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Abstract

In this paper, we define the generalized harmonic polynomials and derive some properties including
them using umbral methods and combinatorial identities. Also, we obtain new identities with the help
of special matrices.

1 Introduction

The harmonic numbers have interesting applications in many fields of mathematics, such as number theory,
combinatorics, analysis and computer science. The harmonic numbers are defined by

H0 = 0, Hn =

n∑
k=1

1

k
for n = 1, 2, · · · .

In recent years, there are various generalizations of the harmonic numbers in the literature [1, 2, 8—10].
In [6], for every ordered pair (α, n) ∈ R+ × N, the generalized harmonic numbers Hn(α) are defined by

H0(α) = 0, Hn(α) =

n∑
k=1

1

kαk
.

For α = 1, the usual harmonic numbers are Hn(1) = Hn.
In recent years, the authors used methods of umbral calculus and algebraic operations to make some

progress in the theory of generating functions involving harmonic numbers and series [3, 4, 5, 11].
In [3], using umbral operational methods, Dattoli and Germano defined the harmonic based exponential

function (GHBEF) and the harmonic polynomials as follows:

θe(x) = eθ̂x = 1 +

∞∑
n=1

Hn

n!
xn,

and

hn (x) = xn +

n∑
i=1

(
n

i

)
Hix

n−i, (1)

respectively, where θ̂ := e∂z is the vacuum shift operator. It is clear that θ̂
n
θ̂
m

= θ̂
n+m

. They derived the
number of results based on elementary notions relying on the properties of Gaussian integrals.
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In [5], Dattoli et al. defined higher-order harmonic numbers and derived their relevant properties and
generating functions by using an umbral-type method. They showed that the combinations of umbral and
other techniques yield a very effi cient tool to explore the properties of these numbers.
In [4], using methods of umbral calculus and algebraic nature, Dattoli and Srivastava explained some

progress in the theory of generating functions including harmonic numbers. For example,

∞∑
n=1

zn

n!
Hn+m = −ez

m∑
k=0

(
m

k

)
Φ(k)(z)−Hm for m = 0, 1, 2, · · · ,

where Φ(k)(z) denotes the derivative of Φ(z) of order k with respect to z.

2 Generalized Harmonic Polynomials and Their Applications

In this section, we will define generalized harmonic polynomials hn(x, α) and give some new properties
including them.

Definition 1 For any real number z and L(α) = 1− 1
α , the function

f (z) =

1∫
L(α)

1− (1− x)
z

1− x dx

is called generalized harmonic number umbral vacuum.

Theorem 1 Let n be a non-negative integer. We have

θ̂
n
f (z) |z=0 = Hn(α),

or simply
θ̂
n

= Hn (α) .

Proof. Indeed,

θ̂
n
f (z) |z=0 = en∂zf (z) |z=0 = f (n+ z) |z=0 =

1∫
L(α)

1− (1− x)
n+z

1− x dx

∣∣∣∣∣∣∣
z=0

=

1∫
L(α)

1− (1− x)
n

1− x dx = Hn (α) ,

as claimed.

Definition 2 The binomial expansion

h0 (x, α) = 1, and hn (x, α) =
(
x+ θ̂

)n
= xn +

n∑
i=1

(
n

i

)
xn−iHi(α), n > 0 (2)

are called generalized harmonic polynomials.

For α = 1, hn (x, 1) = hn (x) in (1) are the harmonic polynomials [3].
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Lemma 1 Let n be a positive integer. Then the following identity holds

∞∑
i=0

(
i

n

)
xi =

xn

(1− x)
n+1 . (3)

Theorem 2 The generating function of hn (x, α) is given by

∞∑
n=1

hn (x, α) zn =
xz

1− xz −
1

1− z(x+ 1)
ln

(
1− z

α (1− xz)

)
,

where |xz| < 1.

Proof. From (2) and (3), we have

∞∑
n=1

hn (x, α) zn =

∞∑
n=1

(xz)
n

+

∞∑
n=1

n∑
i=1

(
n

i

)
xn−iHi (α) zn

=
1

1− xz − 1 +

∞∑
i=1

x−iHi (α)

∞∑
n=i

(
n

i

)
xnzn

=
xz

1− xz +

∞∑
i=1

x−iHi (α)
(xz)

i

(1− xz)i+1

=
xz

1− xz +
1

1− xz

∞∑
i=1

Hi (α)

(
z

1− xz

)i
.

Since
∞∑
i=0

Hi (α)xi = 1
1−x ln

(
α

α−x

)
, we write

∞∑
n=1

hn (x, α) zn =
xz

1− xz −
1

1− z (x+ 1)
ln

(
1− z

α (1− xz)

)
.

Thus, we have the proof.

Theorem 3 For integer n ≥ 2, we have

n−1∑
i=1

(
xn−i − hn−i (x, α)

) (
(n− 2i− 1)

(
gi (x, α)− xi

)
− (x+ 1)

(
xi − hi (x, α)

))
= 0,

where

gn (x, α) =

(
x+ 1

α

)n+1 − xn+1
n+ 1

− xn.

