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Abstract

The main goal of this study is to construct extremal solutions for a class of fractional differential

equations with maxima. We also give some examples to show what our results mean.

1 Introduction

The purpose of this work is to study the existence and uniqueness of solutions for the following problem

{
(C

D
α
0+u)(t) = f(t, u (t) , max

s∈[t−r,t]
u (s)), t ∈ J = [0, T ],

u (t) = ϕ (t) , t ∈ [−r, 0] ,
(1)

where C
D

α
0+ is the Caputo fractional derivative of order α with 0 < α ≤ 1, T > 0 and r > 0, f : J×R×C → R

with C = C ([−r, T ] , R) and ϕ : [−r, 0] → R are continuous.

It was automatic control that first used differential equations with maxima and differential inequalities
with maxima. They were used to study systems with saturation and the stability of equations with retarded
argument (see [27] and [19, Chapter 4 Section 5]). We also want to point out that differential equations with
maxima show up in a lot of different fields, like psychology, the dynamic model for happiness, the theory
of lateral inhibition, optimal control, and the economy (see [4], [5], [7], [9], [11], [18], [20], [21], [23], [25,
Introduction] and [31]).

On the other hand, several authors have studied differential equations with maxima, fractional differential
equations with maxima, and fractional integral equations with maxima using Banach’s fixed point theorem,
Leray-Schauder topological degree theory, weakly Picard operator theory, fixed point theorems associated
with the measure of weak noncompactness, the upper and lower solutions method coupled with a monotone
iterative technique, and numerical methods (see [1], [2], [3], [6], [7], [10], [12], [15], [16], [17], [26], [29], [30],
[32] and [33] and the references cited therein).

A number of authors (see [6], [7] and [17]) are known for using the monotone iterative method and the
method of upper and lower solutions to show that there are solutions for first-order differential equations
with maxima. The work aims to demonstrate its successful application to problems of type (1), assuming an
increase in nonlinearity f with respect to its third variable. Furthermore, we provide sufficient conditions
that guarantee that problem (1) has a unique solution.

The structure of the present paper is as follows: In Section 2, we give some definitions and preliminary
results. Section 3 presents and proves the main results, while Section 4 illustrates their application through
some examples.
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74 Existence of Extremal Solutions for FFDE with Maxima

2 Definitions and Preliminary Results

This section provides definitions and preliminary results for the rest of the article.

Definition 1 (See [28, Chapter 1 page 33]) Let 0 < q ≤ 1 and h ∈ L1 (J, R). The Riemann-Liouville
integral of order q of h is defined by

(Iq

0+h) (t) =
1

Γ (q)

t∫

0

(t − s)
q−1

h (s) ds, for a.e. t ∈ J,

where Γ is the Gamma Euler function defined by

Γ (x) =

+∞∫

0

e−ttx−1dt,

where x ∈ R with x > 0.

Remark 1 If q = 0, we put by definition (I0
0+h) (t) = h(t).

Notation 1 By AC(J, R) we denote the set of real functions f which are absolutely continuous on J .

Definition 2 (See [13, Chapter 3 page 50] or [22, Chapter 2 page 91]) Let 0 < q ≤ 1 and h ∈
AC(J, R). The Caputo fractional derivative of order q of h is defined by

(C
D

q

0+h) (t) = (RL
D

q

0+ (h − h (0)))(t), for a.e. t ∈ J,

where RL
D

q

0+ is the Riemann-Liouville fractional derivative defined by

(RL
D

q

0+h) (t) =
d

dt
(I1−q

0+ h) (t)

=





1
Γ(1−q)

d
dt

t∫
0

(t − s)
−q

h (s) ds if 0 < q < 1,

h′ (t) if q = 1.

Now, we consider the following Cauchy problem
{

(C
D

q

0+u) (t) = −Lu (t) + g̃(t), t ∈ J,

u(0) = ξ,
(2)

where 0 < q ≤ 1, L ≥ 0, ξ ∈ R and g̃ : J→ R is continuous.

