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Abstract

We define and study the Stockwell transform Sg associated with the Sturm-Liouville operator L :=
d2

dx2
+ A′(x)

A(x)
d
dx

, where A is a nonnegative function satisfying certain conditions; and prove a Plancherel
theorem and an inversion formula. We define a reconstruction function fa,b, and we prove a Calderón’s
reproducing inversion formula for the Sturm-Liouville-Stockwell transform Sg. We introduce and study
the extremal function f∗

η,k := (ηI +S
∗
g Sg)

−1
S

∗
g (k), and we deduce best approximate inversion formulas

for the Sturm-Liouville-Stockwell transform Sg .

1 Introduction

The Stockwell transform, also known as the windowed Fourier transform [3], or the Gabor transform [24] is
defined first by using translation, convolution and modulation operators of a single Gaussian to represent
one dimensional signal. The time-frequency resolution is usually associated with the Stockwell transform,
and recently this transform has become the focus of many works [7, 9, 24]. Another fundamental tool in
time-frequency analysis is the Sturm-Liouville-Stockwell transform, which is the aim of the present study.

We consider the second-order differential operator defined on (0,∞) by

L :=
d2

dx2
+

A′(x)

A(x)

d

dx
,

where A is a nonnegative function satisfying certain conditions. This operator plays an important role in the
analysis. For example, many special functions (orthogonal polynomials) are eigenfunctions of an operator
of L type. The radial part of the Beltrami-Laplacian in a symmetric space is also of L type. Many aspects
of such operators have been studied [2, 5, 23, 25, 26]. In particular, the two references [5, 23] investigate
standard constructions of harmonic analysis, such as translation operators, convolution product, and Fourier
transform, in connection with L.

In this paper, we consider the Sturm-Liouville transform

F (f)(λ) :=

∫ ∞

0

ϕλ(x)f(x)A(x)dx, λ ≥ 0,

where ϕλ(x) is the Sturm-Liouville kernel given in Section 2 below. The Sturm-Liouville transform can
be regarded as a generalization of the Fourier-Bessel transform [14], the Fourier-Jacobi transform [11] and
the Fourier-Whittaker transform [21, 22]. Many results have already been proved for the Sturm-Liouville
transform F , for example, Bouattour and Trimèche [4] proved a Cowling-Price’s theorem and Hardy’s
theorem, Daher et al. [6] established a Miyachi’s theorem, Ma [12] proved a Heisenberg uncertainty principle
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58 Reconstruction and Best Approximate Inversion Formulas

and Soltani proved a local uncertainty principle [19] and studied the extremal functions on the Sturm-
Liouville hypergroups [20],. . . . We associate to the Sturm-Liouville transform F the Lebesgue spaces L2(µ)
and L2(ν) defined later in Section 2.

Let f, g ∈ L2(ν). We define the convolution product f]g of f and g by

f]g(λ) := F (F−1(f)F−1(g))(λ), λ ≥ 0.

Let g ∈ L2(ν). The Sturm-Liouville-Stockwell transform is the mapping Sg defined for f ∈ L2(ν) by

Sg(f)(λ, y) := f]gy(λ), λ, y ≥ 0,

where gy is the modulation of g by y defined by

gy := F

(
√

τy|F−1(g)|2
)

.

Here τy, y ≥ 0 are the Sturm-Liouville translation operators [5, 23] defined in Section 2 below.

Let g ∈ L2(ν) be a non-zero function, such that F−1(g) ∈ L∞(µ). For f ∈ L2(ν) and 0 < a < b < ∞,
we define the reconstruction function fa,b associated to Sg, by

fa,b(ξ) :=
1

‖g‖2
L2(ν)

∫ b

a

Sg(f)(., y)]gy(ξ)dµ(y), ξ ≥ 0.

Let g ∈ L2(ν). For any k ∈ L2(ν ⊗ µ) and for any η > 0, we define the extremal function f∗
η,k associated to

Sg, by

f∗
η,k(ξ) := (ηI + S

∗
g Sg)

−1
S

∗
g (k)(ξ), ξ ≥ 0,

where I is the unit operator and S ∗
g : L2(ν⊗µ) −→ H s is the adjoint of Sg , being H s the Strum-Liouville-

Sobolev space of order s.

We give many harmonic analysis results related to the Sturm-Liouville-Stockwell transform Sg. In par-
ticular, we establish a Plancherel theorem and an inversion formula. Next, we prove the following Calderón’s
reproducing formula. That is, the function fa,b belongs to L2(ν) and satisfies

lim
a→0
b→∞

‖fa,b − f‖L2(ν) = 0.

Finally, we give an approximate inversion formula for the Sturm-Liouville-Stockwell transform Sg. Let
s > 3/2 when ρ > 0 and s > α + 1 when ρ = 0. Then, for f ∈ H s, we have

lim
η→0+

‖f∗
η,Sg(f) − f‖H s = 0.

Also, we obtain the following pointwise approximate inversion formula

lim
η→0+

f∗
η,Sg(f)(ξ) = f(ξ), ξ ≥ 0.

