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Abstract

Building on recent advancements, this paper introduces the concepts of I and I ∗-convergence of
sequences in neutrosophic 2-normed spaces, offering a novel generalization of statistical convergence in
summability theory. We explore key properties and unveil the intricate relationship between these two
innovative concepts. Also, we introduce and delve into the concept of I and I ∗-Cauchy sequences for
sequences, demonstrating the pivotal role of condition (AP ) in understanding their interrelationship.
Additionally, we establish that every N2-NS is complete in connection with an ideal within this specific
framework.

1 Introduction

Zadeh [43] is the first prominent pioneering of the introduction of fuzzy set theory as an extension of
classical set theory. Since its inception, it has been continually refined and integrated across various fields of
engineering and science, including population dynamics [4], control of chaos [10], computer programming [12],
nonlinear dynamical systems [18], fuzzy physics [27] etc. An intriguing extension of fuzzy sets, introduced by
Atanassov [1], is known as intuitionistic fuzzy sets, which enhance the traditional fuzzy sets by incorporating
a non-membership function alongside the membership function. Over time, the concept of fuzzy set has
been fascinatingly expanded into new and innovative notions, often referred to as interval valued fuzzy sets
[42], interval valued intuitionistic fuzzy set [2], vague sets [3] and the evolution of fuzzy sets has sparked the
growth of numerous concepts in mathematical analysis. As a comprehensive generalization of these concepts,
Smarandache [36] defined a new idea named as neutrosophic set by introducing the indeterminacy function
to the intuitionistic fuzzy sets, i.e., an element of a neutrosophic set is characterized by a triplet: the truth-
membership function, the indeterminacy-membership function, and the falsity-membership function. In a
neutrosophic set, each element of the universe is defined by its specific degrees of these notions. The concept
of fuzzy normed spaces, introduced by Felbin [9] in 1992, evolved over the years with Saadati and Park’s
[37] introduction of intuitionistic fuzzy normed spaces in 2006, followed by Karakus et al.’s exploration of
statistical convergence [22] within these spaces in 2008, and Kumar et al.’s [23] in 2009 generalization to
ideal convergence. Later on, Bera and Mahapatra explored the notion of neutrosophic soft linear space [5]
and neutrosophic soft normed linear space [6]. Recently, Kiri̧sci and Şimşek [24] introduced neutrosophic
normed linear spaces and delved into the concept of statistical convergence, sparking further research into
different types of sequence convergence within these spaces. For additional insights, see [7, 17, 25, 26]. In
2023, Murtaza et al. [29] introduced the groundbreaking concept of neutrosophic 2-normed linear space, a
significant extension of neutrosophic normed space, and explored its statistical convergence and statistical
completeness.
The concept of statistical convergence in sequences was first introduced independently by Fast [8], Stein-

haus [33], and Schoenberg [34], expanding upon the traditional notion of ordinary sequence convergence.
Later, a significant advancement in statistical convergence arose with the introduction of I-convergence of
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sequences by Kostyrko et al. [20]. This concept is based on the notion of an ideal I, a collection of subsets of
the natural numbers. Since its introduction, this pivotal concept has been explored and expanded in various
directions by numerous researchers. [13, 14, 15, 16, 19, 28, 31, 32, 39, 40, 41].
Research on sequence convergence in neutrosophic 2-normed linear spaces is still in its early stages,

with limited progress made thus far. However, the studies conducted to date reveal a compelling similarity
in the behavior of sequence convergence within these spaces. So, keeping potential applicability of the
concept of sequence convergence in mind, within this specific framework, We have introduced the concept
of I-convergence of sequences, extending the existing ideas of statistical convergence. We have explored
several key properties of this newly introduced concept. Furthermore, we have defined the concept of
I-Cauchy sequences and demonstrated their equivalence to I-convergent sequences within neutrosophic 2-
normed spaces. Also, we have analyzed the equivalency of I∗-convergence with comparing another pair of
sequences such that one of them is ordinary convergent and collection of those n ∈ N such that another
sequence not coinciding with zero element belongs to an ideal with respect to neutrosophic 2-norm.

2 Preliminaries

Throughout the paper N and R indicate the set of natural numbers and the set of reals respectively. First
we recall some basic definitions and notations.

Definition 1 ([20]) A family I of subsets of a non empty set X is said to be an ideal in X if the following
conditions hold:

1. ∅ ∈ I;

2. A,B ∈ I implies A ∪B ∈ I;

3. A ∈ I and B ⊂ A implies B ∈ I.

An ideal I is called non trivial if X /∈ I and I 6= ∅.

Definition 2 ([20]) A non trivial ideal I ⊂ 2X is called admissible if {{x} : x ∈ X} ⊂ I.

Definition 3 ([20]) A non empty family F of subsets of a non empty set X is called a filter in X if the
following properties hold:

1. ∅ /∈ F;

2. A,B ∈ F implies A ∩B ∈ F;

3. A ∈ F and A ⊂ B implies B ∈ F.

If I ⊂ 2X is a non trivial ideal then the class F(I) = {X \A : A ∈ I} is a filter on X which is called filter
associated with the ideal I [20].

Definition 4 ([20]) An admissible ideal I ⊂ 2N is said to satisfy the condition (AP ) if for every countable
family of mutually disjoint sets {A1,A2, . . .} belonging to I there exists a countable family of sets {B1,B2, . . .}
such that the symmetric difference Ai4Bi is finite for each i ∈ N and

⋃∞
i=1Bi ∈ I.

