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Abstract

If T is a convex function, ζs are in its domain and ωs are nonnegative weights for s = 1, · · · , n with∑n
s=1 ωs =W > 0, then the functional J(ζ,W, T ) defined by

J(ζ,W, T ) =
1

W

n∑
s=1

ωsT (ζs)− T

(
1

W

n∑
s=1

ωsζs

)
,

is known as the Jensen gap. In this paper, we derive a bound for J, when T is a function whose double
derivative in absolute value is quasi-convex. Also, we demonstrate the bound for the integral version
of J. We discuss some numerical examples. These examples not only demonstrate the sharpness of the
bound but also addresses the fact that J can be estimated through quasi-convex functions when even
the functions are not convex. Finally, we utilize the main result to deduce a Hölder type inequality, and
propose an upper bound for the difference between the first and second term of the Hermite-Hadamard
inequality.

1 Introduction

Within the context of current research in contemporary applied analysis, mathematical inequalities and their
manifold manifestations hold a standard position regarding their applications in various fields of science,
technology, and art [9, 10, 15—17, 20—23, 32, 33, 37—43]. The concept of convex functions arises from the
field of mathematical inequalities. Theory of mathematical inequalities gives a virtuous frame work to the
class of convex functions. The most important inequality for convex functions in the literature of applied
mathematical inequalities is the Jensen inequality [2, 3, 6, 7, 11, 24—26]. The Jensen inequality in its classical
version can be seen in [19], while its integral version has been given in [18]. It is fair to say that the
Jensen inequality is one of the powerful mathematical inequalities, because this inequality gives rise to many
other classical inequalities through some suitable manipulations. This inequality, and its variants have many
implications in various aspects such as: they help to provide a qualitative theoretical background to integral
and differential equations [24], play a remarkable role in the designing of electrical engineering phenomena,
and several other physical phenomena in this discipline [11], in probability space they assist to deduce
Rao-Blackwell estimates for the under considered parameters in their estimation processes [25], provide
estimates for various entropies, distances, and divergences, and furnish a method to verify the non-negativity
of Kullback-Leibler divergence [4,5,12,14,18,27,35,36]. Moreover, this inequality allows for the exploration
of dynamically consistent nonlinear assessments within a probability space and the utilization of super
linear expectations in economic applications [26, 44]. This inequality has been presented for various classes
of convex functions as well for example, s-convex [1], (α,m)-convex and m-convex [8], quasi-convex [28],
strongly convex [29] and Q-class convex functions [30] etc.

It is notable that the class of convex functions is a subclass of the class of quasi-convex functions. Our
purpose is to show that the Jensen inequality can be presented in a more general and standard framework
for the class of quasi-convex functions. Dragomir and Pearce [13] presented a number of inequalities of
the Jensen type pertaining to quasi-convex functions defined on some convex sets in the real linear spaces.
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Mihai and Niculescu [28] used some suitable signed constraints and discussed that the Jensen inequality for
quasi-convex functions can be used in a more general form. Also, the authors removed the restriction on its
trend towards probability measures.

Definition 1 ( [34]) Let t ∈ [0, 1], and ϑ1, ϑ2 ∈ C, where C is a convex set. If the following inequality holds
for the function T : C→ R, then it is referred to as a quasi-convex:

T (tϑ1 + (1− t)ϑ2) ≤ max{T (ϑ1), T (ϑ2)}.

Further in this section, we give a Green function and its related integral identity, which will be used in
the process of obtaining the main results. The Green function defined on [b, c]× [b, c] is given by [31]:

G(ξ, x) =

{
(ξ−c)(x−b)

c−b , b ≤ x ≤ ξ,
(x−c)(ξ−b)

c−b , ξ ≤ x ≤ c,
(1)

and its related integral identity for a function T ∈ C2[b, c], is given by

T (ξ) =
c− ξ
c− bT (b) +

ξ − b
c− bT (c) +

∫ c

b

G(ξ, x)T ′′(x)dx. (2)

It is worth noting that the Green function G is continuous and exhibits convexity with respect to both of
the variables ξ and x.

2 Main Results

The forthcoming theorem puts forth an upper bound for the Jensen gap, which is the main result.