The paper is organized as follows. In Section 2, we recall some results about the harmonic analysis asso-
ciated to Sturm-Liouville operator on (0,∞) (the Sturm-Liouville transform F , Sturm-Liouville translation
operators τy, y ≥ 0, Sturm-Liouville convolution product ],. . . ). Section 3 is devoted to study the Sturm-
Liouville-Stockwell Sg, for which we give a Plancherel formula, an inversion formula and a Calderón’s
reproducing formula. Finally, in Section 4, we give best approximate inversion formulas for the Sturm-
Liouville-Stockwell transform Sg .
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2 The Sturm-Liouville Harmonic Analysis

We consider the second-order differential operator L defined on (0,∞) by

L :=
d2

dx2
+

A′(x)

A(x)

d

dx
,

where
A(x) = x2α+1B(x), α > −1/2,

for B a positive, even, infinitely differentiable function on R such that B(0) = 1. Moreover we assume that
A satisfies the following conditions:

(i) A is increasing and limx→∞ A(x) = ∞.

(ii) A′

A is decreasing and limx→∞
A′(x)
A(x) = 2ρ ≥ 0.

(iii) There exists a constant δ > 0, such that

A′(x)

A(x)
= 2ρ + e−δxD(x), if ρ > 0,

A′(x)

A(x)
=

2α + 1

x
+ e−δxD(x), if ρ = 0,

where D is an infinitely differentiable function on (0,∞), bounded and with bounded derivatives on
all intervals [x0,∞), for x0 > 0.

This operator was studied in [5, 23], and the following results have been established:
(I) For all λ ∈ C, the equation

{

Lu = −(λ2 + ρ2)u,
u(0) = 1, u′(0) = 0,

admits a unique solution, denoted by ϕλ, with the following properties:
• for x ≥ 0, the function λ → ϕλ(x) is analytic on C;
• for λ ∈ C, the function x → ϕλ(x) is even and infinitely differentiable on R.

(II) For nonzero λ ∈ C, the equation

Lu = −(λ2 + ρ2)u,

has a solution Φλ satisfying

Φλ(x) =
eiλx

√

A(x)
V (x, λ),

with
lim

x→∞
V (x, λ) = 1.

Consequently, there exists a function (spectral function) λ −→ c(λ), such that

ϕλ(x) = c(λ)Φλ(x) + c(−λ)Φ−λ(x), x ≥ 0,

for nonzero λ ∈ C. Moreover, there exist positive constants k1, k2, k, such that

k1|λ|2α+1 ≤ |c(λ)|−2 ≤ k2|λ|2α+1,

for all λ such that Imλ ≤ 0 and |λ| ≥ k.
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Lemma 1 (See [4, 10]) The Sturm-Liouville function ϕλ(x); λ, x ≥ 0, possesses the following properties.

(i) |ϕλ(x)| ≤ 1, for ρ ≥ 0.

(ii) |ϕλ(x)| ≤ ϕ0(x) ≤ C(1 + x)e−ρx, for ρ > 0, where C is a positive constant.

(iii) ϕ0(x) = 1, for ρ = 0.

We denote by
• µ the measure defined on [0,∞) by dµ(x) := A(x)dx; and by Lp(µ), 1 ≤ p ≤ ∞, the space of measurable

functions f on [0,∞), such that

‖f‖Lp(µ) :=

[
∫ ∞

0

|f(x)|pdµ(x)

]1/p

< ∞, 1 ≤ p < ∞,

‖f‖L∞(µ) := ess sup
x∈[0,∞)

|f(x)| < ∞;

• ν the measure defined on [0,∞) by dν(λ) :=
dλ

2π|c(λ)|2 ; and by Lp(ν), 1 ≤ p ≤ ∞, the space of

measurable functions f on [0,∞), such that ‖f‖Lp(ν) < ∞.

The Sturm-Liouville transform is the Fourier transform associated with the operator L and is defined for
f ∈ L1(µ) by

F (f)(λ) :=

∫ ∞

0

ϕλ(x)f(x)dµ(x), λ ≥ 0.

Some of the properties of the Sturm-Liouville transform F are collected bellow (see [5, 23, 25]).

Theorem 1 (i) L1 − L∞-boundedness. For all f ∈ L1(µ), F (f) ∈ L∞(ν) and

‖F (f)‖L∞(ν) ≤ ‖f‖L1(µ).

(ii) Plancherel theorem. The Sturm-Liouville transform F extends uniquely to an isometric isomorphism
of L2(µ) onto L2(ν). In particular,

‖f‖L2(µ) = ‖F (f)‖L2(ν).

(iii) Inversion theorem. Let f ∈ L1(µ), such that F (f) ∈ L1(ν). Then

f(x) =

∫ ∞

0

ϕλ(x)F (f)(λ)dν(λ), a.e. x ∈ [0,∞).

The Sturm-Liouville kernel ϕλ satisfies the product formula [5, 23]

ϕλ(x)ϕλ(y) =

∫ ∞

0

ϕλ(z)w(x, y, z)dµ(z) for x, y ≥ 0, (1)

where w(x, y, .) is a measurable positive function on [0,∞), with support in [|x− y|, x + y], satisfying

∫ ∞

0

w(x, y, z)dµ(z) = 1, (2)

w(x, y, z) = w(y, x, z) for z ≥ 0, (3)

w(x, y, z) = w(x, z, y) for z > 0. (4)
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We now define the generalized translation operator induced by (1). For f ∈ L1(µ), the linear operator

τyf(x) :=

∫ ∞

0

f(z)w(x, y, z)dµ(z), x, y ≥ 0,

will be called Sturm-Liouville translation.

