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Abstract

In this work, a new methodical classification process of fractional derivatives is suggested and intro-
duces CNR(Classification rule) concept. CNR concept is a mathematical tool for classifying the criteria
of a fractional derivative. More fractional derivatives are proposed as fractional modeling is now the sub-
ject of extensive research. The CNR approach effectively eliminates any worries regarding the theoretical
basis of operators that arise as a part of fractional modeling. The CNR concept is conceived through
the classification of fractional operators so that the classification proposed here also becomes an integral
part of fractional calculus. We apply this classification rule to categorize five specific criteria related to
fractional derivatives. Using this classification rule, we have proved that linearity is an essential criterion
for every fractional operator.

1 Introduction

Recent studies show that fractional calculus with fractional derivatives and their generalizations are useful
mathematical method to model real-life problems. But the plethora of definitions makes this field more
complex. At the same time, each definition has its own use in various fields. In this work, a classification
of the fractional derivatives were done by using a mathematical model defined as the CNR concept. When
considering the history and evolution of fractional derivatives, the Reimann-Liovillie derivative and the
Caputo derivative are the first to be analyzed the most. The Reimann-Liovillie and Caputo derivatives can
be retrieved from the Hilfer fractional derivative by using particular values of the parameter. But φ-Hilfer
fractional derivative is a generalization of Hilfer fractional derivative [55]. Another important fact is that so
many fractional derivatives can be retrieved using φ-Hilfer fractional derivative [55]. The M-operator is a
generalization of the Katugampola derivative [56], which is used in quantum mechanics. Fractional modelling
is widely used in the medical field as well. For example, the nonlocal behavior of fractional derivatives is used
to model heat conduction in biological tissues [36], and the beta operator is used to model infectious diseases
[1]. The generalized fractional derivative generalizes the beta, katugampola, and conformable fractional
derivatives. All the above-mentioned derivatives have their place in the application of fractional calculus.
So we cannot avoid them by considering their use in mathematical modelling. Recently, many fractional
derivatives have been introduced for describing various phenomena in real life [63], especially fractional
derivatives with non-singular kernals. This is a topic clearly stated in the study conducted in 2018 under
the leadership of Hong Guang Sun [47]. The study has been done by classifying the areas where fractional
derivatives are used: physics, control theory, signal and image processing, mechanics and dynamic systems,
biology, environmental science, materials, economics, and multidisciplinary engineering fields. This kind of
work reminds us how important the field of fractional derivatives is to mathematical modelling. Recently,
fractional modelling has played a major role in the study of the Corona virus [54, 45, 7]. Through all this
modelling, new generalized derivative operators have also emerged [32, 34, 30]. But our present system is
not able to provide clear criteria for any of them. That is where this article is going to come in handy.
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This work is organized as follows: Section 2 includes a review study about the evolution of criteria analysis
and classification of fractional derivatives, and the newly introduced classification of fractional derivatives
is mentioned in Section 3, which has mainly four classes. We classify these derivatives by considering the
terms included in the definition. The CNR concept introduced in Section 4 also includes the advantages of
classification in criteria analysis and proves why linearity is a strict sense criteria for fractional derivatives.
Section 5 includes discussion about the concepts described in this work and how the CNR concept is useful
for mathematical modelling. Section 6 concludes this article with concluding remarks and future work. The
main goals of this work is as follows:

1. Introduce a new classification of fractional derivative based on the nature of the derivative.

2. Introduce the CNR (classification rule) concept for criteria analysis. This is structured using the newly
introduced classification.

3. Analyze and classify the existing criteria using the CNR concept. This explains how we can apply
the CNR concept to fractional operators, that is, first identify the classification and then check the
properties to be satisfied.

4. We integrate the CNR concept with fractional modeling, providing comprehensive guidelines on its
application and elucidating how it is employed in the context of fractional modeling.