Lemma 1 (See [22, Chapter 4 page 231]) The problem (2) admits a unique solution u, which is given
by

u(t) = ξEq(−Ltq) +

∫ t

0

(t − s)q−1Eq,q(−L(t − s)q)g̃(s)ds, for all t ∈ J,

where Eq and Eq,q are the Mittag-Leffler functions defined by

Eq(x) =
∞∑

n=0

xn

Γ(qn + 1)
, x ∈ R,

and

Eq,q(x) =

∞∑

n=0

xn

Γ(q(n + 1))
, x ∈ R.
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Theorem 1 (See [8, Theorem 4.2]) For 0 < q ≤ 1, Eq has no zeros on the real axis, 0 < Eq(x) < 1 for
x < 0, and d

dx
Eq(x) > 0 for the whole real axis.

Lemma 2 (See [24]) For 0 < q ≤ 1, one has

(i) Eq,q(−x) = −q d
dx

Eq(−x), for all x ≥ 0,

(ii) Eq,q(−x) > 0, for all x ≥ 0.

Lemma 3 Assume that u ∈ C (J, R) with C
D

q

0+u ∈ C (J, R) satisfying

{
(C

D
q

0+u) (t) + Lu (t) ≤ 0, for all t ∈ J,

u(0) ≤ 0,

where 0 < q ≤ 1 and L ≥ 0. Then u (t) ≤ 0, for all t ∈ J.

Proof. The proof follows immediately from Lemma 1, Theorem 1, and (ii) of Lemma 2.

Lemma 4 (See [14, Corollary 2.4]) Let 0 < q ≤ 1 and b > 0 and assume u ∈ C ([0, b] , R) with CD
q

0+u ∈
C ([0, b] , R). Then there exists some c in (0, b) such that

u (b) − u (0)

bq
=

(C
D

q

0+u) (c)

Γ (q + 1)
.

We have the following result.

Lemma 5 Assume that u ∈ C ([−r, T ] , R) with C
D

q

0+u ∈ C (J, R) satisfying

{
(C

D
q

0+u) (t) ≤ −M̃1u (t) − Ñ1 max
s∈[t−r,t]

u (s) , t ∈ J ,

u (t) ≤ 0, for all t ∈ [−r, 0] ,

where 0 < q ≤ 1, M̃1 ≤ 0 and Ñ1 ≤ 0. If

−
(
M̃1 + Ñ1

) T q

Γ (1 + q)
< 1,

then u (t) ≤ 0, for all t ∈ [−r, T ] .

Proof. Assume that there exists t1 ∈ (0, T ] such that

u (t1) > 0.

We put by definition
u (t∗) = max

t∈[−r,t1]
u (t) > 0,

where t∗ ∈ (0, t1].
We have

(C
D

q

0+u) (t) ≤ −M̃1u (t) − Ñ1 max
s∈[t−r,t]

u (s) , t ∈ J .

Which implies

(C
D

q

0+u) (t) ≤ −
(
M̃1 + Ñ1

)
u (t∗) , t ∈ [0, t1] .

From Lemma 4, there exists ξ ∈ (0, t∗) such that

u (t∗) − u (0) = tq
∗

(C
D

q

0+u) (ξ)

Γ (q + 1)
.
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Then we have

u (t∗) − u (0) ≤ −tq
∗

(
M̃1 + Ñ1

)
u (t∗)

Γ (q + 1)
.

This implies

u (t∗) ≤ −

(
M̃1 + Ñ1

)
u (t∗)

Γ (1 + q)
T q.

Since u (t∗) > 0, we get

1 ≤ −
(
M̃1 + Ñ1

) T q

Γ (1 + q)
.

Which is a contradiction with the assumption

−
(
M̃1 + Ñ1

) T q

Γ (1 + q)
< 1,

and consequently, we deduce that
u (t) ≤ 0, for all t ∈ [−r, T ] .