As a first remark, we note that the relations (2), (3) and (4) mean that

τyf(x) = τxf(y), x, y ≥ 0,

and
∫ ∞

0

τyf(x)dµ(x) =

∫ ∞

0

f(x)dµ(x), f ∈ L1(µ). (5)

Theorem 2 For all y ≥ 0 and f ∈ Lp(µ), p ∈ [1,∞], we have

‖τyf‖Lp(µ) ≤ ‖f‖Lp(µ), f ∈ Lp(µ).

Proof. If p = 1,∞, the result follows from (2), (3) and (4). Assume therefore that p ∈ (1,∞) and let p′ be
the conjugate exponent of p, i.e. 1/p + 1/p′ = 1. We write

|f(z)|w(x, y, z) = |f(z)|[w(x, y, z)]1/p[w(x, y, z)]1/p′

.

Applying Hölder’s inequality and (2), we obtain

|τyf(x)|p ≤
∫ ∞

0

|f(z)|pw(x, y, z)dµ(z), x, y ≥ 0.

This gives the result.

The Sturm-Liouville translation operator is connected with the Sturm-Liouville transform F via the
following formula.

Theorem 3 For f ∈ L2(µ) and y ≥ 0, we have

F (τyf)(λ) = ϕλ(y)F (f)(λ), λ ≥ 0. (6)

Proof. Let f ∈ L1 ∩ L2(µ). Then

F (τyf)(λ) =

∫ ∞

0

τyf(x)ϕλ(x)dµ(x)

=

∫ ∞

0

[
∫ ∞

0

f(z)w(x, y, z)dµ(z)

]

ϕλ(x)dµ(x).

By using Fubini’s theorem, (3) and (4) we obtain

F (τyf)(λ) =

∫ ∞

0

f(z)

[
∫ ∞

0

ϕλ(x)w(z, y, x)dµ(x)

]

dµ(z).

And by (1) we deduce that

F (τyf)(λ) = ϕλ(y)F (f)(λ).

Since L1 ∩ L2(µ) is dense in L2(µ), the formula (6) remains valid for f ∈ L2(µ).
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Example 1 (The Bessel case (ρ = 0), see [1, 14]) In this case A(x) = x2α+1, α > −1/2 and L is the
Bessel operator denoted by ∆α:

∆α =
d2

dx2
+

2α + 1

x

d

dx
.

The Sturm-liouville kernel ϕλ(x) is the spherical Bessel function jα(λx). In particular ϕ0(x) = jα(0) = 1.
The two measures µ and ν will be denoted respectively by µα and να and are given by

dµα(x) = x2α+1dx and dνα(λ) =
λ2α+1

(2αΓ(α + 1))2
dλ.

The Sturm-Liouville transform is the Fourier-Bessel transform denoted by Fα:

Fα(f)(λ) =

∫ ∞

0

jα(λx)f(x)dµα(x), λ ≥ 0.

The spherical Bessel function jα satisfies the product formula:

jα(λx)jα(λy) =

∫ ∞

0

jα(λz)wα(x, y, z)dµα(z), λ, x, y ≥ 0,

where wα(x, y, .) is the kernel given by

wα(x, y, z) = aα
[(x + y)2 − z2]α−1

2 [z2 − (x − y)2 ]α−1
2

22α−1(xyz)2α
χ(|x−y|,x+y)(z),

aα =
Γ(α + 1)√
πΓ(α + 1

2
)
,

where χ(|x−y|,x+y) is the characteristic function of the interval (|x − y|, x + y). And the Bessel translation
operator is given by

τα
y f(x) :=

∫ ∞

0

f(z)wα(x, y, z)dµα(z), x, y ≥ 0.

Example 2 (The Jacobi case (ρ > 0), see [8, 15]) In this case A(x) = sinh2α+1(x) cosh2β+1(x), α >
β ≥ −1/2 and ρ = α + β + 1. The Sturm-Liouville operator L is the Jacobi operator denoted by ∆α,β:

∆α,β =
d2

dx2
+ [(2α + 1) coth(x) + (2β + 1) tanh(x)]

d

dx
.

The Sturm-liouville kernel ϕλ(x) is the Jacobi function denoted by φ
(α,β)
λ (x):

φ
(α,β)
λ (x) = 2F1(

1

2
(ρ − iλ),

1

2
(ρ + iλ), α + 1,− sinh2(x)),

where 2F1(a, b, c, z) is the hypergeometric function. In particular

φ
(α,β)
0 (x) = 2F1(

1

2
ρ,

1

2
ρ, α + 1,− sinh2(x)).

The two measures µ and ν will be denoted respectively by µα,β and να,β and are given by

dµα,β(x) = sinh2α+1(x) cosh2β+1(x)dx and dνα,β(λ) =
dλ

2π|cα,β(λ)|2 ,

where

cα,β(λ) =
Γ(iλ)Γ(1

2 (1 + iλ))

Γ(1
2 (ρ + iλ))Γ(1

2(ρ + iλ) − β)
.
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The Sturm-Liouville transform is the Fourier-Jacobi transform denoted by Fα,β:

Fα,β(f)(λ) =

∫ ∞

0

φ
(α,β)
λ (x)f(x)dµα,β(x), λ ≥ 0.

