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Abstract

Let r(z) be a rational function with at most n poles a1, az,...,an, where |a,| > 1, 1 < v < n.
For rational functions, we use simple but elegant techniques to strengthen generalizations of certain
results which extend some widely known polynomial inequalities to rational functions r. In return these
reinforced results, in the limiting case, lead to the corresponding refinements of the said polynomial
inequalities. In this paper we establish some inequalities that estimate the modulus of the derivative of a
rational function r(z) in the complex plane. We produce some sharper results by investigating an upper
bound of r(z) when all zeros lie in {z € C: |z| > k}.

1 Introduction

Let P,, denote the set of all complex polynomials p(z) of degree at most n and p’(z) is the derivative of p(z).
Let T}, = {z eC:|z| = k} and Di_ and Dy, denote the regions inside and outside T. For a, € C with
v=12,...,n,let

n

w(z) = [[(z—a)
v=1
o1 — G,z p(2) .
and let B(z) = [[| ——— ), R, :=Ry(a1,a2,...,a,) = B :p € P, p, where product B(z) is the
v=1\ % — Qv wlz
finite Blaschke product. Then R,, is the set of rational functions with poles ay,ao, ..., a, at most and with

finite limit at infinty. Note that B(z) € R,, and |B(z)| = 1 for z € Ty. Throughout this paper we assume
that all poles are in Dy, k > 1.

Definitions and Notations:

n

1) For p(z) = > a,2Y, the conjugate transpose (reciprocal) p* of p is defined by

v=0
* n 1
p(z) =2 p(z)
Therefore, if p(z) = [] (z — 2v), then p*(2) = [] (1 — Zp2).
v=1 v=1

2) For r(z) = () € R,,, the conjugate transpose r* of r is defined by

p(2) p*(2)
w(z) w(z)
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Note that if r(z) = € R,,, then r*(z) = , hence r*(z) € R,,.
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3) For w(z) = [] (2 — ay), we denote by b the product of roots of w(z), i.e., b=ay X ag X -+ X ap,.
4) If p(z) = > b,z", then P(z) is defined as

P(z) =bo + b1z +bo2® + - + b, 2",

where, p(z) = B(2).

In the past few years, several papers pertaining to derivatives of rational functions with prescribed poles
have appeared in the study of rational approximation problems. Li, Mohapatra and Rodriguez [1] obtained
Bernstein-type inequalities for rational functions with prescribed poles in the Chebyshev norm on the unit

circle (for a function f defined on T3 in complex plane, we write || f|| = sup |f(#)|, the Chebyshev norm of
z€Ty

fonTy).
In 1995, Li, Mohapatra and Rodriguez [1] proved if 7(z) # 0 in 71 U D;_, then for z € T; we have

/ |B'(2)]
()] < ==, (1)

whereas, if » € R,, has exactly n zeros in T3 U D;1_, then for z € T} we have

IB’( )

() = @ @)

where ||| = max |r(2)| and equality holds for r(z) = aB(z) + b with a,b € T7.
z 1

In 1997, inequalities (1) was improved by Aziz and Shah [3] under the same hypothesis. They proved if
r € R, and r(z) # 0 in D;_, then for z € T1,

(Il =m), (3)
where, m = miqr} |7(2)|. Equality holds for (z) = B(z) + he*? where h < 1 and f is real.
z€T1

Further, as a generalization of (1), Aziz and zargar [2] obtained that if r € R,, and r(z) # 0 in Dj_,

k > 1; then for z € T} we have
/ 1 / k—1|r(z)\2
< —<|B -n- . 4
< GUB G = ne o o ] ()

Equality holds for r(z) = (M) and B(z) = (=2 “az) evaluated at z = 1, where a > 1, k> 1.

zZ—a z

Recently, Mir [5] refined inequality (1) by proving that if » € R,, and r( ) #0in Dy_, then for z € T}

\r’(z)| < ;{|B/(Z’)| |bO| ‘bt| |7"( )l }er (5)

