖r‖ −m)2

]
(‖r‖ −m),

where m = min
z∈Tk

|r(z)|.

Taking, k = 1 and t = n in Theorem 2 below corollary is obtained .

Corollary 4 If r(z) = p(z)
w(z) ∈ Rn, where p(z) =

n∑
v=0

bvz
v, r has exactly n poles at a1, a2, . . . , an having no

zeros in D1− and |b0| ≤ |c| · |bn| then for z ∈ T1,

|r′(z)| ≤ 1
2

{
|B′(z)| − |b0| − |bn||b0|+ |bn|

· (|r(z)| −m
′)2

(‖r‖ −m′)2

}
(‖r‖ −m′),

Equality holds for r(z) = ( z+1z−a )
n and B(z) =

(
1−az
z−a

)n
evaluated at z = 1, where a > 1.

Remark 2 Let av = a > 1 ∀v = 1, 2, . . . , n. Then w(z) = (z − a)n and r(z) = p(z)
(z−a)n , so that

r′(z) =
−Dap(z)

(z − a)n+1 ,

where, Dap(z) := np(z) + (a − z)p′(z) denotes the polar derivative of a polynomial with respect to a and
generalizes the ordinary derivative in the sense

lim
|a|→∞

Dap(z)

a− z = p′(z).

Also,

B(z) =

(
1− az
z − a

)n
,

gives

B′(z) =
n(1− az)n−1(|a|2 − 1)

(z − a)n+1 .

Further, let

‖r‖ = max
z∈T1

∣∣∣∣ p(z)

(z − a)n

∣∣∣∣
be obtained at z = eιζ , 0 ≤ ζ < 2π, and

m′ = min
z∈T1
|r(z)| = min

z∈T1

∣∣∣∣ p(z)

(z − a)n

∣∣∣∣
be obtained at z = eιβ , 0 ≤ β < 2π. Then clearly,

‖r‖ = max
z∈T1

∣∣∣∣ p(z)

(z − a)n

∣∣∣∣ ≤ ∣∣∣∣ p(eιζ)

(eιζ − a)n

∣∣∣∣ ≤ max
z∈T1

|p(z)|

|(eιζ − a)n| =
‖p‖

|(eιζ − a)n|

and

m′ = min
z∈T1
|r(z)| = min

z∈T1

∣∣∣∣ p(z)

(z − a)n

∣∣∣∣ = ∣∣∣∣ p(eιβ)

(eιβ − a)n

∣∣∣∣ ≥ min
z∈T1
|p(z)|

(eιβ − a)n ≥
mp

(eιβ − a)n .

where mp = min
z∈T1
|p(z)|.
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Using, these facts in Corollary 4, we get for |a| > 1 and z ∈ T1,∣∣∣∣ Dap(z)

(z − a)n+1

∣∣∣∣ ≤ 12
{∣∣∣∣n(1− az)n−1(|a|2 − 1)(z − a)n+1

∣∣∣∣−
|b0| − |bn|
|b0|+ |bn|

(
|p(z)|/|(z − a)n| −mp/|eιβ − a|n
‖p‖/|eιζ − a|n −mp/|eιβ − a|n

)}(
‖p‖

|eιζ − a|n −
−mp

|eιβ − a|n

)
.

Now letting |a| → ∞, we get the following.

Corollary 5 If p(z) =
n∑
v=0

bvz
v ∈ Pn and p(z) 6= 0 in D1−, then for z ∈ T1,

|p′(z)| ≤ 1
2

[
n− |b0| − |bn||b0|+ |bn|

· |p| −mp

‖p‖ −mp

]
(‖p‖ −mp),

where mp = min
z∈T1
|r(z)|.

3 Lemmas

To prove above theorems, we need following lemmas. The first lemma is due to Li, Mohapatra and Rodriguez
[1].

Lemma 1 If r ∈ Rn and z ∈ T1, then

|r∗′(z)|+ |r′(z)| ≤ |B′(z)|max
z∈T1

|r(z)|.

Equality holds for r(z) = uB(z) with u ∈ T1.