Theorem 1 Assume a function T ∈ C2[b, c] such that |T ′′| is quasi-convex and ζs ∈ [b, c], ωs ≥ 0 for
s = 1, · · · , n with the condition

∑n
s=1 ωs = W > 0, then∣∣∣∣∣ 1

W

n∑
s=1

ωsT (ζs)− T
(

1

W

n∑
s=1

ωsζs

)∣∣∣∣∣ ≤ max{|T ′′(b)|, |T ′′(c)|}
2

 1

W

n∑
s=1

ωsζ
2
s −

(
1

W

n∑
s=1

ωsζs

)2 . (3)

Proof. Using (2) in 1
W

∑n
s=1 ωsT (ζs) and T

(
1
W

∑n
s=1 ωsζs

)
, we get

1

W

n∑
s=1

ωsT (ζs) =
1

W

n∑
s=1

ωs

(
c− ζs
c− b T (b) +

ζs − b
c− b T (c) +

∫ c

b

G(ζs, x)T ′′(x)dx

)
(4)

and

T

(
1

W

n∑
s=1

ωsζs

)
=

c− 1
W

∑n
s=1 ωsζs

c− b T (b) +
1
W

∑n
s=1 ωsζs − b
c− b T (c)

+

∫ c

b

G

(
1

W

n∑
s=1

ωsζs, x

)
T ′′(x)dx. (5)

Subtracting (5) from (4), we obtain

1

W

n∑
s=1

ωsT (ζs)− T
(

1

W

n∑
s=1

ωsζs

)

=

∫ c

b

(
1

W

n∑
s=1

ωsG(ζs, x)−G
(

1

W

n∑
s=1

ωsζs, x

))
T ′′(x)dx. (6)
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Taking absolute value of (6), we get∣∣∣∣∣ 1

W

n∑
s=1

ωsT (ζs)− T
(

1

W

n∑
s=1

ωsζs

)∣∣∣∣∣
=

∣∣∣∣∣
∫ c

b

(
1

W

n∑
s=1

ωsG(ζs, x)−G
(

1

W

n∑
s=1

ωsζs, x

))
T ′′(x)dx

∣∣∣∣∣
≤

∫ c

b

∣∣∣∣∣ 1

W

n∑
s=1

ωsG(ζs, x)−G
(

1

W

n∑
s=1

ωsζs, x

)∣∣∣∣∣ |T ′′(x)|dx. (7)

Changing the variable x = tb+ (1− t)c, t ∈ [0, 1] in above. Further due to the convexity of G(ξ, x), we can
deduce the following from (7)∣∣∣∣∣ 1

W

n∑
s=1

ωsT (ζs)− T
(
ζ̄
)∣∣∣∣∣

≤ (c− b)
∫ 1

0

(
1

W

n∑
s=1

ωsG(ζs, tb+ (1− t)c)−G(ζ̄, tb+ (1− t)c)
)
|T ′′(tb+ (1− t)c)|dt, (8)

where ζ̄ = 1
W

∑n
s=1 ωsζs.

The following inequality, based on the quasi-convexity of the function |T ′′|, is established from equation
(8). ∣∣∣∣∣ 1

W

n∑
s=1

ωsT (ζs)− T
(
ζ̄
)∣∣∣∣∣

≤ (c− b)
∫ 1

0

(
1

W

n∑
s=1

ωsG(ζs, tb+ (1− t)c)−G(ζ̄, tb+ (1− t)c)
)

×max
{
|T ′′(b)|, |T ′′(c)|

}
dt

= (c− b) max {|T ′′(b)|, |T ′′(c)|}
(

1

W

n∑
s=1

ωs

∫ 1

0

G(ζs, tb+ (1− t)c)dt

−
∫ 1

0

G(ζ̄, tb+ (1− t)c)dt
)
. (9)

With the help of x = tb+ (1− t)c, t ∈ [0, 1], we establish that∫ 1

0

G(ζs, tb+ (1− t)c)dt =

(
ζ2s − cζs − bζs + bc

)
2(c− b) . (10)

Replacing ζs by ζ̄ in (10), we get∫ 1

0

G(ζ̄, tb+ (1− t)c)dt =
((ζ̄)2 − cζ̄ − bζ̄ + bc)

2(c− b) . (11)

Substituting the values from (10) and (11) in (9) and simplifying, we get (3).

Remark 1 Instead of G in Theorem 1, employing the Green functions G1 − G4 as outlined in [31], we
acquire the same result (3).