Definition 5 Let K ⊂ N. Then the natural density of K, denoted by δ(K), is defined as

δ(K) = lim
n→∞

1

n
|{k ≤ n : k ∈ K}|,

provided the limit exists, where the vertical bars denote the cardinality of the enclosed set.
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Definition 6 ([35]) A binary operation � : [0, 1]× [0, 1]→ [0, 1] is named to be a continuous t-norm if the
following conditions hold.

1. � is associative and commutative;

2. � is continuous;

3. x�1 = x for all x ∈ [0, 1];

4. x�y ≤ z�w whenever x ≤ z and y ≤ w for each x, y, z, w ∈ [0, 1].

Definition 7 ([35]) A binary operation ♦ : [0, 1] × [0, 1] → [0, 1] is named to be a continuous t-conorm if
the following conditions are satisfied.

1. ♦ is associative and commutative;

2. ♦ is continuous;

3. x♦0 = x for all x ∈ [0, 1];

4. x♦y ≤ z♦w whenever x ≤ z and y ≤ w for each x, y, z, w ∈ [0, 1].

Example 1 ([21]) The following are examples of t-norms:

1. x�y = min{x, y};

2. x�y = x.y;

3. x�y = max{x+ y − 1, 0}. This t-norm is known as Lukasiewicz t-norm.

Example 2 ([21]) The following are examples of t-conorms:

1. x♦y = max{x, y};

2. x♦y = x+ y − x.y;

3. x♦y = min{x+ y, 1}. This is known as Lukasiewicz t-conorm.

Lemma 1 ([37]) If � is a continuous t-norm, ♦ is a continuous t-conorm, ri ∈ (0, 1) and 1 ≤ i ≤ 7, then
the following statements hold:

1. If r1 > r2, there are r3, r4 ∈ (0, 1) such that r1�r3 ≥ r2 and r1 ≥ r2♦r4;

2. If r5 ∈ (0, 1), there are r6, r7 ∈ (0, 1) such that r6�r6 ≥ r5 and r5 ≥ r7♦r7.

Now we recall the notions of 2-normed space and neutrosophic 2-normed space.

Definition 8 ([11]) Let Y be a real vector space of dimension d, where 2 ≤ d < ∞. A 2-norm on Y is a
function ‖., .‖ : Y× Y→ R which satisfies the following conditions:

1. ‖x, y‖ = 0 if and only if x and y are linearly dependent in Y;

2. ‖x, y‖ = ‖y, x‖ for all x, y in Y;

3. ‖αx, y‖ = |α| ‖x, y‖ for all α in R and for all x, y in Y;

4. ‖x+ y, z‖ ≤ ‖x, z‖+ ‖y, z‖ for all x, y, z in Y.

Example 3 ([38]) Let Y = R2. Define ‖·, ·‖ on R2 by ‖x, y‖ = |x1y2 − x2y1|, where x = (x1, x2), y =
(y1, y2) ∈ R2. Then (Y, ‖·, ·‖) is a 2-normed space.
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Definition 9 ([29]) Let W be a vector space and

N2 = {〈(e, f),R(e, f), S(e, f),T(e, f)〉 : (e, f) ∈W×W}

be a 2-normed space such that N2 : W ×W × R+ → [0, 1]. Suppose � and ♦ are continuous t-norm and
t-conorm respectively. Then the four tuple X = (W,N2,�,♦) is named to be neutrosophic 2-normed space
(N2-NS) if the following conditions hold for all e, f, g ∈ X, η, ζ > 0 and β 6= 0.

1. 0 ≤ R(e, f ; η) ≤ 1, 0 ≤ S(e, f ; η) ≤ 1 and 0 ≤ T(e, f ; η) ≤ 1 for every η > 0;

2. R(e, f ; η) + S(e, f ; η) + T(e, f ; η) ≤ 3;

3. R(e, f ; η) = 1 iff e and f are linearly dependent;

4. R(βe, f ; η) = R(e, f ; η|β| ) for each β 6= 0;

5. R(e, f ; η)�R(e, g; ζ) ≤ R(e, f + g; η + ζ);

6. R(e, f ; ·) : (0,∞)→ [0, 1] is a non-increasing function that runs continuously;

7. limη→∞R(e, f ; η) = 1;

8. R(e, f ; η) = R(f, e; η);

9. S(e, f ; η) = 0 iff e and f are linearly dependent;

10. S(βe, f ; η) = S(e, f ; η|β| ) for each β 6= 0;

11. S(e, f ; η)♦S(e, g; ζ) ≥ S(e, f + g; η + ζ);

12. S(e, f ; ·) : (0,∞)→ [0, 1] is a non-increasing function that runs continuously;

13. limη→∞ S(e, f ; η) = 0;

14. S(e, f ; η) = S(f, e; η);

15. T(e, f ; η) = 0 iff e and f are linearly dependent;

16. T(βe, f ; η) = T(e, f ; η|β| ) for each β 6= 0;

17. T(e, f ; η)♦T(e, g; ζ) ≥ T(e, f + g; η + ζ);

18. T(e, f ; ·) : (0,∞)→ [0, 1] is a non-increasing function that runs continuously;

19. limη→∞ T(e, f ; η) = 0;

20. T(e, f ; η) = T(f, e; η);

21. If η ≤ 0, R(e, f ; η) = 0, S(e, f ; η) = 1, T(e, f ; η) = 1.

In this case, N2 = (R, S,T) is called neutrosophic 2-norm on W.