Lemma 2 If xv, with v = 1, 2, . . . , n is a sequence of reals such that xv ≥ 1 for all v ∈ N, then

n∑
v=1

xv − 1
xv + 1

≥

n∏
v=1

xv − 1
n∏
v=1

xv + 1
for all n ∈ N.

Proof. The claim follows easily by induction on n. Here we omit details.

Lemma 3 ([2]) If z ∈ T1, then

<
(
z
w′(z)

w(z)

)
=
n− |B′(z)|

2
.

Lemma 4 Assume that r(z) =
p(z)

w(z)
∈ Rn, where r has exactly n poles at a1, a2, . . . , an, r(z) 6= 0 in

z ∈ Dk−, k ≥ 1 p(z) =
n∑
v=0

avz
v. Let t be the number of zeros of r with counting multiplicity. Then for

each point on z ∈ T1, with r(z) 6= 0

<
(
zr′(z)

r(z)

)
≤
[

1

1 + k

{
t− |b0| − k

t|bt|
|b0|+ kt|bt|

}
− n− |B′(z)|

2

]
.

Proof. Since r(z) has all its zeros in Tk ∪Dk+, k ≥ 1, let z1, z2, . . . , zt be the zeros (may not be distinct)
of p(z), then t ≤ n. We have

r(z) =
p(z)

w(z)
.
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This implies
zr′(z)

r(z)
=
zp′(z)

p(z)
− zw′(z)

w(z)
.

Hence,

<
(
zr′(z)

r(z)

)
= <

(
zp′(z)

p(z)

)
−<

(
zw′(z)

w(z)

)
. (9)

Now

p(z) = bt

t∏
v=1

(z − zv).

This implies
zp′(z)

p(z)
=

t∑
v=1

z

z − zv
.

Now for the points eiθ, with 0 ≤ θ ≤ 2π and p(eiθ) 6= 0, we get

<
(
eiθp′(eiθ)

p(eiθ)

)
=

t∑
v=1

<
(

eiθ

eiθ − zv

)

≤
t∑

v=1

1

1 + |zv|

≤ t

1 + k
− 1

1 + k

t∑
v=1

|zv| − k
|zv|+ k

≤ t

1 + k
− 1

1 + k

t∑
v=1

|zv|
k − 1
|zv|
k + 1

.

Since |zv|k ≥ 1, with v = 1, 2, . . . , n, and by Lemma 2, we get

<
(
eiθp′(eiθ)

p(eiθ)

)
≤ t

1 + k
− 1

1 + k

( t∏
v=1

|zv|
k − 1

t∏
v=1

|zv|
k + 1

)

=
t

1 + k
− 1

1 + k

( |b0|
kt|bt| − 1
|b0|
kt|bt| + 1

)
.

From (9), substituting above value and using Lemma 3, we get.

<
(
zr′(z)

r(z)

)
≤
[

1

1 + k

{
t− |b0| − k

t|bt|
|b0|+ kt|bt|

}
− n− |B′(z)|

2

]
.

This completes the proof.

4 Proofs of Main Results

Proof of Theorem 1. Since r(z) has no zeros in Dk−, k ≥ 1, let z1, z2, . . . , zt be the zeros (may not be
distinct) of p(z), then t ≤ n. Hence by Lemma 4, we have for z ∈ T1

2<
(
zr′(z)

r(z)

)
≤ 2
[

t

1 + k
−
{

1

1 + k
· |b0| − k

t|bt|
|b0|+ kt|bt|

+
n− |B′(z)|

2

}]
. (10)
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Note that

r∗(z) = B(z)r

(
1

z

)
= B(z)r

(
1

z

)
.

Differentiating, both sides gives

(r∗(z))′ = B′(z)r

(
1

z

)
− B(z)

z2
r′
(
1

z

)
.