[bol + [be] 1712

Equality holds for r(z) = (z+1)n and B(z) = (w)n evaluated at z = 1, where a > 1.

z—a z—a

2 Main Results

In this paper, we first estimate an upper bound of the modulus of the derivative of 7(z) on the unit circle
when r(z) has all the zeros in Tj, U Dy .
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Theorem 1 Ifr(z) = w((zz)) € R,,, where r has exactly n poles at a1,aa,...,a,, 7(2) #0 in Di_, k> 1 and

t
p(z) = > byz¥, then for z € Ty,
v=0

< - B’ — .
(=)l {' (=)l { REl T EEL o+ Rl TP

where t is the number of zeros of r with counting multiplicity. Equality holds for r(z) = M and B(z) =

~ (z—a)
(1Z:“az)n evaluated at z =1, where a > 1, k> 1.

Taking &k = 1 in, (6) we get the following refinement of inequality (1).

Corollary 1 If r(z) = 5)((22)) € R,,, where r has exactly n poles at ay,as,...,an, 7(z) # 0 in Di_, and

¢
(2) = > byzY, then for z € Ty,
v=0

— r\z 2
e < 1B {0+ e S i, @)

(z+1)*

W and

where t is the number of zeros of r with counting multiplicity and equality holds for r(z) =

B(z) = (1;_‘15)” evaluated at z =1, where a > 1.

In case p(z) is a polynomial of degree n below result deducted from Theorem 1 directly sharpens (4).

p(2)

w(z)

1 and p(z) = > byz", then for z € Ty
v=0

o (=1 2 el kb ()P
R == e S e iR )

Equality holds for r(z) = (sz)n and B(z) = (ﬂ)n evaluated at z =1, where a > 1, k> 1.

a z—a

Corollary 2 Ifr(z) = € R,,, where r has exactly n poles at a1, aq, ..., a, having no zeros in Dy_, k >

M\H

r(2) <

Remark 1 Taking k = 1, Corollary 2 reduces to inequality 5

Next, we prove the following extension and sharpening of (3), which also provides a generalization of
Theorem 1.

Theorem 2 If r(z) = Z((Z)) € R,,, where p(z) = Z byz¥, t < m, 7 has exactly n poles at ay,az,...,a,

having no zeros in Dg_, k> 1 and |by| < |c| - |be], then for z € 11,

n(k+1) — 2t 2 bo| — Kby (Ir(2)| —
< g 1561 - {1 ol =L )] el — ),
k+1 k41 [bol + Kol f () - )
where t is the number of zeros of v with counting multiplicity and m = Helljl} |r(2)| and equality holds for
2€Ty
t
r(z) = (z+ k) and B(z) = (1;_—‘1;)” evaluated at z =1, where a > 1, k> 1.

(z—a)
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Corollary 3 If r(z) = fj}(é)) € R, where p(z) = Z byz?, |bo| < |c| - |bn| T has exactly n poles at

ai,as,...,a, having no zeros in Di_, k> 1, then for z E Ty,

n(k —1) 2 |bo| — K" [bn | (Ir(2)] —m)
e BN { M e e (] e |01

where m = min |r(z)].
z2ETY

Taking, k = 1 and ¢ = n in Theorem 2 below corollary is obtained .

n
Corollary 4 Ifr(z) = 5)((?) € R, where p(z) = Y. byz", r has exactly n poles at a1, as,...,a, having no
v=0
zeros in D1_ and |bo| < |c| - |bn| then for z € Ty,
lbo| = [ba| (Ir(2)] —m')?
r'(2)] < {lB'( )= : (Il = m"),
2 lbo| + [bn| — (||7[] —m')?