Definition 10 ([29]) Let {ln}n∈N be a sequence in a N2-NS X = (W,N2,�,♦). Choose ε ∈ (0, 1) and
η > 0. Then, {ln}n∈N is named to be convergent if there exists a n0 ∈ N and l0 ∈W such that

R(ln − l0, z; η) > 1− ε, S(ln − l0, z; η) < ε and T(ln − l0, z; η) < ε

for all n ≥ n0 and z ∈ X which can be said that

lim
n→∞

R(ln − l0, z; η) = 1, lim
n→∞

S(ln − l0, z; η) = 0 and lim
n→∞

T(ln − l0, z; η) = 0.

In this case we write N2 − limn→∞ ln = l0 or ln
N2−−→ l0 and l0 is called N2-limit of {ln}n∈N.
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Definition 11 ([29]) Let {lk}k∈N be a sequence in a N2-NS X = (W,N2,�,♦). Choose ε ∈ (0, 1) and
η > 0. Then, {lk}k∈N is said to be statistically convergent to ξ if the natural density of the set

A(ε, η) = {k ≤ n : R(lk − ξ, z; η) ≤ 1− ε or S(lk − ξ, z; η) ≥ ε and T(lk − ξ, z; η) ≥ ε}

is zero for every z ∈ X i.e. δ(A(ε, η)) = 0.

Definition 12 ([29]) Let {ln}n∈N be a sequence in a N2-NS X = (W,N2,�,♦). Choose ε ∈ (0, 1) and
η > 0. Then, {ln}n∈N is named to be Cauchy if there exists m0 ∈ N such that

R(ln − lm, z; η) > 1− ε, S(ln − lm, z; η) < ε and T(ln − lm, z; η) < ε

for all n,m ≥ m0 and z ∈ X.

Definition 13 ([29]) Let {lk}k∈N be a sequence in a N2-NS X = (W,N2,�,♦), ε > 0 and η > 0. Then,
{lk}k∈N is named to be statistical Cauchy if there exists n0 ∈ N such that

lim
n→∞

1

n
|{k ≤ n : R(lk − ln0 , z; η) ≤ 1− ε or S(lk − ln0 , z; η) ≥ ε and T(lk − ln0 , z; η) ≥ ε}| = 0

for every z ∈ X or equivalently the natural density of the set

A(ε, η) = {k ≤ n : R(lk − ln0 , z; η) ≤ 1− ε or S(lk − ln0 , z; η) ≥ ε and T(lk − ln0 , z; η) ≥ ε}

is zero, i.e., δ(A(ε, η)) = 0.

3 Main Results

Throughout this section I stands for an admissible ideal of N. Y, N2 and X stand for 2-norm, neutrosophic
2-norm and neutrosophic 2-normed space respectively unless otherwise stated. First we introduce the notion
of I-convergence in neutrosophic 2-normed spaces.

Definition 14 Let {ln}n∈N be a sequence in a N2-NS X = (W,N2,�,♦). Then, {ln}n∈N is named to be
I-convergent to ξ ∈W if for each ε ∈ (0, 1) and η > 0 the set

{n ∈ N : R(ln − ξ, z; η) ≤ 1− ε or S(ln − ξ, z; η) ≥ ε and T(ln − ξ, z; η) ≥ ε} ∈ I

for every z ∈ X. In this case, we write I(N2) − limn→∞ ln = ξ or ln
I(N2)−−−−→ ξ and ξ is called I(N2)-limit of

{ln}n∈N.

We now present a demonstration of this concept by the following example.

Example 4 Let W = R2 and (R2, ‖, ·, ‖) be a 2-normed space with 2-norm defined as in Example 3. We
take t-norm and t-conorm as a�b = ab and a♦b = min{a+ b, 1} for a, b ∈ [0, 1]. Let I be a class of subsets
of N such that natural density of each subsets is zero. Then, I becomes a non trivial admissible ideal on N.
Now choose ε ∈ (0, 1) and x, y ∈W, η > 0 with η > ‖x, y‖. Now we consider

R(x, y; η) =
η

η + ‖x, y‖ , S(x, y; η) =
‖x, y‖

η + ‖x, y‖ , T(x, y; η) =
‖x, y‖
η

.

Then N2 = (R, S,T) is a neutrosophic 2-norm on W and the four tuple X = (W,N2,�,♦) becomes a
neutrosophic 2-normed space. Now we define a sequence {ln}n∈N ∈ X by

ln =

{
(1, 0) if n = m2(m ∈ N),
(0, 0) otherwise.
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Now for z ∈ X and ξ = (0, 0), we have

A(ε, η) = {n ∈ N : R(ln − ξ, z; η) ≤ 1− ε or S(ln − ξ, z; η) ≥ ε,T(ln − ξ, z; η) ≥ ε}
= {n ∈ N : n = m2}.

Since δ({n ∈ N : n = m2}) = 0, A(ε, η) ∈ I.

From Definition 14, we can easily prove the following lemma. So, we omit details.