Since z ∈ T1, we have z = 1/z, and so

|(r∗(z))′| = |(zB′(z)/B(z))r(z)− zr′(z)|. (11)

By ([1]) and Lemma 1, we have
zB′(z)

B(z)
=

∣∣∣∣zB′(z)B(z)

∣∣∣∣ = |B′(z)|.
Thus, from equation (11), we have

|(r∗(z))′| = ||B′(z)|r(z)− zr′(z)|.

Therefore, for z ∈ T1 and using inequality (10), we obtain.∣∣∣∣z(r∗(z))′r(z)

∣∣∣∣2 = ∣∣∣∣|B′(z)| − zr′(z)

r(z)

∣∣∣∣2
=

∣∣∣∣zr′(z)r(z)

∣∣∣∣2 + |B′(z)|2 − 2|B′(z)|<(zr′(z)r(z)

)
≥
∣∣∣∣zr′(z)r(z)

∣∣∣∣2 + |B′(z)|2 − 2|B′(z)|[ t

1 + k
−
{

1

1 + k
· |b0| − k

t|bt|
|b0|+ kt|bt|

+
n− |B′(z)|

2

}]
≥
∣∣∣∣zr′(z)r(z)

∣∣∣∣2 − 2|B′(z)|[ t

1 + k
−
{

1

1 + k
· |b0| − k

t|bt|
|b0|+ kt|bt|

+
n

2

}]
≥
∣∣∣∣zr′(z)r(z)

∣∣∣∣2 + [n(k + 1)− 2tk + 1
+

2

1 + k
· |b0| − k

t|bt|
|b0|+ kt|bt|

]
|B′(z)|.

This implies for z ∈ T1,[
|r′(z)|2 +

{
n(k + 1)− 2t

k + 1
+

2

1 + k
· |b0| − k

t|bt|
|b0|+ kt|bt|

}
|B′(z)||r(z)|2

] 1
2

≤ |(r∗(z))′|.

Above inequality becomes by Lemma 1[
|r′(z)|2 +

{
n(k + 1)− 2t

k + 1
+

2

1 + k
· |b0| − k

t|bt|
|b0|+ kt|bt|

}] 1
2

≤ ‖r‖|B′(z)| − |r′(z)|.

After manipulation, we get

|r′(z)|2 +
{
n(k + 1)− 2t

k + 1
+

2

1 + k
· |b0| − k

t|bt|
|b0|+ kt|bt|

}
≤
(
‖r‖|B′(z)| − |r′(z)|

)2
Equivalently, for z ∈ T1,

|r′(z)| ≤ 1
2

[
|B′(z)| −

{
n(k + 1)− 2t

k + 1
− 2

k + 1
· |b0| − k

t|bt|
|b0|+ kt|bt|

}
|r(z)|2
‖r‖2

]
‖r‖.

This completes the proof.
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Remark 3 We show our upper bound in Theorem 1 improves an upperbound in inequality (5) as follows.
Since t ≤ n and k ≥ 1, we get that[

n(k + 1)− 2t
k + 1

+
2

k + 1
· |b0| − k

t|bt|
|b0|+ kt|bt|

]
|r(z)|2
‖r‖2 ≥[

n(k + 1)− 2n
k + 1

+
2

k + 1
· |b0| − k

n|bn|
|b0|+ kn|bn|

]
|r(z)|2
‖r‖2 ≥

|b0| − |bn|
|b0|+ |bn|

· |r(z)|
2

‖r‖2 .

Hence,

|B′(z)| −
[
n(k + 1)− 2t

k + 1
+

2

k + 1
· |b0| − k

t|bt|
|b0|+ kt|bt|

]
|r(z)|2
‖r‖2 ≤ |B

′(z)| − |b0| − |bn||b0|+ |bn|
· |r(z)|

2

‖r‖2 .

In particular, if t = n and k = 1, then

|B′(z)| −
[
n(k + 1)− 2t

k + 1
+

2

k + 1
· |b0| − k

t|bt|
|b0|+ kt|bt|

]
|r(z)|2
‖r‖2 = |B′(z)| − |b0| − |bn||b0|+ |bn|

· |r(z)|
2

‖r‖2 .

Therefore, our upperbound in Theorem 1 improves an upperbound in inequality (5).