The Jacobi function φ
(α,β)
λ satisfies the product formula:

φ
(α,β)
λ (x)φ

(α,β)
λ (y) =

∫ ∞

0

φ
(α,β)
λ (z)wα,β(x, y, z)dµα,β(z), λ, x, y ≥ 0,

where wα,β(x, y, .) is the kernel given by

wα,β(x, y, z) = aα
[cosh(x) cosh(y) cosh(z)]−(α+β+1

[sinh(x) sinh(y) sinh(z)]2α
(1 − B2)α−1

2

× 2F1(α + β, α − β, α +
1

2
,
1

2
(1 − B))χ(|x−y|,x+y)(z),

where

B =
cosh2(x) + cosh2(y) + cosh2(z) − 1

2 cosh(x) cosh(y) cosh(z)
.

And the Jacobi translation operator is given by

τ (α,β)
y f(x) :=

∫ ∞

0

f(z)wα,β(x, y, z)dµα,β(z), x, y ≥ 0.

3 The Sturm-Liouville-Stockwell Transform

Let f, g ∈ L2(ν). We define the convolution product f]g of f and g by

f]g(λ) := F (F−1(f)F−1(g))(λ). (7)

In the same way as in ([13, page 238]), we obtain the following assertions.

Lemma 2 (i) For f ∈ L1(ν) and g ∈ L2(ν), the function f]g belongs to L2(ν), and

F
−1(f]g) = F

−1(f)F−1(g).

(ii) Let f, g ∈ L2(ν). Then f]g belongs to L2(ν) if and only if F−1(f)F−1(g) belongs to L2(µ), and

F
−1(f]g) = F

−1(f)F−1(g), in the L2(µ) − case.

(iii) Let f, g ∈ L2(ν). Then
∫ ∞

0

|f]g(λ)|2dν(λ) =

∫ ∞

0

|F−1(f)(x)|2 |F−1(g)(x)|2dµ(x),

where both sides are finite or infinite.

We assume that g ∈ L2(ν) and y ≥ 0. The modulation of g by y is the function

gy := F

(
√

τy|F−1(g)|2
)

.

From (5) and Theorem 1(ii) we have
‖gy‖L2(ν) = ‖g‖L2(ν). (8)

Let g ∈ L2(ν). The Sturm-Liouville-Stockwell transform is the mapping Sg defined for f ∈ L2(ν) by

Sg(f)(λ, y) := f]gy(λ), λ, y ≥ 0. (9)

The Sturm-Liouville-Stockwell transform Sg possesses the following property.
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Lemma 3 Let f, g ∈ L2(ν). Then

Sg(f)(λ, y) =

∫ ∞

0

ϕλ(x)F−1(f)(x)
√

τy|F−1(g)|2(x)dµ(x).

Proof. From Theorem 1(iii) and (7) we have

Sg(f)(λ, y) =

∫ ∞

0

ϕλ(x)F−1(f)(x)F−1(gy)(x)dµ(x).

We obtain the result from the fact that

F
−1(gy)(x) =

√

τy|F−1(g)|2(x). (10)

The lemma is proved.

Theorem 4 (Plancherel formula) Let g ∈ L2(ν) be a non-zero function. Then, for all f ∈ L2(ν), we
have

‖Sg(f)‖L2(ν⊗µ) = ‖g‖L2(ν)‖f‖L2(ν).

Proof. From Lemma 2(iii) and (9), we obtain

∫ ∞

0

∫ ∞

0

|Sg(f)(λ, y)|2dν(λ)dµ(y) =

∫ ∞

0

∫ ∞

0

|f]gy(λ)|2dν(λ)dµ(y)

=

∫ ∞

0

∫ ∞

0

|F−1(f)(x)|2|F−1(gy)(x)|2dµ(x)dµ(y).

Using Theorem 1(ii), (5), (10) and Fubini-Tonelli theorem, we deduce

∫ ∞

0

∫ ∞

0

|Sg(f)(λ, y)|2dν(λ)dµ(y) =

∫ ∞

0

∫ ∞

0

|F−1(f)(x)|2τy|F−1(g)|2(x)dµ(x)dµ(y)

= ‖g‖2
L2(ν)‖f‖2

L2(ν).

The theorem is proved.

Theorem 5 (Inversion formula) Let g ∈ L2(ν) be a non-zero function. For all f ∈ L1 ∩ L2(ν) such that
F−1(f) ∈ L1(µ), we have

f(ξ) =
1

‖g‖2
L2(ν)

∫ ∞

0

Sg(f)(., y)]gy(ξ)dµ(y), ξ ≥ 0.

Proof. By Lemma 2(i), we have Sg(f)(., y) ∈ L2(ν). Then by (7), we obtain

Sg(f)(., y)]gy(ξ) =

∫ ∞

0

ϕξ(x)F−1(Sg(f)(., y))(x)F−1(gy)(x)dµ(x).