Theorem 1 Let {ln}n∈N be a sequence in a N2-NS X = (W,N2,�,♦). Then, for each ε ∈ (0, 1), η > 0 and
for every z ∈ X the following statements are equivalent:

1. I(N2)− limn→∞ ln = ξ;

2. {n ∈ N : R(ln−ξ, z; η) ≤ 1−ε} ∈ I, {n ∈ N : S(ln−ξ, z; η) ≥ ε} ∈ I and {n ∈ N : T(ln−ξ, z; η) ≥ ε} ∈ I;

3. {n ∈ N : R(ln − ξ, z; η) > 1− ε and S(ln − ξ, z; η) < ε,T(ln − ξ, z; η) < ε} ∈ F(I);

4. {n ∈ N : R(ln−ξ, z; η) > 1−ε} ∈ F(I), {n ∈ N : S(ln−ξ, z; η) < ε} ∈ F(I) and {n ∈ N : T(ln−ξ, z; η) <
ε} ∈ F(I);

5. I(N2)−limn→∞R(ln−ξ, z; η) = 1, I(N2)−limn→∞ S(ln−ξ, z; η) = 0 and I(N2)−limn→∞ T(ln−ξ, z; η) =
0.

Limit of a sequence-convergence is very important tool in mathematical analysis. So, keeping this fact
in mind, we exhibit the uniqueness of I-limit of a sequence in relation to N2.

Theorem 2 Let {ln}n∈N be a sequence in a N2-NS X = (W,N2,�,♦). If I(N2) − limn→∞ ln = ξ, then
I(N2)-limit of {ln}n∈N is unique.

Proof. If possible, let I(N2)− limn→∞ ln = ξ and I(N2)− limn→∞ ln = α with ξ 6= α. For a given ε ∈ (0, 1),
choose σ ∈ (0, 1) such that (1− σ)�(1− σ) > 1− ε and σ♦σ < ε. Then, for every η > 0 and z ∈ X, the sets{

n ∈ N : R (ln − ξ, z; η) ≤ 1− σ or S(ln − ξ, z; η) ≥ σ and T(ln − ξ, z;
η

2
) ≥ σ

}
∈ I

and {
n ∈ N : R (ln − α, z; η) ≤ 1− σ or S(ln − α, z; η) ≥ σ and T(ln − ξ, z;

η

2
) ≥ σ

}
∈ I.

Consider the sets

BR1(σ, η) = {n ∈ N : R(ln − ξ, z;
η

2
) ≤ 1− σ};

BR2(σ, η) = {n ∈ N : R(ln − α, z;
η

2
) ≤ 1− σ};

BS1(σ, η) = {n ∈ N : S(ln − ξ, z;
η

2
) ≥ σ};

BS2(σ, η) = {n ∈ N : S(ln − α, z;
η

2
) ≥ σ};

BT1(σ, η) = {n ∈ N : T(ln − ξ, z;
η

2
) ≥ σ};

BT2(σ, η) = {n ∈ N : T(ln − α, z;
η

2
) ≥ σ}.

Then, by Theorem 1, we have all of BR1(σ, η), BR2(σ, η), BS1(σ, η), BS2(σ, η), BT1(σ, η), BT2(σ, η) belong
to I. Let

BR,S,T(σ, η) = [BR1(σ, η) ∪BR2(σ, η)] ∩ [BS1(σ, η) ∪BS2(σ, η)] ∩ [BT1(σ, η) ∪BT2(σ, η)].

Then, BR,S,T(σ, η) ∈ I. Hence, BcR,S,T(σ, η) ∈ F(I). So, let k ∈ BcR,S,T(σ, η). Then, there arise three possible
cases:
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1. k ∈ BcR1(σ, η) ∩BcR2(σ, η).

2. k ∈ BcS1(σ, η) ∩BcS2(σ, η).

3. k ∈ BcT1(σ, η) ∩BcT2(σ, η).

If k ∈ BcR1(σ, η) ∩BcR2(σ, η), we have

R(ξ − α, z; η) ≥ R(lk − ξ, z;
η

2
)�R(lk − α, z;

η

2
) > (1− σ)�(1− σ) > 1− ε.

Since ε > 0 is arbitrary, we have R(ξ − α, z; η) = 1 which yields ξ − α = 0 i.e. ξ = α. If we take
k ∈ BcS1(σ, η) ∩BcS2(σ, η), we get

S(ξ − α, z; η) ≤ S(lk − ξ, z;
η

2
)♦S(lk − α, z;

η

2
) < σ♦σ < ε.

Since ε > 0 is arbitrary, we get S(ξ − α, z; η) = 0 which yields ξ − α = 0 i.e. ξ = α. For k ∈ BcT1(σ, η) ∩
BcT2(σ, η),

T(ξ − α, z; η) ≤ T(lk − ξ, z;
η

2
)♦T(lk − α, z;

η

2
) < σ♦σ < ε.

Since ε > 0 is arbitrary, we get S(ξ − α, z; η) = 0 which gives ξ − α = 0 i.e. ξ = α. This contradicts the fact
ξ 6= α. Therefore, I(N2)-limit of {ln}n∈N is unique.

Now, we find out the relationship between ordinary convergence and I-convergence with regard to N2.

Theorem 3 Let {ln}n∈N be a sequence in a N2-NS X = (W,N2,�,♦). If ln N2−−→ l0, then ln
I(N2)−−−−→ l0.

Proof. Since ln
N2−−→ l0, for every ε ∈ (0, 1) and η > 0 there exists n0 ∈ N such that R(ln − l0, z; η) > 1− ε,

S(ln − l0, z; η) < ε and T(ln − l0, z; η) < ε for all n ≥ n0 and z ∈ X. This shows that

{n ∈ N : R(ln − l0, z; η) ≤ 1− ε or S(ln − l0, z; η) ≥ ε,T(ln − l0, z; η) ≥ ε} ⊂ {1, 2, . . . , n0 − 1}.

Since I is an admissible ideal and {1, 2, . . . , n0 − 1} ∈ I,

{n ∈ N : R(ln − l0, z; η) ≤ 1− ε and S(ln − l0, z; η) ≥ ε,T(ln − l0, z; η) ≥ ε} ∈ I.