2 Literature Review

The growing number of definitions reminds us that the study of the laws that the fractional derivative must
obey is essential. Tarasov argues that the Leibniz rule is not a necessary condition for fractional derivatives
[51], but the Leibniz rule is included in the criteria proposed by Ortigueira [42]. This uncertainty can be
studied further using the classification we describe here. In 1977, Ross made an authoritative study of
the rules that fractional derivatives should follow [44]. But since then, the field of fractional calculus has
undergone many transformations. The concept of fractional derivatives or integrals later became useful for
mathematical modelling of many real-life problems. As a result, different definitions of fractional derivatives
have been suggested because it doesn’t have a clear geometrical definition. Much of it was beyond Ross’s
vision. Ortigueira and Machado are also interested in analysing the conditions of fractional derivatives in
2015 [42]. Their study also attracted much attention in this area. By the time of their study, the field of
fractional calculus had undergone further analysis in the scientific sense. But after 2015, fractional calculus
got a new dimension. Fractional derivatives using non-singular kernel functions have attracted more attention
in these areas. The complexity of this area has further increased due to the increasing number of fractional
derivatives. But Teodoro Machado and Oliveira exposed this complexity and served to make the field more
systematic [53]. Apart from that, he put five conditions for the fractional derivatives, which are included in
the set of local operators that he suggested. From there, the semi-group property was completely eliminated.
So we are forced to accept the situation that we still don’t have a generalized format to prove the criterion
that fractional derivatives obey. Such a generalized format is intended by the classification proposed in this
work. Through this classification, we arrive at the CNR concept, which is more beneficial in the theory of
fractional calculus. We need to examine how the classical rules of differentiation translate into the realm of
fractional derivatives, such as Leibniz’s rule, chain rule, semigroup property, etc. Consider Leibniz’s rule,
traditionally employed to find the derivative of a product function. However, when dealing with fractional
operators, the application of Leibniz’s rule becomes more intricate. Each operator exhibits distinct behavior,
leading to variations in the formula for determining the derivative of a product function, denoted as h = fg.
In this context, the formula for Dα(fg) can be termed the Generalized Leibniz Rule. In the realm of
fractional modeling, the differentiation of a product function is crucial for gaining a deeper understanding
that will prove beneficial in subsequent analyses. The application of Leibniz’s rule emerges as a fundamental
tool for dissecting and comprehending such scenarios. Another important property that we have to analyze
is the semigroup property, that is DαDβf = Dα+βf . Examining the semigroup property represents a crucial
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aspect in the realm of fractional analysis. An intriguing study conducted by Nguyen Dinh Cong delves into
solutions for fractional differential equations [13]. Nguyen Dinh Cong adeptly employed semigroup concepts
to transform a multiterm fractional differential equation into a single-term equation through a reduction
process. However, it’s noteworthy that the semigroup property is not a global condition, posing a significant
challenge for Nguyen Dinh Cong and their research team. To address these issues, a resolution is proposed
using the CNR concept, the intricate details of which are thoroughly expounded in Section 5.
The derivative of a composite function is also important in the theory of differential calculus. so it

is important to analyze in fractional calculus as well. Understanding this concept becomes crucial. The
commonly employed formula for computing the derivative of a composite function is recognized as the chain
rule, and its applicability is widespread in practical problem-solving. In the context of neural networks, the
cost function often involves a composition of an activation function and a linear function. Utilizing the chain
rule becomes imperative, especially in the application of backpropagation techniques for weight updates. In
fractional neural networks, the development of formulas for determining fractional derivatives of composite
functions becomes essential for effectively updating weights. Guy Jumarie delves into the exploration of the
chain rule concerning fractional operators and arrives at the conclusion that there isn’t a unique chain rule
for such operators [27]. Jumarie establishes certain rules for the fractional derivative of composite functions
and outlines their applications in system modeling, That chain rules for fractional operators are as follows,

1. Dα(f(g(x))) = (Dαf)(g(x)) ∗ (Dαg)(x).

2. Dα(f(g(x))) = fα(u) (u′)
α
.

3. Dα(f(g(x))) =

(
f(g(x))
g(x)

)1−α

(D′αDαg(x).

4. Dα(f(g(x))) = Γ(2− α)gα−1(Dαf)Dαg(x).

However, Tarasov disproved the validity of the chain rule proposed by Jumarie [50]. This discrepancy
needs to be clarified, emphasizing the importance of attaining a thorough comprehension of the criteria
governing fractional operators. The introduced CNR concept serves as a valuable tool for categorizing
these criteria. Additional criteria under consideration in this analysis include integer-order unification and
linearity. These factors hold significance in the field of fractional calculus, but they can be viewed as
overarching conditions.