But by Lemma 2(i) and (10), we have

F
−1(Sg(f)(., y))(x) = F

−1(f)(x)F−1(gy)(x) = F
−1(f)(x)

√

τy|F−1(g)|2(x).

Thus,

Sg(f)(., y)]gy(ξ) =

∫ ∞

0

ϕξ(x)F−1(f)(x)τy |F−1(g)|2(x)dµ(x).



F. Soltani and Y. Zarrougui 65

Therefore, by Fubini’s theorem, Theorem 1(iii) and (5), we deduce that

∫ ∞

0

Sg(f)(., y)]gy(ξ)dµ(y) = ‖g‖2
L2(ν)

∫ ∞

0

ϕξ(x)F−1(f)(x)dµ(x)

= ‖g‖2
L2(ν)f(ξ).

This completes the proof of the theorem.

In the following we establish a reconstruction formula for the Sturm-Liouville-Stockwell transform Sg.
Let 0 < a < b < ∞ and let f ∈ L2(ν), we define the reconstruction function fa,b associated with Sg, by

fa,b(ξ) :=
1

‖g‖2
L2(ν)

∫ b

a

Sg(f)(., y)]gy(ξ)dµ(y), ξ ≥ 0.

Theorem 6 (Reconstruction formula) Let g ∈ L2(ν) be a non-zero function, such that F−1(g) ∈
L∞(µ). Then, for f ∈ L2(ν), the function fa,b belongs to L2(ν) and satisfies

lim
a→0
b→∞

‖fa,b − f‖L2(ν) = 0. (11)

Proof. By Lemma 2(ii), Sg(f)(., y) ∈ L2(ν), then by (7), we obtain

Sg(f)(., y)]gy(ξ) =

∫ ∞

0

ϕξ(x)F−1(Sg(f)(., y))(x)F−1(gy)(x)dµ(x).

But by Lemma 2(ii) and (10), we have

F
−1(Sg(f)(., y))(x) = F

−1(f)(x)F−1(gy)(x) = F
−1(f)(x)

√

τy|F−1(g)|2(x). (12)

Thus,

Sg(f)(., y)]gy(ξ) =

∫ ∞

0

ϕξ(x)F−1(f)(x)τy |F−1(g)|2(x)dµ(x),

and

fa,b(ξ) =
1

‖g‖2
L2(ν)

∫ b

a

∫ ∞

0

ϕξ(x)F−1(f)(x)τy |F−1(g)|2(x)dµ(x)dµ(y).

Then, by Fubini’s theorem we get

fa,b(ξ) =

∫ ∞

0

ϕξ(x)F−1(f)(x)Ka,b(x)dµ(x), (13)

where

Ka,b(x) =
1

‖g‖2
L2(ν)

∫ b

a

τy|F−1(g)|2(x)dµ(y).

From (5), it is easy to see that

‖Ka,b‖L∞(µ) ≤ 1.

On the other hand, by Hölder’s inequality, we deduce that

|Ka,b(x)|2 ≤ 1

‖g‖4
L2(ν)

[

∫ b

a

dµ(y)

] [

∫ b

a

|τy|F−1(g)|2(x)|2dµ(y)

]

.
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Hence, by Theorem 2 we find

‖Ka,b‖2
L2(µ) ≤ 1

‖g‖4
L2(ν)

[

∫ b

a

dµ(y)

]2
[
∫ ∞

0

|F−1(g)(x)|4dµ(x)

]

≤
‖F−1(g)‖2

L∞(µ)

‖g‖2
L2(ν)

[

∫ b

a

dµ(y)

]2

.

Thus Ka,b ∈ L∞ ∩L2(µ). Therefore and by (13), fa,b = F (Ka,bF
−1(f)) and by Theorem 1(ii), fa,b ∈ L2(ν)

and

F
−1(fa,b) = Ka,bF

−1(f).

From this relation it follows that

‖fa,b − f‖2
L2(ν) =

∫ ∞

0

|F−1(f)(x)|2(1 − Ka,b(x))2dµ(x).

But by (5) we have

lim
a→0
b→∞

Ka,b(x) = 1, for all x ≥ 0,

and

|F−1(f)(x)|2(1 − Ka,b(x))2 ≤ |F−1(f)(x)|2, for all x ≥ 0.

So, the relation (11) follows from the dominated convergence theorem.

Example 3 (The Bessel case (ρ = 0), see [1]) Let f, g ∈ L2(µα) the Bessel convolution of f and g is
given by

f]αg(x) =

∫ ∞

0

f(t)τα
x g(t)dµα(t), x ≥ 0.

Let g ∈ L2(µα) and let y ≥ 0. The modulation of g by y is the function:

gy :=
1

(2αΓ(α + 1))2
Fα

(√

τα
y |Fα(g)|2

)

.

For f, g ∈ L2(µα), the Bessel-Stockwell transform is given by

Sα,g(f)(x, y) = f]αgy(x) =

∫ ∞

0

f(t)τα
x gy(t)dµα(t), x, y ≥ 0.

The Bessel-Stockwell transform Sα,g has the following properties:

Sα,g(f)(x, y) =

∫ ∞

0

jα(λx)Fα(f)(λ)
√

τα
y |Fα(g)|2(λ)dνα(λ),

and

‖Sα,g(f)‖L2(µα⊗να) = ‖g‖L2(µα)‖f‖L2(µα).