Therefore, ln
I(N2)−−−−→ l0.

Remark 1 The converse of Theorem 3 is not true. If we take the same neutrosophic 2-normed space X
defined as in Example 4 and a sequence {ln}n∈N ∈ X given by

ln =

{
(n, 0) if n = k2(k ∈ N),
(0, 0) otherwise.

Then, {ln}n∈N is I(N2)-convergent to (0, 0) ∈ X, but it is not ordinary convergent with respect to N2 on W.

We shall explore that I-convergent sequences with respect to N2 obeys the algebras of I-limits in the
following theorem.

Theorem 4 Let W be a real vector space. Let {ln}n∈N and {pn}n∈N be two sequences in a N2-NS X =
(W,N2,�,♦). Then, we have

1. If I(N2)− limn→∞ ln = l0, I(N2)− limn→∞ pn = p0 and I(N2)− limn→∞ ln + pn = l0 + p0.

2. If I(N2)− limn→∞ ln = l0, I(N2)− limn→∞ βln = βl0 for each β 6= 0.



R. Mondal and N. Hossain 141

Proof. For a given ε ∈ (0, 1), choose σ ∈ (0, 1) such that (1 − σ)�(1 − σ) > 1 − ε and σ♦σ < ε. Since
I(N2)− limn→∞ ln = l0 and I(N2)− limn→∞ pn = p0, then for every η > 0 and z ∈ X, the sets{

n ∈ N : R(ln − l0, z;
η

2
) ≤ 1− σ or S(ln − l0, z;

η

2
) ≥ σ and T(ln − l0, z;

η

2
) ≥ σ

}
∈ I

and {
n ∈ N : R(pn − p0, z;

η

2
) ≤ 1− σ or S(pn − p0, z;

η

2
) ≥ σ and T(pn − p0, z;

η

2
) ≥ σ

}
∈ I.

Let
AR,S,T(σ, η) = [AR1(σ, η) ∪AR2(σ, η)] ∩ [AS1(σ, η) ∪AS2(σ, η)] ∩ [AT1(σ, η) ∪AT2(σ, η)]

where

AR1(σ, η) = {n ∈ N : R(ln − l0, z;
η

2
) ≤ 1− σ};

AR2(σ, η) = {n ∈ N : R(pn − p0, z;
η

2
) ≤ 1− σ};

AS1(σ, η) = {n ∈ N : S(ln − l0, z;
η

2
) ≥ σ};

AS2(σ, η) = {n ∈ N : S(pn − p0, z;
η

2
) ≥ σ};

AT1(σ, η) = {n ∈ N : T(ln − l0, z;
η

2
) ≥ σ};

AT2(σ, η) = {n ∈ N : T(pn − p0, z;
η

2
) ≥ σ}.

By Theorem 1, we get AR,S,T(σ, η) ∈ I. Then, AcR,S,T(σ, η) ∈ F(I) and hence AcR,S,T(σ, η) 6= ∅. So, let
n ∈ AcR,S,T(σ, η). Then, we have

R(ln + pn − (l0 + p0), z; η) ≥ R(ln − l0, z;
η

2
)�R(pn − p0, z;

η

2
)

> (1− σ)�(1− σ) > 1− ε,

S(ln + pn − (l0 + p0), z; η) ≤ S(ln − l0, z;
η

2
)♦S(pn − p0, z;

η

2
)

< σ♦σ < ε,

and

T(ln + pn − (l0 + p0), z; η) ≤ T(ln − l0, z;
η

2
)♦T(pn − p0, z;

η

2
)

< σ♦σ < ε.

This shows that

{n ∈ N : R(ln + pn − (l0 + p0), z; η) ≤ 1− ε or S(ln + pn − (l0 + p0), z; η) ≥ ε

and
T(ln + pn − (l0 + p0), z; η) ≥ ε} ⊂ AR,S,T(σ, η).

Consequently

{n ∈ N : R(ln + pn − (l0 + p0), z; η) ≤ 1− ε or S(ln + pn − (l0 + p0), z; η) ≥ ε
and T(ln + pn − (l0 + p0), z; η) ≥ ε} ∈ I.

Therefore, I(N2)− limn→∞ ln + pn = l0 + p0.
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Since I(N2)− limn→∞ ln = l0, then for every ε ∈ (0, 1), η > 0 and z ∈ X the set{
n ∈ N : R(ln − l0, z;

η

|β| ) ≤ 1− ε or S(ln − l0, z;
η

|β| ) ≥ ε and T(ln − l0, z;
η

|β| ) ≥ ε
}
∈ I

i.e.
{n ∈ N : R(βln − βl0, z; η) ≤ 1− ε or S(βln − βl0, z; η) ≥ ε and T(βln − βl0, z; η) ≥ ε} ∈ I.

Therefore, I(N2)− limn→∞ βln = βl0. This completes the proof.

Now, we proceed with the notion of I∗-convergence in a neutrosophic 2-normed space X.

Definition 15 Let {ln}n∈N be a sequence in a N2-NS X = (W,N2,�,♦). Then, {ln}n∈N is named to be
I∗-convergent to ξ ∈ X with regards to N2 if there exists a set K = {m1 < m2 < · · · < mk < · · · } ⊂ N such
that K ∈ F(I) and N2 − limk→∞ lmk

= ξ. In this case, we write I∗(N2)− limn→∞ ln = ξ or ln
I∗(N2)−−−−→ ξ and

ξ is called I∗(N2)-limit of {ln}n∈N.