Lemma 6 (See [30, Theorem 1 page 44]) If the functions u : [c, d] → R and v : [c, d] → R are continu-
ous on the segment [c, d], then we have

∣∣∣∣ max
t∈[c,d]

u (t) − max
t∈[c,d]

v (t)

∣∣∣∣ ≤ max
t∈[c,d]

|u (t) − v (t)| .

3 Main Results

In this section, we give some definitions, state, and prove our results.

Definition 3 We say that u is a lower solution of (1) if

i) u ∈ C ([−r, T ] , R) with C
D

α
0+u ∈ C (J, R) .

ii)

{
(C

D
α
0+u)(t) ≤ f(t, u (t) , max

s∈[t−r,t]
u (s)), t ∈ J,

u (t) ≤ ϕ (t) , t ∈ [−r, 0] .

Definition 4 We say that u is an upper solution of (1) if

i) u ∈ C ([−r, T ] , R) with C
D

α
0+u ∈ C (J, R) .

ii)

{
(C

D
α
0+u) (t) ≥ f(t, u (t) , max

s∈[t−r,t]
u (s)), t ∈ J,

u (t) ≥ ϕ (t) , t ∈ [−r, 0] .

Definition 5 We say that u is a solution of (1) if u ∈ C ([−r, T ] , R) with C
D

α
0+u ∈ C (J, R) and satisfies

(1).

We have the following result.

Theorem 2 Let u and u be lower and upper solutions respectively for problem (1) such that u ≤ u in [−r, T ]
and assume that there exist a constant M ≥ 0 satisfying
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(H1) f(t, x1, y) − f (t, x2, y) ≥ −M (x1 − x2), for all t ∈ J , u (t) ≤ x2 ≤ x1 ≤ u (t) and max
s∈[t−r,t]

u (s) ≤ y ≤
max

s∈[t−r,t]
u (s) .

(H2) The function y 7→ f(t, x, y) is increasing for all t ∈ J , u (t) ≤ x ≤ u (t) and max
s∈[t−r,t]

u (s) ≤ y ≤
max

s∈[t−r,t]
u (s) .

Then the problem (1) has a minimal solution u∗ and a maximal solution u∗ such that for every solution u

of (1) with u ≤ u ≤ u in [−r, T ], we have

u ≤ u∗ ≤ u ≤ u∗ ≤ u in [−r, T ].

Proof. We take u0 = u, and we define the sequence of functions (un)n∈N by

{
(C

D
α
0+un+1) (t) + Mun+1 (t) = fn (t) , t ∈ J,

un+1(t) = ϕ (t) , t ∈ [−r, 0] ,
(3)

where
fn (t) = f(t, un (t) , max

s∈[t−r,t]
un (s)) + Mun (t) .

Analogously, we take u0 = u and we define the sequence of functions (un)n∈N by

{
(C

D
α
0+un+1) (t) + Mun+1 (t) = f̃n (t) , t ∈ J,

un+1(t) = ϕ (t) , t ∈ [−r, 0] ,
(4)

where
f̃n (t) = f(t, un (t) , max

s∈[t−r,t]
un (s)) + Mun (t) .

First we note that from Lemma 1, it follows that the sequence of functions (un)n∈N and (un)n∈N are well
defined and for all n ∈ N, we have

un+1 (t) =

{
ϕ (t) , if t ∈ [−r, 0] ,

ϕ(0)Eα(−Mtα) +
∫ t

0
(t − s)α−1Eα,α(−M(t − s)α)fn (s) ds, if t ∈ J,

and

un+1 (t) =

{
ϕ (t) , if t ∈ [−r, 0] ,

ϕ(0)Eα(−Mtα) +
∫ t

0
(t − s)α−1Eα,α(−M(t − s)α)f̃n (s) ds, if t ∈ J.

Step 1: For all n ∈ N, we have

un ≤ un+1 ≤ un+1 ≤ un in [−r, T ] .

Let
w0 (t) := u0 (t) − u1 (t) , t ∈ [−r, T ] .

By (3) and using the definition of lower solution, we have

{
(C

D
α
0+w0) (t) + Mw0 (t) ≤ 0, t ∈ J,

w0 (0) ≤ 0.