Equality holds for r(z) = (2£2)" and B(z) = (122 ‘”) evaluated at z =1, where a > 1.

zZ—a zZ—a

Remark 2 Leta, =a>1 Yo=1,2,...,n. Then w(z) = (z —a)" and r(z) = P o that

Gz—a)™’

, —D,p(z
(2) = (z—cggw)l’

where, Dyp(z) := np(z) + (a — 2)p/'(2) denotes the polar derivative of a polynomial with respect to a and
generalizes the ordinary derivative in the sense

lim Lap(?:) =p'(2).
la]—o0 @ — 2
Also,
1—az\"
B =
0= (%)
gives
1—az)" (la|> - 1)
i1
(2) (z — a)ntt
Further, let
I = mae| PEL
z€Ty | (z — a)”

be obtained at z = e, 0<( < 27, and

m’ = min |r(z)| = min
z€T z€Ty

_PE
(z—a)

be obtained at z = e*®, 0 < 8 < 2n. Then clearly,

ol | 2G| | o) [ PO gy
B |G- = | — | = e o] e — a7
" (o)
min
p() | _ | pe?) | RRPE o,
m’ = min |r(z)| = min =1 = |78 = 2 7B = : —.
zeTh zeT1 | (2 — a) (e —a) (ef —a) (etf —a)

where my, = ;1;11{1 Ip(2)].
1
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Using, these facts in Corollary 4, we get for |a| > 1 and 2z € T,
ap(2) | _ 1[|n(—az)"" (af® —1)
e <2 Ga
[bo| — [bn] (|P(Z)|/|(Z —a)"| = my/le — a|"> }( el —my )
ool ol \Tpll/le = al" —my /1% —alr )\ — a7 —

Now letting |a] — oo, we get the following.

Corollary 5 Ifp(z) = > byz¥ € P, and p(z) # 0 in D1, then for z € Ty,
v=0

/ 1 { [bo| — 1bnl \pl ]
< Zln—

where m,, = ml%l [r(2)].
ze€Ty

3 Lemmas

To prove above theorems, we need following lemmas. The first lemma is due to Li, Mohapatra and Rodriguez

[1].
Lemma 1 Ifr € R, and z € Ty, then

P ()] + I (2)] < |B' ()| max |r(2)].

FEquality holds for r(z) = uB(z) with v € T}.

Lemma 2 If z,, withv=1,2,...,n is a sequence of reals such that x, > 1 for all v € N, then

U
ZZU 1 > vgl for all n e N.
= et Tz, +1

v=1

Proof. The claim follows easily by induction on n. Here we omit details. m

(-2 -1zl

Lemma 3 ([2]) If z € Th, then

_ p(?)
w(z)

n
z2€ Dy, k>1 p(z) = > ayz’. Lett be the number of zeros of v with counting multiplicity. Then for
v=

=0
each point on z € Ty, with r(z) #

0
§R(zr’(z)) < [ 1 {t— |bo| — K*|by] } n- |B/(z)]
T(Z) 1+k |b0‘ +kt|bt| 2
Proof. Since r(z) has all its zeros in T, U Dy, k> 1, let 21,29, ..., 2 be the zeros (may not be distinct)
of p(z), then t <n. We have

Lemma 4 Assume that r(2) € R, where r has exactly n poles at ai,as,...,a,, 7(2) # 0 in
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This implies
2r'(z)  2p'(z)  2w'(2)

r(z)  plz)  w(z)

Hence, , | |
()2 +28)
Now
p(z) = b Uljl(z — 2y)

This implies

Now for the points €, with 0 < § < 21 and p(e*?) # 0, we get

() 2= )

v=1
t
1
<
_;1+|zv\
__t A P Py
Tl+k L4k |tk
t |zv‘71
= tk_ 1kzlzk\ '
1+ 1+ el |
Since % >1, withv=1,2,...,n, and by Lemma 2, we get
YLzl
. ) Zol _q
%<610p/(619))< t 1 U];[1 k
eif “1+k 14k\ L .
v=1

[bo]
ot 1 (Ep ]
14k 14k\ 1ol 4q)°
From (9), substituting above value and using Lemma 3, we get.

