
Applied Mathematics E-Notes, 24(2024), 118-130 c© ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

Resolving Issues Related To The Overlapping Of Geometric
Figures Through The Utilization Of A Hybrid Computational

Methodology∗

Jamal Gsim†, Soukaina Regragui‡, Mohamed Zeriab Es-Sadek§, Mourad Taha Janan¶

Received 12 June 2023

Abstract

This paper deals with an industrial problem, consisting of generating objects randomly in a container
without overlapping each other, this type of problem is an integral part of the so-called space layout
problems that implement design optimization. However, the main idea is always the same: given a set
of components and a container, layout optimization consists in finding all the positioning variables of
the components to minimize certain objectives, while respecting certain constraints. In this article a
new method is adopted which consists in modelling this problem to an optimization problem and solving
it by using a hybrid approach, based on the coupling between a genetic algorithm and the projected
gradient method, which allows to effi cient generate objects (in our case study: generate different cylinders
randomly) in a container without touching each other.

1 Introduction

In software development, randomly generating objects within a space is a frequent challenge. However, this
approach can lead to significant overlap between these objects. This paper proposes a novel method to
address this issue.
Our approach formulates the problem as an optimization task. We then tackle it using a hybrid approach

that combines a genetic algorithm with the projected gradient method [1]. While genetic algorithms excel
at finding solutions in complex problems (non-linear and non-convex), they might not always guarantee
the absolute best solution, especially in very large search spaces. To address this limitation, the projected
gradient method is incorporated. This deterministic method, however, is limited to finding local optima in
non-convex problems.

2 Modelling

2.1 General Case

Considering two objects, A and B, initially created without overlap as depicted in Figure 1, we can determine
their overlap by calculating the distance between them (denoted by d). A value of d equal to zero indicates
complete overlap between the objects.
The distance between two points, x = (t1, t2, t3) in A and y = (t4, t5, t6) in B, can be calculated using

the following formula:
d =

√
(t1 − t4)2 + (t2 − t5)2 + (t3 − t6)2.

∗Mathematics Subject Classifications: 20F05, 20F10, 20F55, 68Q42.
†Department of Mathematics and Computer Science, ENSAM, Mohammed V University in Rabat, Morocco
‡Laboratory of Applied Mechanics and Technologies, ENSAM, Mohammed V University in Rabat, Morocco
§Department of Mathematics and Computer Science, ENSAM, Mohammed V University in Rabat, Morocco
¶Laboratory of Applied Mechanics and Technologies, ENSAM, Mohammed V University in Rabat, Morocco

118

Gsim et al. 119

Figure 1: Nearest distance between two objects.

In the context of distinct objects A and B (Figure 1), the separation between them can be quantified as
the minimum distance between any point within set A, denoted by x = (t1, t2, t3) ∈ A, and any point within
set B, denoted by y = (t4, t5, t6) ∈ B. Mathematically, this distance is minimized subject to the constraints:
x ∈ A and y ∈ B:

min
√

(t1 − t4)2 + (t2 − t5)2 + (t3 − t6)2
subject:
(t1, t2, t3) ∈ A,
(t4, t5, t6) ∈ B.

2.2 Case of Cylinders

Considering cylinders A and B (Figure 2), the constraint that (t1, t2, t3) ∈ A and (t4, t5, t6) ∈ B lies within
their respective volumes, satisfying the equations that define cylinders A and B.
As established, a cylinder can be generally represented by a 7-dimensional vector

X = (x1, x2, x3, x4, x5, x6, x7) ∈ R7.

Here, O1(x1, x2, x3) and O2(x4, x5, x6) denote the centers of the circular bases, and x7 represents the radius.
The equations of the cylinder’s axis can then be derived from these elements:{

x6t2 − x5t3 + x5x3 − x6x2 = 0,
x6t1 − x4t3 + x4x3 − x6x1 = 0.

The center-to-center distance between the cylinders can be expressed by the following equation:

Figure 2: Distance between two cylinders.