Proof of Theorem 2. Assume that all zeros of r ∈ Rn lie in Tk ∪Dk+, where k ≥ 1. Let m = min
z∈Tk

|r(z)|
and t be the number of zeros of r with counting multiplicity.
If r(z) has a zero on z ∈ Tk, then m = 0 and hence for every α with |α| < 1, we get r(z)−αm = r(z). In

this case Theorem 2 follows from Theorem 1 . Henceforth we assume, r(z) has no zeros on z ∈ Tk, we have
for every α with |α| < 1 that

| − αm| = |α|.m < |r(z)| for z ∈ Tk.
It follows from Rouche’s theorem that R(z) = r(z)− αm and r(z) have the same number of zeros in Dk−.
That is, for every α with |α| < 1, R(z) has no zeros in Dk−. Since R(z) 6= 0, Lemma 4 yields for z ∈ T1,

<
(
zR′(z)

R(z)

)
≤ t

1 + k
−
{

1

1 + k
· |b0 + (−1)

t+1α ·m · c| − kt|bt − α ·m|
|b0 + (−1)t+1α ·m|+ kt|bt − α ·m|

+
n− |B′(z)|

2

}
. (12)

Since |b0| ≤ |c| · |bn|, we see that
|b0| · |α| ·m ≤ |α| ·m · |c| · |bt|,

|bn| · |b0|+ |b0| · |α| ·m ≤ |bt| · |b0|+ |α| ·m · |c| · |bt|,
and

|bt|
|b0|
≥ |bt|+ |α| ·m
|b0|+ |α| · |c| ·m

.

Choosing argument of α in such a way that

|b0 + (−1)t+1 · α ·m · c| = |b0|+ |α| · |c| ·m,

we get
|bt|
|b0|
≥ |bt − α ·m|
|b0 + (−1)t+1α · c ·m|

.

Hence, it follows from inequality (12) that

<
(
zR′(z)

R(z)

)
≤ t

1 + k
−
{

1

1 + k
· |b0| − k

t|bn|
|b0|+ kt|bn|

+
n− |B′(z)|

2

}
. (13)

Note that

R∗(z) = B(z)R

(
1

z

)
= B(z)R

(
1

z

)
.
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Differentiating both sides gives

(R∗(z))′ = B′(z)R

(
1

z

)
− B(z)

z2
R
′
(
1

z

)
.

Since z ∈ T1, we have z = 1/z, and so

|(R∗(z))′| = |(zB′(z)/B(z))R(z)− zR′(z)|. (14)

By ([1]) and Lemma 1, we have
zB′(z)

B(z)
=

∣∣∣∣zB′(z)B(z)

∣∣∣∣ = |B′(z)|.
Thus from (14), we have

|(R∗(z))′| = ||B′(z)|R(z)− zR′(z)|.

Then ∣∣∣∣z(R∗(z))′R(z)

∣∣∣∣2 = ∣∣∣∣|B′(z)| − zR′(z)

R(z)

∣∣∣∣2
=

∣∣∣∣zR′(z)R(z)

∣∣∣∣2 + |B′(z)|2 − 2|B′(z)|<(zR′(z)R(z)

)
≥
∣∣∣∣zR′(z)R(z)

∣∣∣∣2 + |B′(z)|2 − 2|B′(z)|[ t

1 + k
−
{

1

1 + k
· |b0| − k

t|bt|
|b0|+ kt|bt|

+
n− |B′(z)|

2

}]
≥
∣∣∣∣zR′(z)R(z)

∣∣∣∣2 − 2|B′(z)|[ t

1 + k
−
{

1

1 + k
· |b0| − k

t|bt|
|b0|+ kt|bt|

+
n

2

}]
≥
∣∣∣∣zR′(z)R(z)

∣∣∣∣2 + [n(k + 1)− 2tk + 1
+

2

1 + k
· |b0| − k

t|bt|
|b0|+ kt|bt|

]
|B′(z)|.

where the inequality comes from (13).
This implies that for z ∈ T1,[

|R′(z)|2 +
{
n(k + 1)− 2t

k + 1
+

2

1 + k
· |b0| − k

t|bt|
|b0|+ kt|bt|

}
|B′(z)||R(z)|2

] 1
2

≤ |(R∗(z))′|, (15)

where

R∗(z) = B(z)R

(
1

z

)
= r∗(z)− αmB(z)

so that (
R∗(z)

)′
=
(
r∗(z)

)′ − αmB′(z) and R′(z) = (r(z)− αm)′ = r′(z).