Here, we present a theorem that outlines the integral interpretation of Theorem 1.
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Theorem 2 Assume that the function |T ′′| is quasi-convex, for T ∈ C2[b, c]. Also, assume that h1, h2 are
real valued functions whose domain is [a1, a2]. Further assume that h1(y) ∈ [b, c] for all y ∈ [a1, a2] and the
functions (T ◦ h1)h2, h2, h1h2 are integrable on [a1, a2]. Then for h2(y) ≥ 0 with

∫ a2
a1
h2(y)dy := H > 0, the

following inequality holds∣∣∣∣ 1

H

∫ a2

a1

(T ◦ h1)(y)h2(y)dy − T
(

1

H

∫ a2

a1

h1(y)h2(y)dy

)∣∣∣∣
≤ max{|T ′′(b)|, |T ′′(c)|}

2

(
1

H

∫ a2

a1

h21(y)h2(y)dy −
(

1

H

∫ a2

a1

h1(y)h2(y)dy

)2)
. (12)

Proof. The result (12) can be obtained by adopting the procedure of Theorem 1.

Example 1 Let T (y) = y2

4 (2 ln y − 3) , h1(y) = y, h2(y) = 1 ∀ y ∈ [1, 2]. Then T ′′(y) = ln y ≥ 0, ∀
y ∈ [1, 2]. From this, we conclude that for T as a convex function, |T ′′| is quasi-convex but not classical
convex. Further we ensure that h1(y) ∈ [1, 2] ∀ y ∈ [1, 2], therefore taking [b, c] = [a1, a2] = [1, 2], we obtain
H =

∫ a2
a1
h2(y)dy = 1. Hence, we derive

∫ 2

1

T (h1(y))dy − T (1.5) = −1.2147 + 1.2314 = 0.0167,

when we evaluate left hand side of inequality (12) for these values. This reveals the level of precision inherent
in the Jensen inequality. Upon computing the right-hand side of inequality (12) to be 0.0289, From our
investigation, we arrive at the following deduced result:

0.0167 < 0.0289.

The difference of 0.0122, resulting from subtracting 0.0167 from 0.0289, when examining the inequality from
above, underscores the striking proximity of bound for the Jensen gap in inequality (12) to its true value.

Example 2 Let T (y) = 4
15y

5
2 , h1(y) = y2, h2(y) = 1 ∀ y ∈ [0, 1]. Then T ′′(y) =

√
y ≥ 0, ∀ y ∈ [0, 1]. From

this, we conclude that for T as a convex function, |T ′′| is quasi-convex but not classical convex. Further we
ensure that h1(y) ∈ [0, 1] ∀ y ∈ [0, 1], therefore taking [b, c] = [a1, a2] = [0, 1], we find that H =

∫ a2
a1
h2(y)dy =

1. Hence, one can verify that ∫ 1

0

T (h1(y))dy − T (0.3333) = 0.0273,

when the left side of inequality (12) is evaluated for these facts. This reveals the level of precision inherent
in the Jensen inequality. Upon computing the right hand side of inequality (12) to be 0.0445, we can now
deduce the next result:

0.0273 < 0.0445.

The minute difference of 0.0172 between the right and left sides of the inequality above underscores the striking
accuracy of the Jensen’s gap bound, as presented in inequality (12), in approximating the actual value.

The proposition that follows introduces a re-imagined form of the Hölder inequality, directly stemming
from the insights of Theorem 1.

Proposition 1 Suppose that [b, c] is a positive interval, given two positive n-tuples (α1, · · · , αn), (β1, · · · , βn)

with both meeting the condition
∑n

s=1 αsβs∑n
s=1 β

q
s
, αsβ

− q
p

s ∈ [b, c] for s = 1, · · · , n. Then for q > 1 and p ∈
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R+ − {(2, 3) ∪ (0, 1]}, conforming to p−1 + q−1 = 1, the following result holds(
n∑
s=1

αps

) 1
p
(

n∑
s=1

βqs

) 1
q

−
n∑
s=1

αsβs

≤
(

max{p(p− 1)bp−2, p(p− 1)cp−2}
2

(
1∑n

s=1 β
q
s

n∑
s=1

α2sβ
1− q

p
s

−
( 1∑n

s=1 β
q
s

n∑
s=1

αsβs

)2)) 1
p n∑
s=1

βqs. (13)

Proof. Let T (x) = xp, x ∈ [b, c], which is a convex function for given values of p. Also, we have |T ′′|′′p−4 > 0.
It is evident that the function |T ′′| exhibits convex behavior. This guarantees the quasi-convex nature of the
function |T ′′|, therefore using (3) for T (x) = xp, ωs = βqs and ζs = αsβ