Then from Lemma 3, we get
w0 (t) ≤ 0, for all t ∈ [0, T ] ,

and since
w0 (t) ≤ 0, for all t ∈ [−r, 0] ,
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we obtain
w0 (t) ≤ 0 for all t ∈ [−r, T ] .

That is
u0 ≤ u1 in [−r, T ] . (5)

Similarly, we can prove that
u1 ≤ u0 in [−r, T ] . (6)

Now, we put by definition
p1 (t) = u1 (t) − u1 (t) , t ∈ [−r, T ] .

Combining (3) and (4), we obtain

(C
D

α
0+p1) (t) + Mp1 (t) = f0 (t) − f̃0 (t) , for all t ∈ J.

Since u0 = u ≤ u = u0 in [−r, T ] and using the hypothesis (H1) , we deduce that

(C
D

α
0+p1) (t) + Mp1 (t) ≤ 0, t ∈ J. (7)

On the other hand, we have
p1(t) = 0, for all t ∈ [−r, 0] .

That is
p1(0) = p1(t) = 0, for all t ∈ [−r, 0] . (8)

By the previous equality and (7), we have

{
(C

D
α
0+p1) (t) + Mp1 (t) ≤ 0, t ∈ J ,

p1(0) = 0.

Then from Lemma 3, we get
p1 (t) ≤ 0, for all t ∈ [0, T ] ,

and since
p1 (t) = 0, for all t ∈ [−r, 0] ,

we obtain
p1 (t) ≤ 0, for all t ∈ [−r, T ] .

That is
u1 ≤ u1 in [−r, T ] , (9)

and then by (5), (6) and (9), we obtain

u0 ≤ u1 ≤ u1 ≤ u0 in [−r, T ] .

Assume for fixed n ≥ 1, we have

un ≤ un+1 ≤ un+1 ≤ un in [−r, T ] ,

and we show that
un+1 ≤ un+2 ≤ un+2 ≤ un+1 in [−r, T ] .

We put by definition
wn+1 (t) := un+1 (t) − un+2 (t) , t ∈ [−r, T ] .

By (3), we have {
(C

D
α
0+wn+1) (t) + Mwn+1 (t) = gn (t) , t ∈ J,

wn+1(0) = wn+1(t) = 0, t ∈ [−r, 0] ,



M. Derhab and B. Messirdi 79

where
gn (t) = fn (t) − fn+1 (t) , for all t ∈ J.

Since un ≤ un+1 in [−r, T ] and using the hypotheses (H1) and (H2), we obtain

{
(C

D
α
0+wn+1) (t) + Mwn+1 (t) ≤ 0, t ∈ J,

wn+1(0) = 0.

Then from Lemma 3, it follows that

wn+1 (t) ≤ 0, for all t ∈ [0, T ] .

and since
wn+1 (t) = 0, for all t ∈ [−r, 0] ,

we obtain
wn+1 (t) ≤ 0, for all t ∈ [−r, T ] .

That is
un+1 (t) ≤ un+2 (t) , for all t ∈ [−r, T ] . (10)

Similarly, we can prove that
un+2 ≤ un+1 in [−r, T ] , (11)

and
un+2 ≤ un+2 in [−r, T ] . (12)

Combining (10), (11) and (12), we obtain

un+1 ≤ un+2 ≤ un+2 ≤ un+1 in [−r, T ] ,

and consequently for all n ∈ N, we have

un ≤ un+1 ≤ un+1 ≤ un in [−r, T ] .

The proof of Step 1 is complete.

Step 2: The consequence (un)n∈N converges to a minimal solution of (1).
By Step 1, it follows that the sequence of functions (un)n∈N converges to u∗. First it is not difficult to see
that

u∗(t) = ϕ (t) , for all t ∈ [−r, 0] .

