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Abstract

It is well known that for analytic cost functions, gradient flow trajectories have finite length and
converge to a single critical point. The gradient conjecture of R. Thom states that, again for analytic
cost functions, whenever the gradient flow trajectory converges, the limit of its unit secants exists. One
might think that already the convergence of the gradient flow trajectory to a critical point is enough
to ensure that the unit secants have a limit, but this does not hold - the gradient conjecture is to a
certain extend sharp. We provide a counterexample in case of the missing analyticity assumption, that
is a smooth (non-analytic) cost function f , where the limit of unit secants does not exist. In addition, f
satisfies even a strong geometric length-distance convergence property.

1 Introduction

Let f : Rn → R and consider the Euclidean gradient flow given by

x′(t) = −∇f(x(t)), t ≥ 0, x(0) = x0. (1)

In 1984, Lojasiewicz proved in a landmark paper [5] that under the assumption f being analytic, the gradient
trajectory either has finite arc-length (i.e. it converges to a limit point x∗) or diverges, for t → ∞. Recent
work has been done to achieve similar results for discrete gradient decent systems and related optimization
schemes, see [1]. It is well known that merely smoothness of the cost function f is not suffi cient to guarantee
the same result. An example are the so called "Mexican hat" functions, see [1], [6, page 13] and [2], that
construct a function in polar coordinates, where the gradient trajectory has the whole unit circle as its limit
set.
One is not only interested whether the trajectory converges, but also in its geometry. In 1989, René

Thom proposed in [7] the gradient conjecture. He conjectured that a convergent trajectory "does not spiral
around its limit point".

Theorem 1 Let x(t) be a solution of (1) with f analytic and suppose that x(t) → x∗. Then x(t) has a
tangent at x∗, that is the limit of secants limt→∞

x(t)−x∗
|x(t)−x∗| exists.

Ten years later the conjecture was proven to be true in [3], making use of techniques from subanalytic
geometry originating in [5] and [4].
We now ask the question whether smoothness could be enough to have existence of the limit of secants

for a converging gradient trajectory x. As it turns out, the answer is no and we construct explicitly the orbit
of a gradient trajectory to a smooth function f , where the limit of unit secants does not exists.

Upon reparametrizing by arc-length s, without loss of generality we assume that x∗ is the origin and
f(x∗) = 0, i.e. the differential equation in (1) becomes x′(s) =

∇f(x(s))
|∇f(x(s))| and we consider s→ s0 <∞. In the

process of the proof in [3] a related weaker statement (than the convergence of unit secants) is also shown.
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Corollary 1 ([3, Corollary 6.5], Length-distance convergence) Let x(s) be a trajectory of ∇f|∇f | and x(s)→ 0

as s→ s0. Denote by σ(s) its arc-length to the origin, then

σ(s)

|x(s)| → 1 as s→ s0.

The counterexample given here also satisfies the length-distance convergence, i.e. its arc-length approaches
its distance to the origin. Morally speaking, the geometry of the trajectory resembles more and more the
straight line segment connecting x(s) and the origin, yet it does spiral around its limit point. For θ(t), the
angle of the unit secants with (1, 0) ∈ R2, not only does the limit limt→∞ θ(t) not exist (which would also
be the case if the trajectory were to wiggle within a certain sector), but even limt→∞ θ(t) =∞.

2 Counterexample

The function is inspired by the Mexican hat function [1] and also employs the fact that e−x decays faster
than any polynomial.
The main idea is to construct a spiral curve γ : [2,∞) → R2, written in polar coordinates as γ(t) =

(r(t), θ(t)), satisfying the desired properties and then construct a function f(r, θ) such that a gradient flow
of f starting at e.g. x0 = γ(2) = (1/2, log(log(2))) follows the trajectory of γ.

2.1 The Spiraling Trajectory Curve

Define the curve γ : R→ R2 as

γ(t) = (r(t), θ(t)) :=

(
1

t
, log(log(t))

)
.

We obtain the following results:

• γ(t)→ 0 as t→∞, since r(t) = 1
t → 0.

• γ has finite length: Since γ′(t) = (x(t), y(t))′ = (r(t) cos θ(t), r(t) sin θ(t))′,

‖γ′(t)‖ =
(
(r′ cos(θ)− r sin(θ)θ′2 + (r′ sin(θ) + r cos(θ)θ′2

)1/2
=

√
r′2 cos2 θ − 2r′r cos θ sin θθ′2 sin2 θθ′2 + r′2 sin2 θ + 2rr′ sin θ cos θθ′2 cos2 θθ′2

=

√
r′2 + r(t)2θ′2 =

√
1

t4
+
1

t4
1

log2(t)
.

Therefore, ∫ ∞
2

‖γ′(t)‖dt =
∫ ∞
2

√
1

t4
+
1

t4
1

log2(t)
dt ≤ C

∫ ∞
2

1

t2
<∞.