255 = [l w5

This completes the proof. m

4 Proofs of Main Results

Proof of Theorem 1. Since r(z) has no zeros in Dy, k > 1, let z1,29,...,2: be the zeros (may not be
distinct) of p(z), then ¢ < n. Hence by Lemma 4, we have for z € T}

w55 <l et ] 10
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Note that

Differentiating, both sides gives

Since z € Ty, we have Z = 1/z, and so

(7 (2))'] = [(2B'(2)/B(2)r(2) — 21" (2)- (11)
By ([1]) and Lemma 1, we have
zB'(z) |z2B'(z)| |, B
B0) B0) |B'(2)]

Thus, from equation (11), we have

(" ()] = [IB'(2)Ir(2) — 2" (2)]-

Therefore, for z € T and using inequality (10), we obtain.

2(r*(2))" |7 ', )
@ | TP
()2 2r! (2
_ Z:(i)) +|B'(z)|2—2B’(z)|8%< r(i))>
o' (2) | NT , t 1 |bo| = K'b| | n—|B'(2)]
Z 150 | TIE@ _QB(Z”LH: - {1+k ' |b2\+kt|bt| Ty H

2 (2) |2 . ¢ 1 |bo| — Kby m
> —2|B - : -
| r(?) 1B)] 1+k 1+Ek |bo| + Kby 3

/ 2 _ ot
2r'(2) N [n(k—i—l) 2t 2 |bo|l -k bt|]|B’(z)|

>
= k+1 T+& |bol + k[b]

This implies for z € T7,

o s {HE 2 2 B o] <

Above inequality becomes by Lemma 1

1
o2 n(k+1)—2t 2 |bo| — Kf|be) ]2 , ,
. < B — .

After manipulation, we get

/ 2 ’I’L(k‘—l—l)—Zt 2 ‘bol_kt|bt| / /
. < B -
P+ { MR e b < (R @) - )

Equivalently, for z € 17,

2

N =

()] < {|B'(z) B {n(kz +1)—2¢ 2 |bo| — K[ty } |7“(z)|2} =

k+1  k+1 |bo| + kbl S |72

This completes the proof. m
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Remark 3 We show our upper bound in Theorem 1 improves an upperbound in inequality (5) as follows.
Since t <n and k > 1, we get that

{n(k +1)—2¢ 2 lbo| — Et|be| ] r(2)?

k+1 k+1 Jbo| + K be| | (72 =
[n(k+1)2n 2 [bol = K" bul ] ()7 o [Bol = [bal [r(2)*
k+1 k+1 |bo| +k™bal | (72 = [bol +[ba| |72
Hence,

[(n(k+1) =2t 2 |bo| = K'|be]] Ir(2)? bo| = [ba] [r(2)]?
B’z—n( . <|B'(2)] — LS .
L e e R T B T I R A R IR R T R

In particular, if t =n and k =1, then
[n(k+1) =2t 2 |bo| = K'[be|] |r(2)[? ool — [ba| |r(2)[?
G e o D Tyl e ] e il A G SRR
of + ko] | Il bo| + [bn| Il

Therefore, our upperbound in Theorem 1 improves an upperbound in inequality (5).

Proof of Theorem 2. Assume that all zeros of r € R,, lie in T}, U Dy, where k > 1. Let m = miTn |r(2)]
z€Ty

and t be the number of zeros of r with counting multiplicity.

If 7(z) has a zero on z € T}, then m = 0 and hence for every a with |a| < 1, we get r(z) —am =r(z). In
this case Theorem 2 follows from Theorem 1 . Henceforth we assume, r(z) has no zeros on z € T}, we have
for every o with |a| < 1 that

| — am| = |al.m < |r(z)] for z € Tk.