Given that the sequence of functions (un)n∈N is uniformly bounded on [0, T ] and it is not difficult to show
that this sequence of functions is equicontinuous on [0, T ], then by the Arzéla-Ascoli theorem, there exists
a subsequence (unj

)nj∈N of (un)n∈N which converges in C (J, R) to a function ũ∗, and since the sequence of
functions (un)n∈N converges to u∗, we have ũ∗ = u∗ and the sequence (un)n∈N converges in C (J, R) to u∗.
Now let n ∈ N

∗ and t ∈ J , then we have

un+1(t) = ϕ(0)Eα(−Mtα) +

∫ t

0

(t − s)α−1Eα,α(−M(t − s)α)fn (s) ds.

Letting n → +∞, we obtain

fn (s) → f(s, u∗ (s) , max
s∈[t−r,t]

u∗ (s)) + Mu∗ (s) .

Since the sequence of functions (fn)
n∈N

is uniformly bounded, then the dominated convergence theorem of
Lebesgue implies that

u∗(t) = ϕ(0)Eα(−Mtα) +

∫ t

0

(t − s)α−1Eα,α(−M(t − s)α)f̃ (s) ds,
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where

f̃ (s) = f(s, u∗ (s) , max
τ∈[s−r,s]

u∗ (τ )) + Mu∗ (s) ,

and from Lemma 1, we deduce that

{
(C

D
α
0+u∗)(t) + Mu∗ (t) = f(t, u∗ (t) , max

s∈[t−r,t]
u∗ (s)) + Mu∗ (t) , if t ∈ J,

u∗ (t) = ϕ(t), if t ∈ [−r, 0] .

That is {
(C

D
α
0+u∗)(t) = f(t, u∗ (t) , max

s∈[t−r,t]
u∗ (s)), if t ∈ J,

u∗ (t) = ϕ(t), if t ∈ [−r, 0] .

Thus, u∗ is a solution to the problem (1).
Now, we prove that if u is another solution of (1) such that u ≤ u ≤ u, then u∗ ≤ u. Since u is an upper

solution of (1), then by Step 1, we have

∀n ∈ N, un ≤ u.

Letting n → +∞, we obtain

u∗ = lim
n→+∞

un ≤ u.

Which mean that u∗ is a minimal solution of problem (1). The proof of Step 2 is complete. Similarly, we
can prove that the sequence (un)n∈N converges to a maximal solution u∗ of (1).

The proof of Theorem 2 is complete.

To prove the uniqueness of solutions for the problem (1), it is necessary to impose additional conditions
on f .

On the nonlinearity f , we shall impose the following additional conditions.

(H3) There exists M1 ≤ 0 such that the function x 7−→ f(t, x, y) + M1x is decreasing for all t ∈ J ,
u (t) ≤ x ≤ u (t) and max

s∈[t−r,t]
u (s) ≤ y ≤ max

s∈[t−r,t]
u (s) .

(H4) There exists M2 ≤ 0 such that the function y 7−→ f(t, x, y) + M2y is decreasing for all t ∈ J , u (t) ≤
x ≤ u (t) and max

s∈[t−r,t]
u (s) ≤ y ≤ max

s∈[t−r,t]
u (s) .

(H5) − (M1 + M2)
T α

Γ(1+α) < 1.

We have the following result.

Theorem 3 Assume that hypotheses (Hi) for i = 1; ..., 5 are satisfied and u and u be lower and upper
solutions respectively for problem (1) such that u ≤ u in [−r, T ]. Then the problem (1) admits a unique
solution u such that u ≤ u ≤ u in [−r, T ].

Proof. From Theorem 2, the problem (1) admits a minimal solution u∗ and a maximal solution u∗ such
that

u ≤ u∗ ≤ u∗ ≤ u in [−r, T ] .

We put by definition
û (t) = u∗ (t) − u∗ (t) , t ∈ [−r, T ] .

We have

û (t) ≥ 0 for all t ∈ [−r, T ] . (13)

Now we are going to prove that

û (t) ≤ 0 for all t ∈ [−r, T ] .
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We have {
(C

D
α
0+û)(t) = f(t, u∗ (t) , max

s∈[t−r,t]
u∗ (s)) − f(t, u∗ (t) , max

s∈[t−r,t]
u∗ (s)), t ∈ J,

û (t) = 0, t ∈ [−r, 0] .