We establish the intricate relationship between the two innovative concepts of I and I∗-convergence using
the condition (AP ) in neutrosophic 2-normed spaces.

Theorem 5 Let {ln}n∈N be a sequence in a N2-NS X = (W,N2,�,♦). If I∗(N2) − limn→∞ ln = ξ, then
I(N2)− limn→∞ ln = ξ.

Proof. Since I∗(N2) − limn→∞ ln = ξ, there exists a set K = {m1 < m2 < · · · < mk < · · · } ⊂ N such
that K ∈ F(I) and N2 − limk→∞ lmk

= ξ i.e., for every ε ∈ (0, 1), η > 0 there exists n0 ∈ N such that
R(lmk

− ξ, z; η) > 1− ε, S(lmk
− ξ, z; η) < ε and T(lmk

− ξ, z; η) < ε for all k ≥ n0 and z ∈ X. So,

{mk ∈ N : R(lmk
− ξ, z; η) ≤ 1− ε or S(lmk

− ξ, z; η) ≥ ε and T(lmk
− ξ, z; η) ≥ ε}

⊂ {m1,m2, . . . ,mn0−1} .

Now, let H = N \K. Then, we have

{n ∈ N : R(ln − ξ, z; η) ≤ 1− ε or S(ln − ξ, z; η) ≥ ε and T(ln − ξ, z; η) ≥ ε}
⊂ H ∪ {m1,m2, . . . ,mn0−1}.

Since I is an admissible ideal, therefore

{n ∈ N : R(ln − ξ, z; η) ≤ 1− ε or S(ln − ξ, z; η) ≥ ε and T(ln − ξ, z; η) ≥ ε} ∈ I.

This shows that I(N2)− limn→∞ ln = ξ.

Remark 2 In general, the converse of Theorem 5 is not true which can be illustrated by the following
example.

Example 5 We consider the neutrosophic 2-normed space defined as in Example 4. Let N =
⋃
iDi be a

decomposition of N such that for any p ∈ N each Di contains infinitely many i′s where i ≥ p and Di∩Dp = ∅
whenever i 6= p. Let I be the class of all subsets of N which intersects only a finite number of D′is. Then I
becomes a non trivial admissible ideal of N. Now we define a sequence {lk}k∈N ∈ X by lk = ( 1k , 0) if k ∈ Dk.
Now for z = (z1, z2) and ξ = (0, 0) we have

R(lk − ξ, z; η) =
η

η + ‖lk, z‖
=

η

η + |z2| 1k
−→ 1,

S(lk − ξ, z; η) =
‖lk, z‖
‖lk, z‖+ η

=
|z2| 1k

η + |z2| 1k
−→ 0,
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T(lk − ξ, z; η) =
‖lk, z‖
η

=
|z2| 1k
η
−→ 0 as k →∞.

Since I is an admissible ideal, therefore I(N2)− limk→∞ lk = ξ.
Now, if possible, let I∗(N2)− limk→∞ lk = ξ. Then, there exists a set K = {k1 < k2 < · · · < km < · · · } ⊂

N such that K ∈ F(I) and N2 − limm→∞ lkm = ξ. Since K ∈ F(I), there is M ∈ I such that N \ K = M.
Now by the construction of I, there is j ∈ N such that M ⊂

⋃j
i=1Di. But then Dj+1 ⊂ K and therefore

lkm = ( 1
j+1 , 0) for infinitely many km ∈ K which contradicts N2 − limm→∞ lkm = ξ. Therefore, {lk}k∈N is

not I∗(N2)-convergent to ξ ∈ X.

Generally, a question arises that uder which condition does the converse of the Theorem 5 hold good?
The following theorem establishes this important fact.

Theorem 6 Let {ln}n∈N be a sequence in a N2-NS X = (W,N2,�,♦). If I satisfies the condition (AP ) and
I(N2)− limn→∞ ln = ξ, then I∗(N2)− limn→∞ ln = ξ.

Proof. Suppose that I satisfies the condition (AP ) and I(N2) − limn→∞ ln = ξ. Then, for each ε ∈ (0, 1)
and η > 0, the set

{n ∈ N : R(ln − ξ, z; η) ≤ 1− ε or S(ln − ξ, z; η) ≥ ε and T(ln − ξ, z; η) ≥ ε} ∈ I

for every z ∈ X. Now, we define

Aj =

{
n ∈ N : 1− 1

j
≤ R(ln − ξ, z; η) < 1−

1

1 + j
or

1

j + 1
< S(ln − ξ, z; η) ≤

1

j
and

1

j + 1
< T(ln − ξ, z; η) ≤

1

j

}
.

Clearly {A1,A2, . . .} is countable and pairwise disjoint and each Aj ∈ I. Since I satisfies the condition (AP ),
there exists a countable family {B1,B2, . . .} of subsets of N belonging to I and Ai4Bi is finite for each i and
H =

⋃
iBi ∈ I. Now from the associated filter of I there is M ∈ F(I) such that M = N \H. It is suffi cient

to prove the theorem that the subsequence {ln}n∈M is convergent to ξ with respect to N2. Let ϑ ∈ (0, 1),
η > 0 and z ∈ X. We choose n0 ∈ N such that 1

n0
< ϑ. Then, clearly

{n ∈ N : R(ln − ξ, z; η) ≤ 1− ϑ or S(ln − ξ, z; η) ≥ ϑ and T(ln − ξ, z; η) ≥ ϑ}

⊂
{
n ∈ N : R(ln − ξ, z; η) ≤ 1−

1

n0
or S(ln − ξ, z; η) ≥

1

n0
and T(ln − ξ, z; η) ≥

1

n0

}
⊂
n0+1⋃
i=1

Ai.