• Length-distance convergence, i.e. σ(s)
|γ(s)| =

∫∞
s
‖γ′(t)‖dt
|γ(s)| → 1 as s→∞: For this, we estimate∫ ∞

s

‖γ′(t)‖dt =

∫ ∞
s

√
1

t4
+
1

t4
1

log2(t)
dt

≤
∫ ∞
s

1

t2
+

∫ ∞
s

1

t2
1

log2(t)
dt

≤ 1

s
+

1

log2(s)

∫ ∞
s

1

t2
dt

=
1

s
+
1

s

1

log2(s)
.
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Which in turn implies

σ(s)

|γ(s)| =
∫∞
s
‖γ′(t)‖dt
|γ(s)| ≤

1
s +

1
s

1
log2(s)

1
s

= 1 +
1

log2(s)
→ 1,

and thus 1 ≤ lims→∞ σ(s)
|γ(s)| = 1.

• However, the unit secants, which are given in polar coordinates as

γ(t)− 0
|γ(t)− 0| = (1, θ(t)) = (1, log(log(t))),

do not converge.

To conclude, γ(t) converges to the origin, its arc-length approaches its distance to the origin, yet it spirals
and hence its unit secants do not converge.

2.2 The Cost Function

It remains to construct a function f , having exactly γ as a gradient flow trajectory. We define the function
f : B1/2 = {x ∈ Rn : |x| < 1/2} → R as

f(r, θ) := e
−1
r (1− a(r) sin(θ − log(log(1/r))))

= e
−1
r

(
1− log(1/r)

1 + r2 log(1/r)2
sin (θ − log(log(1/r)))

)
,

for the auxiliary function a(r) = log(1/r)
1+r2 log(1/r)2 . The exponential factor gives smoothness of the function and

all its derivatives at the origin. Actually, Dαf(0, θ) = 0 for any multi-index α, as the factor e
−1
r decays

faster than any polynomial expression in 1
r and log(

1
r ) increases when r → 0. By e. g. Whitney extension

theorem the function could be extended to f̃ defined on R2, here it is suffi cient to consider the behaviour
close to the origin. Note its similarity to [1, Equation (8)], the fractional scaling prefactor a(r) and the use
of sin, vanishing if (r, θ) lie on γ.

We show that the gradient flow of f , starting at a point x0 on γ, stays always on γ, i.e. the polar gradient
(∂f∂r ,

∂f
∂θ

1
r ) at points of the form {(r, θ) : θ − log(log(1/r)) = 2πk for some k in Z} (which are precisely the

points on γ) is parallel to −γ′. Firstly, we note

γ′(t) = (r′(t), θ′(t)) =

(
−1
t2
,

1

log(t)

1

t

)
=

(
−r(t)2, r(t)

log(1/r(t))

)
.

Thus it remains to check that for some scaling function b(r) (in fact b(r) = 1
r2 e

−1
r

(
log2(1/r)

1+r2 log2(1/r)

)
) on the

trajectory, that is whenever θ = log(log(1/r)), we have

∂f

∂r
= b(r)r2 and

∂f

∂θ

1

r
= b(r)

−r
log(1/r)

.
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We compute that

∂f

∂r

∣∣∣∣
γ

=
1

r2
e
−1
r (1− a(r) sin(θ − log(log(1/r)))

∣∣∣∣
γ

+e
−1
r

(
−a′(r) sin(θ − log(log(1/r))− a(r) cos(θ − log(log(1/r)) 1

r2 log(1/r)

) ∣∣∣∣
γ

=
1

r2
e
−1
r

(
1− a(r)

log(1/r)

)
=

1

r2
e
−1
r

(
1− 1

1 + r2 log2(1/r)

)
= e

−1
r

(
log2(1/r)

1 + r2 log2(1/r)

)
,

and

∂f

∂θ

∣∣∣∣
γ

= −e
−1
r a(r) cos(θ − log(log(1/r))

= −e
−1
r a(r)

= −e
−1
r

log(1/r)

1 + r2 log2(1/r)
.

Thus it follows that

b(r)r2 = e
−1
r

(
log2(1/r)

1 + r2 log2(1/r)

)
=
∂f

∂r
,

b(r)
−r

log(1/r)
=
−1
r
e
−1
r

(
log2(1/r)

1 + r2 log2(1/r)

)
=
∂f

∂θ

1

r
.

Thus for the complete gradient of f evaluated for points on γ, we obtain

−∇r,θf |γ = −
(
∂f

∂r
,
∂f

∂θ

1

r

) ∣∣∣∣
γ

= b(r)

(
−1
r2
,

r

log(1/r)

)
.

Since b(r) > 0 for all 0 < r ≤ 1
2 , the gradient trajectory follows γ in the positive direction and does not stall

on its way to the origin. Therefore −∇r,θf |γ is parallel to γ′ for any point on γ, so the gradient flow stays
on the curve (albeit with a different speed than its parametrization). Moreover, since ∂f

∂r and
∂f
∂θ converge

to zero as r → 0 (a(r)→ 0 as the exponential term dominates), the origin is a critical point.

To conclude, the trajectory of the continuous gradient descent flow converges to a critical point, has
convergent arc-length, even length-distance convergence, yet the secants do not have any limit.

It would be interesting to know relations to even stronger algebraic-geometric results like the (analytic)
finiteness conjecture for the gradient, see [3].
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The cost function f .

Contour plot of f and trajectory γ.
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