120 Hybrid Algorithm for Overlapping Problem

min
√

(t1 − t4)2 + (t2 − t5)2 + (t3 − t6)2
subject:
x6t2 − x5t3 + x5x3 − x6x2 = 0,
x6t1 − x4t3 + x4x3 − x6x1 = 0,
y6t5 − y5t6 + y5y3 − y6y2 = 0,
y6t4 − y4t6 + y4y3 − y6y1 = 0.

(1)

Overlap exists between the two objects if the distance separating them d ≤ x7 + y7, otherwise, there is no
overlap.

3 Resolution Method

Problem (1) presents itself as a global optimization challenge. Deterministic algorithms, such as the projected
gradient algorithm or the interior point method [2], offer solutions, but they can only guarantee a local
optimum, especially for non-linear and non-convex problems like the one at hand.
Evolutionary algorithms provide another avenue for tackling this type of problem. Their effectiveness

in handling non-linear and non-convex optimization scenarios has been established. However, they may
struggle to converge on a satisfactory solution when dealing with a vast search space.
Recognizing these limitations, researchers have explored combining deterministic and evolutionary algo-

rithms to capitalize on their respective strengths. This study proposes a new hybrid algorithm that integrates
the projected gradient algorithm with a genetic algorithm to address Problem (1).
First, we will provide a concise review of both individual methods. Subsequently, we will unveil the

proposed hybrid approach, designed to leverage the strengths of each technique to achieve an optimal solution.

3.1 Projected Gradient Algorithm

Rosen [3] proposed a technique for adapting optimization algorithms designed for unconstrained problems
to handle problems with constraints. This method involves projecting the motion onto the boundary of the
feasible region during each iteration, ensuring that the resulting solution remains within the valid space.
To lay the foundation for the projected gradient method [4], a comprehensive analysis of this approach is
necessary.

min f(x)
subject:
gi(x) ≤ 0 i ∈ I1 = {1, 2, . . . , p},
gi(x) = 0 i ∈ I2 = {p+ 1, . . . ,m}.

(2)

Denoting by I0 the set of constraints that are saturated at the specific point x:

I0(x) = {i ∈ I1 : gi(x) = 0} ∪ I2 = {i1, . . . , iq}.

We note:
g0(x) =

[
gi1 , . . . giq

]t
.

We denote the Jacobian of function g0 evaluated at point x by J(x). The projection matrix we will employ
has the following form:

P0 = I − J t.[J.J t]−1.J.
The following algorithm outlines the sequential steps involved in performing the Projected Gradient tech-
nique:

Step 1. Choose a starting point x0

Step 2. While (stop condition not verified)
xk the current point
Determine J = J(xk)

Gsim et al. 121

Step 3. Calculate the projection matrix P0
ȳ = −P0.∇f(xk)
u = −[J.J t]−1.J.∇f(xk)
ui = min

j=1,...,n
{uj}

Step 4. If (ȳ = 0)
If (ui < 0)

Calculate A
′

0 the matrix obtained by removing row i from A0, then calculating P
′

0

ȳ = −P ′

0.∇f(xk)
Else

xk satisfies the conditions of KKT

It should be recalled that the KKT (Karush-Kuhn-Tucker) conditions are a set of optimality conditions
that must be satisfied by any feasible solution to a constrained optimization problem. These conditions
provide the necessary conditions for a point to be an optimal solution when inequality and equality constraints
are satisfied.

3.2 Genetic Algorithm

Pioneered by John Holland at the University of Michigan in the 1970s, the genetic algorithm (GA) is
an optimization technique inspired by natural selection and genetic inheritance [5, 6]. By mimicking the
process of evolution, the GA iteratively refines solutions to complex optimization problems. Leveraging
principles like "survival of the fittest" and crossover of genetic material, the GA effi ciently explores the
search space, leading to progressively better solutions across generations. This makes it a powerful tool
for tackling diverse optimization challenges in numerous fields. Genetic algorithms (GAs) are a class of
optimization techniques recognized for their high robustness, particularly well-suited for addressing problems
with challenging features. They excel in scenarios where:

1. The initial solution is not readily available.

2. Variables encompass diverse types, including both continuous and discrete values.

3. The optimization criterion relies on an external computational process rather than a well-defined
mathematical function.