Since Ai4Bi, i = 1, 2, . . . , n0 + 1 are finite, there is p0 ∈ N such that(
n0+1⋃
i=1

Bi

)
∩ {n ∈ N : n ≥ p0} =

(
n0+1⋃
i=1

Ai

)
∩ {n ∈ N : n ≥ p0}. (1)

Now, if n ≥ p0 and n ∈ M, n /∈
⋃n0+1
i=1 Bi. So, by equation (1), n /∈

⋃n0+1
i=1 Ai. Therefore, for every n ≥ p0

and n ∈ M we get R(ln − ξ, z; η) > 1 − ϑ, S(ln − ξ, z; η) < ϑ and T(ln − ξ, z; η) < ϑ for every z ∈ X. Since
ϑ ∈ (0, 1) is arbitrary, we have I∗(N2)− limn→∞ ln = ξ. This completes the proof.

Now, we discuss on the equivalency of I∗-convergence with comparing another pair of sequences such
that one of them is N2-convergent and collection of those n ∈ N such that another sequence not coinciding
with zero element belongs to an ideal with regard to N2.
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Theorem 7 Let {ln}n∈N be a sequence in a N2-NS X = (W,N2,�,♦). Then, the following statements are
equivalent:

1. I∗(N2)− limn→∞ ln = ξ.

2. There exist two sequences {tn}n∈N and {wn}n∈N in X such that ln = tn + wn, tn
N2−−→ ξ and {n ∈ N :

wn 6= θ} ∈ I, θ being the zero element in W.

Proof. First suppose that (1) holds. Then there exists a set K = {m1 < m2 < · · · < mk < · · · } ⊂ N such
that K ∈ F(I) and N2 − limk→∞ lmk

= ξ i.e.,

R(ln − ξ, z; η) > 1− ε, S(ln − ξ, z; η) < ε and T(ln − ξ, z; η) < ε (2)

whenever n ∈ K. Now we define the sequences {tn}n∈N and {wn}n∈N as follows:

tn =

{
ln, if n ∈ K,
ξ, if n ∈ Kc,

(3)

and wn = ln − tn∀n ∈ N. Let ε ∈ (0, 1) and η > 0. Then for each n ∈ Kc and z ∈ X we have

R(tn − ξ, z; η) = R(θ, z; η) = 1 > 1− ε,

S(tn − ξ, z; η) = S(θ, z; η) = 0 < ε

and
T(tn − ξ, z; η) = T(θ, z; η) = 0 < ε.

Therefore, using (3) and (2) we get tn
N2−−→ ξ. From (3) we have

{n ∈ N : tn 6= ln} ⊂ Kc
=⇒ {n ∈ N : ln − tn 6= θ} ⊂ Kc
=⇒ {n ∈ N : wn 6= θ} ⊂ Kc.

Therefore {n ∈ N : wn 6= θ} ∈ I.
Assume that the condition (2) holds. Then, clearly the set {n ∈ N : wn = θ} ∈ F(I) must be infinite.

Let K = {n ∈ N : wn = θ}. Since tn
N2−−→ ξ and tn = ln for n ∈ K, N2 − limn∈K,n→∞ ln = ξ. Hence

I∗(N2)− limn→∞ ln = ξ. This completes the proof.
Now, we define the notion of I-Cauchy sequence and nurture it with convergence in ideal context within

neutrosophic 2-norm.

Definition 16 Let {ln}n∈N be a sequence in a N2-NS X = (W,N2,�,♦) and ε ∈ (0, 1), η > 0. Then,
{ln}n∈N is named to be I-Cauchy with regard to N2 if there exists n0 = n0(ε) ∈ N such that the set

A(ε, η) = {n ∈ N : R(ln − ln0 , z; η) ≤ 1− ε or S(ln − ln0 , z; η) ≥ ε and T(ln − ln0 , z; η) ≥ ε} ∈ I

for every z ∈ X.

Definition 17 Let {ln}n∈N be a sequence in a N2-NS X = (W,N2,�,♦). Then, {ln}n∈N is named to be
I∗-Cauchy with regard to N2 if there exists a set K = {m1 < m2 < · · · < mk < · · · } ⊂ N such that K ∈ F(I)
and the subsequence {lmk

} is an ordinary Cauchy sequence with regard to N2.

Theorem 8 Let {ln}n∈N be a sequence in a N2-NS X = (W,N2,�,♦). If {ln}n∈N is I∗-Cauchy with regard
to N2 then {ln}n∈N is I-Cauchy with regard to N2.

Theorem 9 Let {ln}n∈N be a sequence in a N2-NS X = (W,N2,�,♦). If I satisfies the condition (AP ) and
{ln}n∈N is I-Cauchy with regards to N2 then {ln}n∈N is I∗-Cauchy with regard to N2.
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Theorem 8 and Theorem 9 can be proved in the line of Theorem 5 and Theorem 6 respectively. So, we
omit details.
Now, we proceed with the investigations of relation ship between I-Cauchy sequence and I-convergence

with respect to the neutrosophic 2-norm N2.

Theorem 10 Let {ln}n∈N be a sequence in a N2-NS X = (W,N2,�,♦). If {ln}n∈N is I-convergent with
regards to N2, then {ln}n∈N is I-Cauchy with regards to N2.