It follows from Rouche’s theorem that R(z) = r(z) — am and r(z) have the same number of zeros in Dj,_.
That is, for every a with |a| < 1, R(z) has no zeros in Dj,_. Since R(z) # 0, Lemma 4 yields for z € T7,

5 zR(2) < t 1 lbo + (=) a-m - c| — kt|by — o - m LR |B'(2)|
R(z) ) — 1+k 14+k  |bo+ (1) a-m|+ kt|by — a- m] 2 '

(12)

Since |bg| < |c| - |by|, we see that
[bo| - [ - m < fal-m-|c] - [bi],
(o] - [Bo| + [bo| - [ - 0 < [be] - [bo| + [ex] - - ef - [be],
and
[oe] o fbel + o] - m

[bo| ~ [bol +la] - |e] - m

Choosing argument of a in such a way that
[bo + (=1)"F - a-m-cf = [bo| + [a] - [e] - m,

we get
|bt| |bt *Olm‘

lbo| ~ |bo + (—1)iTla-c-m|
Hence, it follows from inequality (12) that

2R/ (2) t 1 |bo| — kt|b|  n—|B'(2)]
< - : .
§R( R() > ST+ {1+k Dol £ o] 2 (13)

) B(z)R<i>.

Note that

=
*
I}
S~—
Il
&
—~
N
=
7 N\
I\
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Differentiating both sides gives

(R*(2)) = B’(z)R<1> - B(j)R’(l).

Since z € Ty, we have Z = 1/z, and so

((R*(2))'| = 1(2B'(2)/ B(2))R(z) — zR/()|- (14)
By ([1]) and Lemma 1, we have
2B'(z)  |z2B'(2)| . B

Thus from (14), we have
[(R*(2))'| = IB'(2)|R(2) — 2R/(2)].

Then
(R];(()))z B )| - ) 2
= Z]];;S) 2 +|B'(2)? - 23’(,2)%(2;;&;))
L |22 BeP e e
] o[- e R+ )]
> zg(S)Q [n(kl-:i)l—zt 1ik:22:;:t:ztl]| /o)

where the inequality comes from (13).
This implies that for z € T7,

1

P+ { M2 2 e B IREE| < 0 G (15)
where
R () = B(z)R(i) — r*(2) —amB(2)
so that

(R* (z))/ = (r*(z))l —amB'(z) and R'(z) = (r(z) —am) =1'(z).
Apply, these relations to (15), we obtain that,

o (D 22 Y, e
e {2 e M Gl — am | <167 —amB )l (10

for z € Ty and for a with || < 1.
Choosing argument of « such that

|(r*(2))" —amB'(2)| = [(r*(2))'| = ml|a||B'(2)], for z € Ti.

Triangle inequality yields that
r(2) = mal > [lr(z)] = m|al|.
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Note that )
Ir(2)| = mla|* = (r(2)] = mlal)” and |r(z) —ma|* > (Ir(z)] — m|a])®.

Substituting above relations in (16), we get

e {2 B I R ) )] - mlal?] < 62— mlall B2

Letting |a| — 1, we get

1

e+ {2 2 P R e 28N < 6 -l )

Lemma 1, implies that

1

’ n(k+1)_2t 2 ‘bo‘—kt|bt| / 2 ’ ’ /
e {2 2 I @l - B < B LI - ) - ml )

Equivalently, for z € T7:

e+ MR 2 B e - w18 ) < (1) - )l - ]

A simple manipulation gives, for z € T}
2
[P ()7 < (Irll = m) 1B () + Ir' (2)]* = 2(|I7 ]| = m)|B'(2)||' (2)]

n(k+1) — 2t 2 |bo| — kt|by] -
- : - B .
e 2 e ol - i)

This implies

(Il =m)*[B'(:)  fnlk+1) =2t 2 [bo = k'fbe] | (Ir(2)] = m)?
[ (7l = m) { Frl 1k b0+kt|bt|} (Ilrll—m)2}

Hence

o Lo [nrD =20 2 = K ()] = m)?
el 3Bl { ]

|| —m).
R R nEy e (A
where ¢ is the number of zeros of r with counting multiplicity and m = miTn [r(2)]-

z€Ty

This proves the inequality for R(z) # 0. Therefore, inequality holds for all z € T;. This completes the
proof. m
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