This robustness stems from GAs’proficiency in exploring intricate search spaces. This allows them to
effectively handle situations with non-intuitive initializations and diverse variable types. Furthermore, their
adaptability to "black-box" optimization problems, where the optimization criterion is evaluated through
computationally expensive simulations or external processes, positions them as a valuable tool across a wide
spectrum of real-world applications. In essence, GAs provides a powerful approach for optimizing problems
characterized by varying complexities and uncertainties, making them a versatile choice for tackling real-
world optimization challenges.
The Figure 3 illustrates the core principle of GAs. The initial population, either randomly chosen by the

designer or generated through another computational process, undergoes evaluation based on the constraints
and objectives defined in the optimization problem. The algorithm terminates upon meeting the stopping
criteria. Conversely, if these criteria are not met, genetic operators are applied to manipulate the population,
generating a new population of improved individuals that satisfy the problem’s requirements. Notably, the
individuals in the (n+1)th generation are considered the "children" of the individuals in the nth generation,
who are referred to as the "parents" [7, 8, 9].

3.3 Hybrid Algorithm

This article proposes a novel hybridization approach that combines a genetic algorithm with a deterministic
algorithm [10]. This integration exploits the complementary strengths of both methods, enabling us to
effectively leverage their individual advantages. Specifically, the hybridization offers the following benefits:

122 Hybrid Algorithm for Overlapping Problem

Figure 3: General operation of a genetic algorithm.

1. The genetic algorithm possesses a remarkable ability to effi ciently identify promising regions containing
the optimal solution. By incorporating genetic operators like crossover and mutation, it effectively
navigates the search space, increasing the likelihood of finding such regions.

2. On the other hand, the deterministic algorithm excels in terms of convergence speed, accuracy, and
computational effi ciency when the initial solution is in the vicinity of the optimum. Its deterministic
nature allows for a more precise and rapid exploration of the local region around a starting point,
which is particularly advantageous for fine-tuning solutions near the global optimum.

By synergistically harnessing the strengths of both algorithms, our proposed hybrid approach aims to
improve the overall optimization process. This provides a powerful and versatile tool for tackling complex
optimization problems with diverse characteristics and challenges. Through empirical evaluations and il-
lustrative examples, we demonstrate the effectiveness and superiority of our hybrid method in achieving
high-quality solutions effi ciently.
Our approach to achieving this objective involves customizing the genetic algorithm’s operators. Specif-

ically, we modify the core operators—generation, crossover, mutation, and selection—as follows:

Generation: We generate n random points. To guarantee their feasibility (i.e., adherence to problem
constraints), we employ the correction operator introduced by Rosen [11]. This operator utilizes a
projection matrix to rectify any infeasible points.

Crossover: To generate new solutions via crossover, we randomly select two parent points, X and Y , from

Gsim et al. 123

the population. We then create two offspring points, Xnew and Ynew, using the following formulas:

Xnew = rand ∗X + (1− rand) ∗ Y,

Ynew = (1− rand) ∗X + rand ∗ Y.
Here, "rand" represents a random coeffi cient between 0 and 1 that governs the blending of parental
characteristics. To guarantee that the newly generated points remain within the feasible region and
comply with problem constraints, we apply the projected gradient correction operator. This step
ensures the offspring adhere to the constraints and avoid violating any boundary conditions set by the
problem.

Mutation: For each point X, we utilize the Projected Gradient method with X as the starting point. This
method guides the optimization process towards the feasible region while respecting the constraints.
This ensures the updated solution remains within the domain defined by the constraints, allowing
exploration of regions that satisfy both the objective function and the constraints.

Selection: After applying crossover and mutation, we meticulously select the n most promising individuals
from the population based on their performance. We favor individuals that have undergone advanta-
geous genetic variations and improvements during the evolutionary process. These chosen individuals
constitute the next generation, contributing to the ongoing population refinement towards superior
solutions.