Proof. Let {ln}n∈N is I-convergent to ξ ∈ X and ε ∈ (0, 1) be given. Choose σ ∈ (0, 1) such that
(1− σ)�(1− σ) > 1− ε and σ♦σ < ε. Then, for every η > 0 and z ∈ X, the set

A(σ, η) = {n ∈ N : R(ln − ξ, z;
η

2
) ≤ 1− σ or S(ln − ξ, z;

η

2
) ≥ σ and T(ln − ξ, z;

η

2
) ≥ σ} ∈ I.

Then Ac(σ, η) ∈ F(I). So Ac(σ, η) 6= ∅. Then there is n0 ∈ Ac(σ, η). Now, we define

B(ε, η) = {n ∈ N : R(ln − ln0 , z; η) ≤ 1− ε or S(ln − ln0 , z; η) ≥ ε and T(ln − ln0 , z; η) ≥ ε}.

It is suffi cient to prove the theorem that B(ε, η) ⊂ A(σ, η). Let k ∈ B(ε, η). Then we get

R(lk − ln0 , z; η) ≤ 1− ε or S(lk − ln0 , z; η) ≥ ε and T(lk − ln0 , z; η) ≥ ε.

Case-i: We consider R(lk−ln0 , z; η) ≤ 1−ε. We show R(lk−ξ, z; η2 ) ≤ 1−σ. If possible, let R(lk−ξ, z;
η
2 ) >

1− σ. Then, we have

1− ε ≥ R(lk − ln0 , z; η) ≥ R(lk − ξ, z;
η

2
)�R(ln0 − ξ, z;

η

2
) > (1− σ)�(1− σ) > 1− ε,

which is not possible. So we have R(lk − ξ, z; η2 ) ≤ 1− σ. Hence k ∈ A(σ, η), i.e. B(ε, η) ⊂ A(σ, η).
Case-ii: We consider S(lk − ln0 , z; η) ≥ ε. We show S(lk − ξ, z; η2 ) ≥ σ. If possible, let S(lk − ξ, z;

η
2 ) < σ.

Then, we have

ε ≤ S(lk − ln0 , z; η) ≤ S(lk − ξ, z;
η

2
)♦S(ln0 − ξ, z;

η

2
) < σ♦σ < ε,

which is not possible. So we have S(lk − ξ, z; η2 ) ≥ σ. Hence k ∈ A(σ, η), i.e. B(ε, η) ⊂ A(σ, η).
Case-iii: If we consider T(lk − ln0 , z; η) ≥ ε then in the similar way as Case-ii we can show that B(ε, η) ⊂

A(σ, η).
Hence, {ln}n∈N is I-Cauchy with regard to N2. This completes the proof.

Theorem 11 Let {ln}n∈N be a sequence in a N2-NS X = (W,N2,�,♦). If {ln}n∈N is I-Cauchy with regard
to N2, then {ln}n∈N is I-convergent with regards to N2.

Proof. Let {ln}n∈N is I-Cauchy with regards to N2 but not {ln}n∈N is I-convergent to ξ ∈ X with regards
to N2. Then for ε ∈ (0, 1) and η > 0 there exists n0 = n0(ε) ∈ N such that

A(ε, η) = {n ∈ N : R(ln − ln0 , z; η) ≤ 1− ε or S(ln − ln0 , z; η) ≥ ε and T(ln − ln0 , z; η) ≥ ε} ∈ I

for every z ∈ X. And,

B(ε, η) =
{
n ∈ N : R(ln − ξ, z;

η

2
) > 1− ε or S(ln − ξ, z;

η

2
) < ε and T(ln − ξ, z;

η

2
) < ε

}
∈ I.

So, Bc(ε, η) ∈ F(I). Since,
R(ln − ln0 , z; η) ≥ 2R(ln − ξ, z;

η

2
) > 1− ε

and
S(ln − ln0 , z; η) ≤ 2S(ln − ξ, z;

η

2
) < ε,
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we see that T(ln − ln0 , z; η) ≤ 2T(ln − ξ, z; η2 ) < ε if

R(ln − ξ, z;
η

2
) >

1− ε
2
, S(ln − ξ, z;

η

2
) <

ε

2
and T(ln − ξ, z;

η

2
) <

ε

2
.

This implies Ac(ε, η) ∈ I which leads to a contradiction because {ln}n∈N is I-Cauchy with regard to N2.
Therefore, {ln}n∈N is I-convergent with regards to N2. This completes the proof.

Definition 18 A N2-NS X = (W,N2,�,♦) is named to be I-complete with regard to N2 if every I-Cauchy
sequence is I-convergent with regards to N2.

Remark 3 In the light of Theorem 10 and 11, we see every neutrosophic 2-normed space is I-complete.

Conclusion and Future Developments

Incorporating the latest advancements, this paper has unveiled the innovative concepts of I(N2) and I∗(N2)-
convergence, presenting a groundbreaking generalization of statistical convergence within summability theory.
We have delved into the key properties and revealed the intricate relationship between these two pioneering
concepts using the condition (AP ). In this work, we have explored the concept of I(N2) and I∗(N2)-
Cauchy sequences, highlighting the critical role of condition (AP ) in understanding their interrelationship.
Furthermore, we have established the completeness of every N2-NS within this ideal-driven framework.
Research on sequence convergence in neutrosophic 2-normed linear spaces is still in its early stages, with
limited progress made thus far. Building upon the insights gained from this research, future studies may
extend this notion to encompass lacunary sequences and λ-density, further exploring its connections to
multiple sequences within the framework of N2. This concept can also be applied to convergence-related
challenges across various branches of science and engineering, offering valuable insights and solutions.
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