Proof. Define a function as

A (z) :=

∞∑
n=1

(xn − hn (x, α)) zn =

 1− z (x+ 1)

ln
(

1− z
α(1−xz)

)
−1 . (4)

Take the partial derivative of A(z) respect to z, we write

A′ (z) = (A(z))
2 1 + x

ln
(

1− z
α(1−xz)

) − A (z)

(1− xz) (α (1− xz)− z) ln
(

1− z
α(1−xz)

) ,
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and from here,

(1 + x) (A (z))
2

=

∞∑
n=1

(
xn −

(
x+ 1

α

)n
n

)
zn
∞∑
n=0

(n+ 1)
(
xn+1 − hn+1 (x, α)

)
zn

+

∞∑
n=0

((
x+

1

α

)n+1
− xn+1

)
zn
∞∑
n=1

(xn − hn (x, α)) zn.

Using product of generating functions, we get

(1 + x) (A (z))
2

=

∞∑
n=1

n−1∑
i=0

(i+ 1)
(
xi+1 − hi+1 (x, α)

)(xn−i − (x+ 1
α

)n−i
n− i

)
zn

+

∞∑
n=1

n−1∑
i=0

((
x+

1

α

)i+1
− xi+1

)(
xn−i − hn−i (x, α)

)
zn. (5)

After that, by (4), we also have

(A (z))
2

=

∞∑
n=1

n∑
i=0

(
xi − hi (x, α)

) (
xn−i − hn−i (x, α)

)
zn. (6)

By comparing the coeffi cients on right sides of (5) and (6), we have the proof.

Theorem 4 For positive integer n, we have

d

dx
hn (x, α) = nhn−1 (x, α) ,

hn+1 (x, α) = (x+ 1)hn (x, α) + gn (x, α) , (7)

where gn (x, α) is as before.

Proof. From (2), we have

hn+1 (x, α) =
(
x+ θ̂

)(
x+ θ̂

)n
= x

(
x+ θ̂

)n
+ θ̂

(
x+ θ̂

)n
= xhn (x, α) + θ̂

(
xn +

n∑
i=1

(
n

i

)
xn−iHi (α)

)

= xhn (x, α) +
xn

α
+

n∑
i=1

(
n

i

)
xn−iHi+1 (α) ,

and taking Hn+1 (α) = Hn (α) + 1
(n+1)αn+1 , equals to

xhn (x, α) +
xn

α
+

n∑
i=1

(
n

i

)
xn−iHi (α) +

n∑
i=1

(
n

i

)
xn−i

(i+ 1)αi+1

= (x+ 1)hn (x, α) +
xn

α
− xn +

n∑
i=1

1

αi+1

(
n

i

)
xn−i

1∫
0

yidy

= (x+ 1)hn (x, α)− xn +
1

α

1∫
0

n∑
i=0

(
n

i

)
xn−i

( y
α

)i
dy.
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By Binomial Theorem, we write

hn+1 (x, α) = (x+ 1)hn (x, α)− xn +
1

α

1∫
0

(
x+

y

α

)n
dy

= (x+ 1)hn (x, α)− xn +

(
x+ 1

α

)n+1 − xn+1
n+ 1

= (x+ 1)hn (x, α) + gn (x, α) .

Thus, the proof is complete.

Corollary 1 For positive integers n and m, we have

hn+m+1 (x, α) = (x+ 1)
m+1

hn (x, α) +

m∑
i=0

(x+ 1)
m−i

gn+i (x, α) ,

where gn (x, α) is as before.

Proof. From Theorem 4 and the induction method on n, the proof can easily be obtained.

Theorem 5 For positive integer n, we have the following identities:

n∑
i=1

(
n

i

)
(−1)

i
Hi (α) =

(
1− 1

α

)n − 1

n
,

n∑
i=1

(
n

i

)
hi (−1, α) = Hn (α)− 1. (8)

Proof. Setting x = −1 in (2) and (7), we have

(−1)
n

+

n∑
i=1

(
n

i

)
(−1)

n−i
Hi (α) = hn (−1, α) = gn−1 (−1, α) =

(
1
α − 1

)n − (−1)
n

n
− (−1)

n−1
.

Thus, we have the first sum. Secondly, applying Binomial Theorem, we get

Hn (α) = θ̂
n

=
((
θ̂ − 1

)
+ 1
)n

= 1 +

n∑
i=1

(
n

i

)(
θ̂ − 1

)i
= 1 +

n∑
i=1

(
n

i

) i∑
r=0

(
i

r

)
(−1)

i−r
Hr (α)

= 1 +

n∑
i=1

(
n

i

)
hi (−1, α) ,

as claimed.
With the help of (8), we can easily deduce the sum in the following corollary.