Let 0 < a < b < ∞ and let f ∈ L2(µα), the reconstruction function fa,b associated with the Bessel-Stockwell
transform Sα,g is given by

fa,b(z) :=
1

‖g‖2
L2(µα)

∫ b

a

Sα,g(f)(., y)]αgy(z)dνα(y), z ≥ 0.
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4 Approximate Inversion Formulas

In this section, by using the theory of the modified Sturm-Liouville transform F , and building on the ideas of
Saitoh [16, 17, 18], we give best approximate inversion formula for the Sturm-Liouville-Stockwell transform
Sg. Pointwise approximate inversion formulas for Sg are also discussed.

Let s ≥ 0. We define the Strum-Liouville-Sobolev space of order s, that will be denoted H s, as the set
of all f ∈ L2(ν) such that (1 + x2)s/2ϕ−1

0 (x)F−1(f) ∈ L2(µ). The space H s is equipped with the norm

‖f‖H s :=

[
∫ ∞

0

(1 + x2)sϕ−2
0 (x)|F−1(f)(x)|2dµ(x)

]1/2

.

Lemma 4 Let s > 3/2 when ρ > 0 and s > α + 1 when ρ = 0. The space H s satisfies the inclusion

F
−1(H s) ⊂ L1 ∩ L2(µ),

and has the reproducing kernel

Ks(λ, ξ) =

∫ ∞

0

ϕλ(x)ϕξ(x)ϕ2
0(x)

(1 + x2)s
dµ(x), λ, ξ ≥ 0.

Proof. Let s > 3/2 when ρ > 0 and s > α + 1 when ρ = 0, and let f ∈ H s. From ([10, Lemma 21]), we
have
- For ρ > 0,

A(x) ∼ e2ρx, (x −→ ∞).

- For ρ = 0,
A(x) ∼ x2α+1, (x −→ ∞).

Therefore and by Lemma 1, the integral
∫ ∞
0

ϕλ(x)ϕξ(x)ϕ2
0(x)

(1+x2)s dµ(x) is convergent. Then the inclusion follows

from the inequality
‖F−1(f)‖L1(µ) ≤ Cs‖f‖H s ,

where

Cs :=

[
∫ ∞

0

ϕ2
0(x)

(1 + x2)s
dµ(x)

]1/2

.

On the other hand, from Theorem 1(iii), we have

F
−1(Ks(., ξ))(x) =

ϕξ(x)ϕ2
0(x)

(1 + x2)s
, x ≥ 0.

By Lemma 1, we get

‖Ks(., ξ)‖H s =

[
∫ ∞

0

|ϕξ(x)|2ϕ2
0(x)

(1 + x2)s
dµ(x)

]1/2

≤ Cs < ∞.

Moreover,

〈f, Ks(., ξ)〉H s =

∫ ∞

0

F
−1(f)(x)ϕξ(x)dµ(x) = f(ξ).

This completes the proof of the lemma.
Let g ∈ L2(ν). By Theorem 4, the mapping Sg is bounded from H s into L2(ν ⊗ µ), and

‖Sg(f)‖L2(ν⊗µ) ≤ ‖g‖L2(ν)‖f‖H s .

Let η > 0. We denote by 〈., .〉η,H s the inner product defined on the space H s by

〈f, h〉η,H s := η〈f, h〉H s + 〈Sg(f), Sg(h)〉L2(ν⊗µ).
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We assume that g ∈ L2(ν). By Theorem 4, the inner product 〈., .〉η,H s can be written

〈f, h〉η,H s = η〈f, h〉H s + ‖g‖2
L2(ν)〈f, h〉L2(ν).

Let η > 0 and let g ∈ L2(ν). Let s > 3/2 when ρ > 0 and s > α + 1 when ρ = 0. The space H s equipped
with the norm ‖.‖η,H s has the reproducing kernel

Ks,η,g(λ, ξ) =

∫ ∞

0

ϕλ(x)ϕξ(x)ϕ2
0(x)

η(1 + x2)s + ϕ2
0(x)‖g‖2

L2(ν)

dµ(x), λ, ξ ≥ 0.

Therefore, we have the functional equation

(ηI + S
∗
g Sg)Ks,η,g(., ξ) = Ks(., ξ), ξ ≥ 0,

where I is the unit operator and S ∗
g : L2(ν ⊗ µ) −→ H s is the adjoint of Sg .

For any k ∈ L2(ν ⊗ µ) and for any η > 0, we define the extremal function f∗
η,k by

f∗
η,k(ξ) := (ηI + S

∗
g Sg)

−1
S

∗
g (k)(ξ), ξ ≥ 0. (14)

The function f∗
η,k is the unique solution (see [16]) of the Tikhonov regularization problem

inf
f∈H s

{

η‖f‖2
H s + ‖k − Sg(f)‖2

L2(ν⊗µ)

}

.

This function possesses the following integral representation.