3.4 Proof of Convergence

Within each iteration denoted by k, we define the population of candidate solutions as Pk. Each solution
within this population is represented by Xk

i , where the indice k indicates the iteration and i denotes the
specific solution’s index within the population.
Furthermore, we introduce the concept of error at iteration k, denoted by ek. This error term quantifies the
discrepancy between the optimal solution X∗ and the best solution currently identified within the population
(Pk). Mathematically, the error is defined as the minimum value of the distance function applied to all
solutions (Xk

i) in the population Pk, where the distance function calculates the distance between each
solution and the optimal solution X∗:

ek = min
Xk
i ∈Pk

||Xk
i −X∗||.

We now proceed to analyze the iterative process of the algorithm, specifically focusing on the transition from
iteration k to k + 1. During this transition, the following key step occurs:

ek+1 = min
Xk+1
i ∈Pk+1

||Xk+1
i −X∗||.

This equation represents the minimization of the distance between each pointXk+1
i in the updated population

Pk+1 and the optimal solution X∗.
It is important to note the modifications implemented in the genetic algorithm operators to achieve this:

Generation: Random points are initially generated and then corrected to ensure they satisfy the problem
constraints and remain within the feasible region.

Crossover: Offspring points are generated by linearly combining parent points. These offspring are then
corrected to remain within the feasible region.

Mutation: The projected gradient method leverages the best points from the previous population as starting
points to explore local optima.

Stopping Criteria: The hybrid algorithm terminates if the change in the objective function between sub-
sequent iterations falls below a predefined threshold, indicating insuffi cient progress.

124 Hybrid Algorithm for Overlapping Problem

3.4.1 Convergence Argument

We analyze the error reduction between consecutive iterations. Let ek denote the error associated with
solution Xk

i at iteration k, and X
∗ represents the optimal solution. The inequality below holds:

ek+1 ≤ min
Xk+1
i ∈Pk+1

||Xk+1
i −X∗|| ≤ min

Xk
i ∈Pk

||Xk
i −X∗|| = ek.

This guarantees that the error either decreases (ek+1 < ek) or remains constant (ek+1 = ek) between itera-
tions, indicating convergence towards the optimal solution X∗. The algorithm employs a hybrid approach,
leveraging genetic algorithm components for effi cient exploration of the search space and deterministic com-
ponents for refining solutions towards optimality.

3.4.2 Conclusion

The proposed hybrid algorithm is theoretically expected to converge based on the arguments presented.
The modifications to the genetic algorithm operators, specifically those ensuring feasibility and constraint
satisfaction, are hypothesized to contribute to the overall convergence of the algorithm. The incorporation of
a selection operator that prioritizes promising individuals is likely to further enhance the refinement process.
These features collectively suggest that the hybrid algorithm has the potential to be a powerful optimization
tool.
However, it is important to acknowledge that the practical success of the hybrid algorithm may be

contingent upon several factors. These factors include, but are not limited to, the careful tuning of hy-
perparameters, the specific characteristics of the optimization problem being addressed, and the underlying
complexity of the optimization landscape.

4 Numerical Experiments

In order to demonstrate the effectiveness, effi ciency, and robustness of the proposed algorithm, we have
chosen the following problems as test cases.

4.1 Academic Problem

Let’s consider the following optimization problem [12]:

min 168x1x2 + 3651.2x1x2x
−1
3 + 40000x−14

Subject to:
1.0425x1x

−1
2 ≤ 1

0.00035x1x2 ≤ 1
1.25x−11 x4 + 41.63x−11 ≤ 1
40 ≤ x1 ≤ 44
40 ≤ x2 ≤ 45
0.1 ≤ x3 ≤ 1.4

(3)

Table 1 presents a comparative analysis of the results achieved by our proposed approach against those

Ref. x∗ Solution
Present study [40.6831 42.6887 68.8200 1.1083] 4.2000e+05

[12] [43.02 44.85 66.39 1.11] 6.2337e+05

[13] [43.08 44.99 66.41 1.10] 4.6848e+05

Table 1: Results comparison for problem 3

reported in existing literature. It is clear that the hybrid algorithm is more effi cient and give the best
solution.