Using the hypothesis (H3), we get

{
(C

D
α
0+ û)(t) + M1û(t) ≤ f(t, u∗ (t) , max

s∈[t−r,t]
u∗ (s)) − f(t, u∗ (t) , max

s∈[t−r,t]
u∗ (s)), t ∈ J,

û (t) = 0, t ∈ [−r, 0] .

Now from Lemma 6, we have

max
s∈[t−r,t]

û (s) = max
s∈[t−r,t]

|u∗ (s) − u∗ (s)| ≥ max
s∈[t−r,t]

u∗ (s) − max
s∈[t−r,t]

u∗ (s) ,

and then by the hypothesis (H4), we obtain

{
(C

D
α
0+û)(t) + M1û(t) + M2 max

s∈[t−r,t]
û (s) ≤ 0, t ∈ J,

û (0) = û (t) = 0, t ∈ [−r, 0] .

Now using the hypothesis (H5), then from Lemma 5, we deduce that

û (t) ≤ 0 for all t ∈ [−r, T ] ,

and then by the inequality (13), it follows that

û (t) = 0 for all t ∈ [−r, T ] .

That is
u∗ (t) = u∗ (t) for all t ∈ [−r, T ] .

Thus, it follows that the problem (1) has a unique solution.

4 Applications

In this section, we give some examples illustrating how our results are applied.

4.1 Example 1

We consider the following problem
{

(C
D

α
0+u) (t) = f(t, u (t) , max

s∈[t−1,t]
u (s)), t ∈ [0, 1] ,

u(s) = 0, s ∈ [−1, 0] ,
(14)

where
f(t, u (t) , max

s∈[t−1,t]
u (s)) = −au (t) + b max

s∈[t−1,t]
u (s) + h (t) ,

with a and b are positive real numbers such that b ≥ a,
b

Γ (1 + α)
< 1, and h : [0, 1] → R

∗

+ continuous such

that max
t∈[0,1]

h (t) ≤ b − a.

We put by definition
u(t) = 0 and u(t) = 1, for all t ∈ [−1, 1] .

It is not difficult to show that u and u are the lower and upper solutions for the problem (14).
On the other hand, it is easy to observe that the function f satisfies the assumptions of Theorem 3 and

consequently, it follows that the problem (14) admits a unique solution u, such that 0 ≤ u ≤ 1.
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Remark 2 If we consider the following problem

{
(C

D
α
0+u) (t) = b max

s∈[t−1,t]
u (s) + b tα

Γ(α+1) , t ∈ [0, 1] ,

u(s) = 0, s ∈ [−1, 0] ,
(15)

where b a positive real number. The problem (15) admits a unique solution u which is given by

u(t) =

{
0, if t ∈ [−1, 0] ,

Eα(btα) − b tα

Γ(α+1) − 1, if t ∈ (0, 1].

It should be noted that the problem (15) is a generalization of the one presented in Example 1 of [32].

4.2 Example 2

We consider the following problem





(C
D

1
2

0+u) (t) = f(t, u (t) , max
s∈[t−1,t]

u (s)), t ∈
[
0,

3

4

]
,

u(t) = t, t ∈ [−1, 0] ,
(16)

where

f(t, u (t) , max
s∈[t−1,t]

u (s)) = − sin(u (t)) +

max
s∈[t−1,t]

u (s)

2
+

sin t

2
.

We put by definition

u(t) = −1, for all t ∈
[
−1,

3

4

]
,

and

u(t) = t, for all t ∈
[
−1,

3

4

]
.

First, u is a lower solution for the problem (16) if we have





(C
D

1
2

0+u) (t) ≤ − sin(u (t)) +

max
s∈[t−1,t]

u (s) + sin t

2
, t ∈

[
0,

3

4

]
,

u(t) ≤ t, t ∈ [−1, 0] .

That is 



0 ≤ sin 1 +
−1 + sin t

2
, t ∈

[
0,

3

4

]
,

−1 ≤ t, t ∈ [−1, 0] .