Theorem 7 Let s > 3/2 when ρ > 0 and s > α + 1 when ρ = 0, and let g ∈ L2(ν). Then for any
k ∈ L2(ν ⊗ µ) and for any η > 0, we have

f∗
η,k(ξ) =

∫ ∞

0

∫ ∞

0

ϕξ(x)ϕ2
0(x)F−1(k(., t))(x)

√

τt|F−1(g)|2(x)

η(1 + x2)s + ϕ2
0(x)‖g‖2

L2(ν)

dµ(x)dµ(t).

Proof. From Lemma 4 and relation (14), we have

f∗
η,k(ξ) = 〈(ηI + S

∗
g Sg)

−1
S

∗
g (k), Ks(., ξ)〉H s

= 〈S ∗
g (k), (ηI + S

∗
g Sg)−1Ks(., ξ)〉H s

= 〈S ∗
g (k), Ks,η,g(., ξ)〉H s .

Hence
f∗

η,k(ξ) = 〈k, Sg(Ks,η,g(., ξ))〉L2(ν⊗µ). (15)

By Lemma 1, the function x −→ ϕξ(x)ϕ2
0(x)

η(1 + x2)s + ϕ2
0(x)‖g‖2

L2(ν)

belongs to L1 ∩ L2(µ). Then from Theorem

1(ii), it follows that Ks,η,g(., ξ) belongs to L2(ν), and

F
−1(Ks,η,g(., ξ))(x) =

ϕξ(x)ϕ2
0(x)

η(1 + x2)s + ϕ2
0(x)‖g‖2

L2(ν)

, x ≥ 0. (16)

By Lemma 3 and (16), we have

Sg(Ks,η,g(., ξ))(λ, t) =

∫ ∞

0

ϕλ(x)F−1(Ks,η,g(., ξ))(x)
√

τt|F−1(g)|2(x)dµ(x)

=

∫ ∞

0

ϕλ(x)ϕξ(x)
ϕ2

0(x)
√

τt|F−1(g)|2(x)

η(1 + x2)s + ϕ2
0(x)‖g‖2

L2(ν)

dµ(x).
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Therefore,

f∗
η,k(ξ) =

∫ ∞

0

∫ ∞

0

∫ ∞

0

k(λ, t)ϕλ(x)ϕξ(x)
ϕ2

0(x)
√

τt|F−1(g)|2(x)

η(1 + x2)s + ϕ2
0(x)‖g‖2

L2(ν)

dµ(x)dν(λ)dµ(t).

Thus, by Fubini’s theorem, we obtain the result.

Remark 1 Let s > 3/2 when ρ > 0 and s > α+1 when ρ = 0, and let g ∈ L2(ν). Then for any k ∈ L2(ν⊗µ)
and for any η > 0, we have

(i) |f∗
η,k(ξ)| ≤ Cs

2
√

η‖k‖L2(ν⊗µ), ξ ≥ 0,

(ii) ‖f∗
η,k‖H s ≤ 1

2
√

η‖k‖L2(ν⊗µ).

Proof. (i) Indeed, from Theorem 4 and (15), we have

|f∗
η,k(ξ)| ≤ ‖k‖L2(ν⊗µ)‖Sg(Ks,η,g(., ξ))‖L2(ν⊗µ)

≤ ‖k‖L2(ν⊗µ)‖g‖L2(ν)‖Ks,η,g(., ξ)‖L2(ν).

From Theorem 1(ii) and (16), we deduce

|f∗
η,k(ξ)| ≤ ‖k‖L2(ν⊗µ)‖g‖L2(ν)‖F−1(Ks,η,g(., ξ))‖L2(µ)

≤ ‖k‖L2(ν⊗µ)‖g‖L2(ν)

[

∫ ∞

0

|ϕξ(x)|2ϕ4
0(x)

[η(1 + x2)s + ϕ2
0(x)‖g‖2

L2(ν)
]2

dµ(x)

]1/2

.

Since
[

η(1 + x2)s + ϕ2
0(x)‖g‖2

L2(ν)

]2

≥ 4η(1 + x2)sϕ2
0(x)‖g‖2

L2(ν), we obtain the required result.

(ii) The function

x −→ ϕ2
0(x)

η(1 + x2)s + ϕ2
0(x)‖g‖2

L2(ν)

∫ ∞

0

F
−1(k(., t))(x)

√

τt|F−1(g)|2(x)dµ(t),

belongs to L1 ∩ L2(µ). Then by Theorem 7, it follows that f∗
η,k belongs to L2(ν), and

F
−1(f∗

η,k)(x) =
ϕ2

0(x)

η(1 + x2)s + ϕ2
0(x)‖g‖2

L2(ν)

∫ ∞

0

F
−1(k(., t))(x)

√

τt|F−1(g)|2(x)dµ(t).

Thus, by Hölder’s inequality and (8) we have

|F−1(f∗
η,k)(x)|2 ≤

ϕ4
0(x)‖g‖2

L2(ν)

[η(1 + x2)s + ϕ2
0(x)‖g‖2

L2(ν)]
2

∫ ∞

0

|F−1(k(., t))(x)|2dµ(t).