Apply, these relations to (15), we obtain that,[
|r′(z)|2 +

{
n(k + 1)− 2t

k + 1
+

2

1 + k
· |b0| − k

t|bt|
|b0|+ kt|bt|

}
|B′(z)||r(z)− αm|2

] 1
2

≤ |(r∗(z))′ − αmB′(z)|. (16)

for z ∈ T1 and for α with |α| < 1.
Choosing argument of α such that

|(r∗(z))′ − αmB′(z)| = |(r∗(z))′| −m|α||B′(z)|, for z ∈ T1.

Triangle inequality yields that
|r(z)−mα| ≥ ||r(z)| −m|α||.
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Note that
||r(z)| −m|α||2 =

(
|r(z)| −m|α|

)2
and |r(z)−mα|2 ≥ (|r(z)| −m|α|)2.

Substituting above relations in (16), we get[
|r′(z)|2 +

{
n(k + 1)− 2t

k + 1
+

2

1 + k
· |b0| − k

t|bt|
|b0|+ kt|bt|

}
|B′(z)|(|r(z)| −m|α|)2

] 1
2

≤ |(r∗(z))′| −m|α||B′(z)|.

Letting |α| → 1, we get[
|r′(z)|2 +

{
n(k + 1)− 2t

k + 1
+

2

1 + k
· |b0| − k

t|bt|
|b0|+ kt|bt|

}
(|r(z)| −m|)2|B′(z)|

] 1
2

≤ |(r∗(z))′| −m|B′(z)|.

Lemma 1, implies that[
|r′(z)|2 +

{
n(k + 1)− 2t

k + 1
+

2

1 + k
· |b0| − k

t|bt|
|b0|+ kt|bt|

}
(|r(z)| −m|)2|B′(z)|

] 1
2

≤ |B′(z)|.||r|| − |r′(z)| −m|B′(z)|.

Equivalently, for z ∈ T1:

|r′(z)|2 +
[
n(k + 1)− 2t

k + 1
+

2

1 + k
· |b0| − k

t|bt|
|b0|+ kt|bt|

]
(|r(z)| −m|)2|B′(z)| ≤

[(
‖r‖ −m

)
|B′(z)| − r′(z)|

]2
.

A simple manipulation gives, for z ∈ T1

|r′(z)|2 ≤
(
‖r‖ −m

)2|B′(z)|2 + |r′(z)|2 − 2(‖r‖ −m)|B′(z)||r′(z)|
−
[
n(k + 1)− 2t

k + 1
+

2

1 + k
· |b0| − k

t|bt|
|b0|+ kt|bt|

]
(|r(z)| −m|)2|B′(z)|.

This implies

|r′(z)| ≤ 1
2

[(‖r‖ −m)2|B′(z)|
(‖r‖ −m) −

{
n(k + 1)− 2t

k + 1
+

2

1 + k
· |b0| − k

t|bt|
|b0|+ kt|bt|

}
(|r(z)| −m)2
(‖r‖ −m)2

]
.

Hence

|r′(z)| ≤ 1

2

[
|B′(z)| −

{
n(k + 1)− 2t

k + 1
+

2

k + 1
· |b0| − k

t|bt|
|b0|+ kt|bt|

}
(|r(z)| −m)2
(‖r‖ −m)2

]
(‖r‖ −m).

where t is the number of zeros of r with counting multiplicity and m = min
z∈Tk

|r(z)|.
This proves the inequality for R(z) 6= 0. Therefore, inequality holds for all z ∈ T1. This completes the

proof.
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