Since

sin 1 +
−1 + sin t

2
≥ sin 1 − 1

2
= 0.34147 ≥ 0, for all t ∈

[
0,

3

4

]
,

we obtain, u is a lower solution for the problem (16).
Now, u is an upper solution for the problem (16) if we have





(C
D

1
2

0+u) (t) ≥ − sin(u (t)) +

max
s∈[t−1,t]

u (s) + sin t

2
, t ∈

[
0,

3

4

]
,

u(t) ≥ t, t ∈ [−1, 0] .
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That is 



√
t

Γ
(

3
2

) ≥ t − sin t

2
, t ∈

[
0,

3

4

]
,

t ≥ t, t ∈ [−1, 0] .

Since

φ1(t) =

√
t

Γ
(

3
2

) −
(

t − sin t

2

)
≥ 0, for all t ∈

[
0,

3

4

]
,

we obtain, u is an upper solution for the problem (16).
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Figure 1: Graph of the function φ1.

Now if we choose M1 = 0 and M2 = −1

2
, we have

− (M1 + M2)
Tα

Γ (1 + α)
=

√
3

4Γ

(
1 +

1

2

) = 0.4886 < 1.

On the other hand, it’s straightforward to see that the function f satisfies the other assumptions of Theorem
3, and consequently, it follows that the problem (16) admits a unique solution u such that −1 ≤ u ≤ t.

4.3 Example 3

We consider the following problem




(C
D

3

4

0+u) (t) = f(t, u (t) , max
s∈[t−1,t]

u (s)), t ∈
[
0, 1

2

]
,

u(t) = t, t ∈ [−1, 0] ,
(17)

where

f(t, u (t) , max
s∈[t−1,t]

u (s)) = −u (t) + (t + 1) max
s∈[t−1,t]

u (s) +
t

2
+ 1.
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We put by definition

u(t) = t, for all t ∈
[
−1,

1

2

]
,

and

u(t) =

{
t, if t ∈ [−1, 0[ ,

2t
3
4 , if t ∈

[
0, 1

2

]
.

First, u is a lower solution for problem (17), if we have




(C
D

3
4

0+u) (t) ≤ f(t, u (t) , max
s∈[t−1,t]

u (s)), t ∈
[
0,

1

2

]
,

u(t) ≤ t, t ∈ [−1, 0] .

That is 



4
√

t

Γ

(
5

4

) ≤ t2 +
t

2
+ 1, t ∈

[
0,

1

2

]
,

t ≤ t, t ∈ [−1, 0] .

Since

φ2(t) =
4
√

t

Γ

(
5

4

) − t2 − t

2
− 1 ≤ 0, for all t ∈

[
0,

1

2

]
,

we obtain u is a lower solution for the problem (17).
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Figure 2: Graph of the function φ2.

Now, u is an upper solution for the problem (17) if we have




(C
D

3
4

0+u) (t) ≥ f(t, u (t) , max
s∈[t−1,t]

u (s)), t ∈
[
0,

1

2

]
,

u(t) ≥ t, t ∈ [−1, 0] .

That is 



2

Γ

(
3

4
+ 1

) ≥ 2tt
7
4 +

t

2
+ 1, t ∈

[
0,

1

2

]
,

t ≥ t, t ∈ [−1, 0] .
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Since

φ3(t) =
2

Γ

(
3

4
+ 1

) − 2t
7
4 − t

2
− 1 ≥ 0, for all t ∈

[
0,

1

2

]
,

we obtain u is an upper solution for the problem (17).
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Figure 3: Graph of the function φ3.

Now if we choose M1 = −1 and M2 = 0, we have

− (M1 + M2)
Tα

Γ (1 + α)
=

1

2
3

4 Γ

(
1 +

3

4

) = 0.64697 < 1.

On the other hand, it is clear that the function f satisfies the other assumptions of Theorem 3, and conse-
quently it follows that the problem (17) admits a unique solution u such that u ≤ u ≤ u.
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