Thus,

‖f∗
η,k‖2

H s ≤
∫ ∞

0

(1 + x2)sϕ2
0(x)‖g‖2

L2(ν)

[η(1 + x2)s + ϕ2
0(x)‖g‖2

L2(ν)]
2

[
∫ ∞

0

|F−1(k(., t))(x)|2dµ(t)

]

dµ(x)

≤ 1

4η

∫ ∞

0

[
∫ ∞

0

|F−1(k(., t))(x)|2dµ(t)

]

dµ(x) =
1

4η
‖k‖2

L2(ν⊗µ),

which ends the proof.

We establish approximate inversion formula for the Sturm-Liouville-Stockwell transform Sg.
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Theorem 8 Let s > 3/2 when ρ > 0 and s > α + 1 when ρ = 0, and let g ∈ L2(ν). For f ∈ H s, the
function f∗

η,Sg(f) belongs to H s and satisfies

lim
η→0+

‖f∗
η,Sg(f) − f‖H s = 0.

Proof. By (12) and Theorem 7, we have

f∗
η,Sg(f)(ξ) = ‖g‖2

L2(ν)

∫ ∞

0

ϕξ(x)
ϕ2

0(x)F−1(f)(x)

η(1 + x2)s + ϕ2
0(x)‖g‖2

L2(ν)

dµ(x), y ≥ 0. (17)

Since F−1(f) ∈ L1 ∩ L2(µ), from Theorem 1(iii) and (17), we deduce that

f∗
η,Sg(f)(ξ) − f(ξ) = −

∫ ∞

0

ϕξ(x)
η(1 + x2)sF−1(f)(x)

η(1 + x2)s + ϕ2
0(x)‖g‖2

L2(ν)

dµ(x). (18)

Thus,

F
−1(f∗

η,Sg(f) − f)(x) = − η(1 + x2)sF−1(f)(x)

η(1 + x2)s + ϕ2
0(x)‖g‖2

L2(ν)

.

Consequently,

‖f∗
η,Sg(f) − f‖2

H s =

∫ ∞

0

η2(1 + x2)3sϕ−2
0 (x)|F−1(f)(x)|2

[η(1 + x2)s + ϕ2
0(x)‖g‖2

L2(ν)]
2

dµ(x).

Using the dominated convergence theorem and the fact that

η2(1 + x2)3sϕ−2
0 (x)|F−1(f)(x)|2

[η(1 + x2)s + ϕ2
0(x)‖g‖2

L2(ν)]
2

≤ (1 + x2)sϕ−2
0 (x)|F−1(f)(x)|2,

we deduce the result.

Remark 2 Let s > 3/2 when ρ > 0 and s > α + 1 when ρ = 0, and let g ∈ L2(ν), and let f ∈ H s. By
(18), we have

|f∗
η,Sg(f)(ξ) − f(ξ)| ≤

∫ ∞

0

η(1 + x2)s|F−1(f)(x)|
η(1 + x2)s + ϕ2

0(x)‖g‖2
L2(ν)

dµ(x).

Using the dominated convergence theorem and the fact that

η(1 + x2)s|F−1(f)(x)|
η(1 + x2)s + ϕ2

0(x)‖g‖2
L2(ν)

≤ |F−1(f)(x)|,

we obtain the following pointwise approximate inversion formula

lim
η→0+

f∗
η,Sg(f)(ξ) = f(ξ), ξ ≥ 0.

Example 4 (The Bessel case (ρ = 0)) Let s > α + 1. The Bessel-Sobolev space of order s, that will be
denoted H s

α , is the set of all f ∈ L2(µα) such that

‖f‖H s
α

=

[
∫ ∞

0

(1 + λ2)s|Fα(f)(λ)|2dνα(λ)

]1/2

< ∞.

The Bessel-Sobolev space H
s

α has the reproducing kernel

Ks(x, y) =

∫ ∞

0

jα(λx)jα(λy)

(1 + λ2)s
dνα(λ), x, y ≥ 0.
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Let η > 0 and let g ∈ L2(µα). If the Bessel-Sobolev space H s
α is equipped with the inner product

〈f, h〉η,H s
α

= η〈f, h〉H s
α

+ ‖g‖2
L2(µα)〈f, h〉L2(µα),

then H s
α has the reproducing kernel

Ks,η,g(x, y) =

∫ ∞

0

jα(λx)jα(λy)

η(1 + λ2)s + ‖g‖2
L2(µα)

dνα(λ), x, y ≥ 0.

Then, we have the functional equation

(ηI + S
∗
α,gSα,g)Ks,η,g(., y) = Ks(., y), y ≥ 0,

where S ∗
α,g : L2(µα ⊗ να) −→ H s

α is the adjoint of Sα,g.
For any k ∈ L2(µα ⊗ να) and for any η > 0, the extremal function f∗

η,k is given by

f∗
η,k(y) := (ηI + S

∗
α,gSα,g)

−1
S

∗
α,g(k)(y), y ≥ 0.

This function is the unique solution of the problem

inf
f∈H s

α

{

η‖f‖2
H s

α
+ ‖k − Sα,g(f)‖2

L2(µα⊗να)

}

,

and has the following integral representation

f∗
η,k(y) =

∫ ∞

0

∫ ∞

0

jα(λy)Fα(k(., t))(λ)
√

τα
t |Fα(g)|2(λ)

η(1 + λ2)s + ‖g‖2
L2(µα)

dνα(λ)dνα(t).
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