− q
p

s , we derive( n∑
s=1

αps

)(
n∑
s=1

βqs

)p−1
−
(

n∑
s=1

αsβs

)p 1
p

≤
(

max{p(p− 1)bp−2, p(p− 1)cp−2}
2

(
1∑n

s=1 β
q
s

n∑
s=1

α2sβ
1− q

p
s

−
(

1∑n
s=1 β

q
s

n∑
s=1

αsβs

)2)) 1
p n∑
s=1

βqs. (14)

By utilizing the inequality xκ − yκ ≤ (x − y)κ, 0 ≤ y ≤ x, κ ∈ [0, 1] for y = (
∑n
s=1 αsβs)

p
, x =

(
∑n
s=1 α

p
s) (
∑n
s=1 β

q
s)
p−1 and κ = 1

p , we obtain(
n∑
s=1

αps

) 1
p
(

n∑
s=1

βqs

) 1
q

−
n∑
s=1

αsβs ≤

( n∑
s=1

αps

)(
n∑
s=1

βqs

)p−1
−
(

n∑
s=1

αsβs

)p 1
p

. (15)

Now using (15) in (14), we get (13).

Remark 2 Applying the methodology from Proposition 1, we can unveil a fresh interpretation of the Hölder
inequality, this time in its integral form, as a direct outcome of Theorem 2.

The subsequent outcome of Theorem 2 is an application in the form of a corollary, unveiling a novel
upper bound for the Hermite-Hadamard gap.

Corollary 1 Under the condition that |Γ′′| is quasi-convex function for a function Γ ∈ C2[e1, e2], the fol-
lowing relationship holds∣∣∣∣ 1

e2 − e1

∫ e2

e1

Γ(y)dy − Γ

(
e1 + e2

2

)∣∣∣∣ ≤ (e2 − e1)2
24

max{|Γ′′(e1)|, |Γ′′(e2)|}. (16)

Proof. Using (12) for Γ = T, [b, c] = [e1, e2] and h2(y) = 1, h1(y) = y for all y ∈ [e1, e2], we get (16).

Corollary 2 When defining the function Γ as outlined in Corollary 1, consider incorporating the following
supplementary details:

(i) If |Γ′′| is increasing, then we obtain the following result directly from Corollary 1,∣∣∣∣ 1

e2 − e1

∫ e2

e1

Γ(y)dy − Γ

(
e1 + e2

2

)∣∣∣∣ ≤ (e2 − e1)2
24

|Γ′′(e2)|. (17)
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(ii) If |Γ′′| is decreasing, then we obtain the following result directly from Corollary 1,∣∣∣∣ 1

e2 − e1

∫ e2

e1

Γ(y)dy − Γ

(
e1 + e2

2

)∣∣∣∣ ≤ (e2 − e1)2
24

|Γ′′(e1)|. (18)

Remark 3 Sarikaya et al. have independently derived the results (16)—(18) as well [34].

3 Conclusions

By applying Jensen’s inequality, we expand upon the traditional understanding of convexity. This inequality
establishes a valuable mathematical framework for understanding convex functions. Also, this inequality
has been presented for generalized convex functions. Some mathematicians have worked out on Jensen type
inequalities for quasi-convex functions. In this paper, we have associated the Jensen inequality to quasi-
convex functions and derived a bound for its gap pertaining to functions whose double derivative in absolute
values are quasi-convex. We have also demonstrated the accuracy of the bound through numerical examples.
The examples show that the Jensen gap can be estimated for the quasi-convex functions even when they are
not convex. Furthermore, we have uncovered a new variant of the Hölder inequality and a revised bound for
the Hermite-Hadamard gap. The idea proposed in this article may inculcate further research in the field of
modern applied analysis.

Acknowledgment. Authors would like to express sincere gratitude to anonymous referee(s) and editor
for their careful reading and valuable suggestions that helped in improvement of the manuscript.
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[4] M. Adil Khan, D. Pečaríc and J. Pečaríc, On Zipf-Mandelbrot entropy, J. Comput. Appl. Math.,
346(2019), 192—204.

[5] K. Ahmad, M. Adil Khan, S. Khan, A. Ali and Y.-M. Chu, New estimates for generalized Shannon and
Zipf-Mandelbrot entropies via convexity results, Results Phys., 18(2020).

[6] K. Ahmad, M. Adil Khan, S. Khan, A. Ali and Y.-M. Chu, New estimation of Zipf-Mandelbrot and
Shannon entropies via refinements of Jensen’s inequality, AIP Adv., 11(2021).

[7] K. Ahmad, M. Adil Khan, S. Khan and Y.-M. Chu, Improved bounds for the Jensen gap with applica-
tions in information theory, Sci. Asia., 48(2022).
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