Gsim et al. 125

4.2 Optimal Design of a Speed Reducer

This study evaluates the performance of the proposed algorithm and compares it to the algorithm presented
in [14], which was implemented using GAMS technology. This study aims to identify the optimal system
parameters that minimize the weight of a speed reducer (Figure 4). The system is defined by seven design
variables:

• x1: Face width of the gear tooth.

• x2: Teeth module (reciprocal of diametral pitch).

• x3: Number of pinion teeth.

• x4: Shaft length 1 (distance between bearings).

• x5: Shaft length 2 (distance between bearings).

• x6: Shaft diameter 1.

• x7: Shaft diameter 2.

Figure 4: Golinski Speed reducer.

126 Hybrid Algorithm for Overlapping Problem

The mathematical model for weight minimization will be presented subsequently:

min 0.7854x1x
2
2

(
3.3333x23 + 14.933x3 − 43.0934

)
− 1.508x1

(
x26 + x27

)
+ 7.4777

(
x36 + x37

)
+ 0.7854

(
x4x

2
6 + x5x

2
7

)
Subject to:
27

x1x22x3
− 1 ≤ 0, 397.5

x1x22x
2
3
− 1 ≤ 0

1.93x34
x2x3x46

− 1 ≤ 0,
1.93x35
x2x3x47

− 1 ≤ 0√(
745x4
x2x3

)2
+16900000

110x36
− 1 ≤ 0,

√(
745x5
x2x3

)2
+15750000

85x37
− 1 ≤ 0

x2x3
40 − 1 ≤ 0, 5x2

x1
− 1 ≤ 0

x1
12x2
− 1 ≤ 0, 1.5x6+1.9

x4
− 1 ≤ 0, 1.1x7+1.9

x5
− 1 ≤ 0

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3
7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5

Table 2 presents a comparison of the results obtained using our proposed approach with those from existing
literature for the same problem. This comparison underscores the feasibility and effi ciency of our algorithm.
Furthermore, the results demonstrate superior performance and effi ciency of our approach compared to the
previously established methods. These findings serve as strong evidence for the effectiveness and superiority
of our proposed algorithm.

Ref. x∗ Solution
Present study [2.6 0.7 17.5605 7.5029 7.8 3.0191 5.1975] 2.581 e+03

[15] [3.5 0.7 17 7.3 7.8 3.35 5] 2.823 e+03

[14] [3.5 0.7 17 7.3 7.8 3.3502 5.2866] 2.996 e+03

Table 2: Results comparison for the optimal design of a speed reducer

4.3 Pressure Vessel Optimization Problem

In this example, we will evaluate our hybrid algorithm on another optimization problem: the pressure vessel
design problem (Figure 5). This problem aims to minimize the total cost, which includes the costs of welding
and forming materials. The key decision variables in this optimization problem are:

• L: Length of the cylindrical segment of the vessel

• Ts: Thickness of the cylindrical shell

• R: Inner radius of the vessel

• Th: Thickness of the spherical head

Assuming x1 = Ts, x2 = Th, x3 = R and x4 = L as the design variables, the optimization problem is:

min 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1611x21x4 + 19.8621x21x3

Subject to:
0.0193x3 − x1 ≤ 0
0.00954x3 − x2 ≤ 0 x4 − 240 ≤ 0
750× 1728− πx23x4 − 43πx33 ≤ 0
x1, x2 ∈ [1× 0.0625, 99× 0.0625]
x3, x4 ∈ [10, 240]

Table 3 presents a comparison of the results obtained using our proposed approach with those from existing
literature for the same problem.

Gsim et al. 127

Figure 5: The pressure vessel design problem.