Corollary 2 For positive integer n, we have

n∑
i=1

(
n

i

)(
1

i

(
1

α
− 1

)i
− (−1)

i

i

)
= Hn (α) .
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Lemma 2 ([7]) Let n and m be non-negative integers. Then

n∑
k=0

(
n

k

)
kmxk = xmnm (1 + x)

n−m
[x 6= −1 and m 6= n] , (9)

where xm stands for following factorial defined by

xm = x (x− 1) · · · (x−m+ 1) .

Let s and r be any real numbers such that s ≥ r ≥ 1, we define an n × n matrix An = [ai,j ], where
ai,j = hi (r, j)− ri and an n×n matrix Bn = [bi,j ], where bi,j = hi (s, j)− si. Now, we can give the following
theorem.

Theorem 6 For positive integer n, we have

An = PnBn, (10)

where the n× n matrix Pn = [pi,j ] with pi,j =
(
i
j

)
(r − s)i−j .

Proof. It is clear a1,1 = 1 for i = j = 1. For i = 1, j > 1, we write

a1,j = p1,1b1,j + p1,2b2,j + · · ·+ p1,nbn,j = p1,1b1,j = h1(r, j)− r.

For i > 1 and j > 1, we obtain

ai,j =

n∑
k=1

pi,kbk,j =

i∑
k=1

(
i

k

)
(r − s)i−k

k∑
t=1

(
t

k

)
sk−tHt (j)

=

i∑
t=1

s−tHt (j)

i∑
k=t

(
i

k

)(
t

k

)
(r − s)i−k sk.

Then (9) yields that

ai,j =

i∑
t=1

s−tHt (j) (r − s)i
(
i

t

)(
r − s
s

)−t(
1 +

s

r − s

)i−t
=

i∑
t=1

(
i

t

)
Ht (j) ri−t = hi (r, j)− ri,

as claimed.

Corollary 3 Let s and r be real numbers such that s ≥ r ≥ 1. We have that for positive integers n and m,

n∑
i=0

(
n

i

)
(r − s)n−i hi(s,m) = hn(r,m).

Proof. Equating (n,m)-entries of (10) gives the claimed result.
We define the n× n matrix Cn = [ci,j ] with entries

ci,j = hi(j, α)− ji.

Now, we will give the matrices Ln = [li,j ] and Un = [ui,j ] yielding from the LU -decomposition of Cn = LnUn
in the following theorem:
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Theorem 7 We have

li,j =


α(−1)i
j!

j∑
t=1

(
j−1
t−1
)

(−1)
t (
hi (t, α)− ti

)
, for i > j,

1, for i = j,

0, for i < j,

and

ui,j =

{
i!
α

(
j−1
i−1
)
, for i ≤ j,

0, for i > j.

Proof. For LU -decomposition of the matrix Cn, we have to prove that

ci,j =
∑

1≤k≤min{i,j}

li,kuk,j .

For i 6= j,

ci,j =
∑

1≤k≤min{i,j}

li,kuk,j =

i∑
k=1

(−1)
k

(
j − 1

k − 1

) k∑
t=1

(
k − 1

t− 1

)
(−1)

t (
hi (t, α)− ti

)
.

Using
n∑
i=1

i∑
j=1

f(i, j) =

n∑
j=1

n∑
i=j

f(i, j) and
(
n

k

)(
k

j

)
=

(
n

j

)(
n− j
k − j

)
,

we write

ci,j =

i∑
t=1

i∑
k=t

(−1)
k+t

(
j − 1

k − 1

)(
k − 1

t− 1

)(
hi (t, α)− ti

)
=

i∑
t=1

(−1)
t (
hi (t, α)− ti

) i∑
k=t

(−1)
k

(
j − 1

k − 1

)(
k − 1

t− 1

)

=

i∑
t=1

(
j − 1

t− 1

)
(−1)

t (
hi (t, α)− ti

) i∑
k=t

(−1)
k

(
j − t
k − t

)
.

And then by
n∑
i=1

(−1)
i

(
x

i

)
= (−1)

n

(
x− 1

n

)
and

(
n

k

)
= (−1)

k

(
−n+ k − 1

k

)
,

we obtain

ci,j =

i∑
t=1

(
j − 1

t− 1

)(
i− j
i− t

)(
hi (t, α)− ti

)
.

From
(
n
k

)
=
(
n

n−k
)
,

ci,j =

i∑
k=1

(
i

k

)
Hk (α)

i∑
t=1

(
j − 1

j − t

)(
i− j
t− j

)
ti−k

=

i∑
k=1

(
i

k

)
Hk (α) ji−k = hi (j, α)− ji,

as claimed. Similarly, for i = j, it seen that the sum is equal to ci,i = hi (i, α)− ii. So, we have the proof.



112 Some Properties Involving the Generalized Harmonic Polynomials

Corollary 4 Let n and m be positive integers such that 1 ≤ m ≤ n. We have

n∑
i=1

i∑
t=1

(−1)
i

(
m− 1

i− 1

)(
i− 1

t− 1

)
(−1)

t
(hn (t, α)− tn) = hn (m,α)−mn.

Proof. Equating (n,m)-entries of matrix Cn = LnUn gives the claimed result.
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