Ref. x∗ Solution
Present study [0.74, 0.375, 38.865, 221.18] 5772.5

[16] [0.7683, 0.3797, 39.8096, 207.2250] 5868.76
[17] [0.75, 0.375, 38.8601, 221.3654] 5850.383
[18] [1.125, 0.625, 58.2901, 43.6927] 7199.35

Table 3: Results comparison for the pressure vessel design problem

4.4 Compression/Tension Spring Design Problem

In this work, we evaluate the performance of our proposed algorithm against established methods [19, 20]
by applying it to the compression/tension spring design problem (Figure 6). This problem aims to minimize
the weight of a spring while satisfying constraints such as shear stress, minimum deflection, limitations on
the outer diameter, and surge frequency. The design variables considered are the number of active coils (P),
the mean coil diameter (D), and the wire diameter.Assuming x1 = d, x2 = D and x3 = P , as the design

Figure 6: Schematic of the compression/tension spring design problem.

128 Hybrid Algorithm for Overlapping Problem

variables, the compression/tension spring design problem can be expressed as follows:

min (x3+2)x2x1
2

Subject to:

1− x32x3
71,785x41

≤ 0
4x22−x1x2

12,566(x2x31−x41)
+ 1

5,108x21
− 1 ≤ 0

1− 140.45x1
x22x3

− x2 ≤ 0 , x2+x1
1,5 ≤ 0

x1 ∈ [0.05, 2.0]
x2 ∈ [0.25, 1.3]
x3 ∈ [2.0, 15.0]

Table 4 presents a comparison of the results obtained using our proposed approach with those from existing
literature for the same problem. This study evaluates the performance of the hybrid algorithm through

Ref. x∗ Solution
Present study [0.051, 0.357, 11.140] 0.0122

[19] [0.051796, 0.359283, 11.140516] 0.012667
[20] [0.051583, 0.354190, 11.438675] 0.012665

Table 4: Results comparison for the compression/tension spring design problem

benchmark design optimization examples. These results demonstrate the algorithm’s effectiveness in tackling
practical optimization problems.

5 Results of the Overlapping Problem

The generation of non-overlapping objects in 3D space presents a significant challenge in various practical
applications. Software-based generation often introduces the risk of object overlap, leading to inaccurate and
unreliable results. To address this issue, we propose a novel hybrid algorithm that leverages the strengths of
different optimization techniques. This algorithm solve the optimization problem (1) for each new cylinder
with the other existing cylinders to ensure the generation of non-overlapping cylinders within a defined
cuboid.
Our hybrid approach aims to deliver robust and meaningful outcomes by effi ciently handling the com-

plexities of spatial arrangements. To evaluate its effi cacy, we conducted experiments using a 3D geometry
populated with randomly distributed cylinders. This scenario replicates a realistic setting to assess the
performance of our method.
During the testing phase, cylinders with varying diameters and lengths were generated. Each newly

created cylinder was meticulously positioned within a cuboid with predefined height, width, and length.
This deliberate placement aimed to prevent overlap between the generated cylinders themselves, as well as
between the cylinders and the cuboid walls.
The implementation of our hybrid algorithm with the inclusion of non-overlapping constraints successfully

addressed the challenge of random object generation in 3D space. The experimental results demonstrate
the effectiveness of our approach in managing complex spatial arrangements, offering a reliable solution for
practical applications.
Considering the total volume of the generated cylinders as VCyl and the volume of the brick as VBrick,

we aim to evaluate our algorithm across various cylinder fill rates within the brick. The fill rate, denoted by
TFilling, is defined as the ratio of VCyl to VBrick (TFilling =

VCyl
VBrick

). Specifically, we will test the algorithm
at fill rates of 1%, 5% and 10%.
This section presents the numerical results and visualizations obtained by applying the hybrid algorithm

to the specific problem at hand. We evaluate the performance and effi ciency of the proposed method in

Gsim et al. 129

addressing the overlapping issue. A cuboid with dimensions (100, 60, 200) is employed as a case study.

Table 5: Results of the overlapping problem.

6 Conclusion

This study demonstrates the effectiveness of the proposed hybrid algorithm in generating non-overlapping,
distinct cylinders across all three filling rate scenarios. This successful approach addresses the challenge of
creating cylinders with varying diameters and lengths that do not intersect. The promising results obtained
here serve as a foundation for further research endeavors aimed at exploring and extending this approach to
a broader range of shapes and geometries.

References

[1] J. B. Rosen, The gradient projection method for nonlinear programming Part 1: Linear constraints,
SIAM J. Appl. Math., 8(1960), 181—217.

[2] M. Z. Es-Sadek, Contribution à l’optimisation Globale: Approche Déterministe et Stochastique et
Application, Mathématiques Générales [math.GM]. INSA de Rouen, Université Mohammed V-Agdal,
2009.

[3] D.-Z. Du, F. Wu and X. -S. Zhang, On Rosen’s gradient projection methods, Ann. Oper. Res., 24(1990),
11—28.

[4] J. B. Rosen, The gradient projection method for nonlinear programming Part 2: Nonlinear constraints,
SIAM J. Appl. Math., 9(1961), 514—553.

[5] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applica-
tions to Biology, Control and Artificial Intelligence, MIT Press, Cambridge, MA, USA, 1992.

[6] D. E. Goldberg, Genetic Algorithms in Search Optimization and Machine Learning, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1989.

[7] J. Zhang, H. S. H. Chung and J. Zhong, Adaptive crossover and mutation in genetic algorithms based on
clustering technique, Proceedings of the 7th annual conference on Genetic and evolutionary computation,
2005, 1577—1578.

[8] T. P. Hong, H. S. Wang, W.-Y. Lin and W.-Y. Lee, Evolution of appropriate crossover and mutation
operators in a genetic process, Applied Intelligence, 16(2002), 7—17.

[9] J. Jilkova and Z. Raida, Influence of Multiple Crossover and Mutation to the Convergence of Genetic
Optimization, In MIKON 2008, XVII International Conference on Microwaves, Radar and Wireless
Communications in Poland, 2008.

130 Hybrid Algorithm for Overlapping Problem

[10] Y. Belkourchia, L. Azrar and M. Z. Es-Sadek, Hybrid optimization procedure applied to optimal location
finding for piezoelectric actuators and sensors for active vibration control, Appl. Math. Model., 62(2018),
701—716.

[11] American Society of Mechanical Engineers, ANSI Y14.5, Dimensioning and tolerancing ANSI Y14.5.
New York, NY; 1994.

[12] M. Rijckaert and X. Martens, Comparison of generalized geometric programming algorithms, J. Optim.
Theory Appl., 26(1978), 205—241.

[13] S. Qu, K. Zhang and F. Wang, A global optimization using linear relaxation for generalized geometric
programming, Eur. J. Oper. Res., 190(2008), 345—356.

[14] J. Golinski, An adaptive optimization system applied to machine synthesis, Mechanism and Machine
Synthesis, 8(1973), 419—436.

[15] N. Andrei, Nonlinear optimization applications using the GAMS technology, Springer Optimization and
Its Applications, 81(2013), 67—70.

[16] A. R. Hedar and M. Fukushima, Derivative-free filter simulated annealing method for constrained con-
tinuous global optimization, Journal of Global Optimization, 35(2006), 521—549.

[17] G. G. Dimopoulos, Mixed-Variable Engineering Optimization Based on Evolutionary and Social
Metaphors, Computer Methods in Applied Mechanics and Engineering, 2007.

[18] O. Hasançebi, S. K. Azad and O. Hasançebi, An Effi cient Metaheuristic Algorithm for Engineering
Optimization: SOPT, International Journal of Optimization in Civil Engineering, 2012.

[19] L. C. Cagnina, S. C. Esquivel and C. A. Coello, Solving engineering optimization problems with the
simple constrained particle swarm optimizer, Informatica, 32(2008), 319—326.

[20] O. Adekanmbi and P. Green, Conceptual Comparison of Population-Based Metaheuristics for Engineer-
ing Problems, The Scientific World Journal, 2015.

	Introduction
	Modelling
	General Case
	Case of Cylinders

	Resolution Method
	Projected Gradient Algorithm
	Genetic Algorithm
	Hybrid Algorithm
	Proof of Convergence
	Convergence Argument
	Conclusion

	Numerical Experiments
	Academic Problem
	Optimal Design of a Speed Reducer
	Pressure Vessel Optimization Problem
	Compression/Tension Spring Design Problem

	Results of the Overlapping Problem
	Conclusion