3 Classification of Fractional Derivative Operators

In [53], G. Sales Teodoro, J.A. Tenreiro Machado, and E. Capelas de Oliveira propose a classification of
non-integer derivative operators into four classes, such as classical fractional operators, modified operators,
local operators, and operators with non-singular kernals. Here we intend to divide fractional derivatives into
four classes. While categorizing the fractional derivatives, there must be a criterion for it. The criterion
considered here is the nature of the derivative, or the terms included in the definition. Fractional derivatives
have been generalized in this way in order to study the rules to be followed by the fractional derivative
operators. Fractional derivatives are categorized into four types, such as Type-1, Type-2, Type-3, and Type-
4. It should be noted first that the number of parameters and variables used in the kernal functions used in
each generalized form can increase. The entire manuscript considers the left derivatives; the right derivatives
can also be included in the same way.

3.1 Type-1 Class

The general form of the Type-1 class is:

Dα(f(x)) = f1(α, β;x, t)
dk

dxk

∫ x

a

f2(α, β;x, t)f(t)dt (3.1)
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where f1 and f2 are outer and inner kernal functions which are continuous on (a,x). In most of the cases
f1 is constant. One of the main attraction of this Type-1 class of derivatives is its wide class of domain.
Domain of this derivatives includes integrable functions, more precisely f satisfy

∫ x
a
f2(α, β;x, t)f(t)dt is k

differentiable. But we cannot argue that the domain is L1 or its particular subset, it may varying depends
on its kernal function f2. The existence of a derivative for the product of functions f2 ∗ f on the interval
(a, x) is contingent upon the integrability of f2 ∗ f within that interval. While kernel functions typically
adhere to continuity, the potential for developing new fractional operators introduces the possibility of kernel
functions being discontinuous. Thus, there’s no limitation imposed on the parent space of the kernel function.
However, for this definition to make sense, f2 must be integrable.

d1 φ-Riemann-Liouville fractional derivative [28]

Dα(f(x)) =
1

Γ(n− α)

(
1

φ′(t)

)n
d

dx

n ∫ x

a

φ′n−α−1f(t)dt. (3.2)

d2 Riemann-Liouville derivative [29] φ(x) = x in (3.2).

d3 Katugampola fractional derivative [33]

φ(x) = xρ, in (3.2).

d4 Hadamard [19]
φ(x) = ln(x) in (3.2).

d5 Riemann derivative [39]
φ(x) = x, a = 0 in (3.2).

d6 Liovillie derivative [10]
φ(x) = x, a = −∞ in (3.2).

d7 Riesz derivative [10]
φ(x) = x, a = −∞, b =∞ in (3.2).

d8 Feller derivative [38, 65]

φ(x) = x, a = −∞, b =∞, 0 < η < 1 in (3.2).

d9 Chen derivative [14]
φ(x) = x, a = c, in (3.2).

d10 Jumarie derivative [24, 25, 35, 17]

φ(x) = x, a = 0, g(x) = f(x)− f(0) in (3.2).

d11 Weyl derivative [59]
φ(x) = x, b =∞ in (3.2),

Dα
∞[f(x)] = (−1)m

(
d

dt

)n
1

Γ(α)

∫ ∞
x

(t− x)α−1[f(t)]dt.



524 Criteria Analysis of Fractional Derivative For Mathematical Modeling Using CNR Concept

d12 Erdélyi-Kober derivative of f(x) [28]

φ(x) = xσ, g(x) = xσ(µ+α)f(x), in (3.2).

And take the derivative of g(x)

Dα
a+;β,γf(x) = x−β(α+γ)

(
1

βxβ−1

d

dt

)n
βxβ∗n

Γ(α)

∫ x

a

f(t)(xβ − tβ)α−1tβγ+β−1dt α > −n.

d13 R-L type Hilfer derivative [20]
φ(x) = x, 0 < α < 1,

Dα,β
a [f(x)] =

1

Γ(α)

d

dx

∫ x

a

f(t)(x− t)α−1dt, where t ≥ a.

d14 R-L type K-Hilfer derivative [55]
φ(x) = x, 0 < α < 1,

kDα[f(x)] =
1

kΓk(α)

d

dx

∫ x

0

f(t)(x− t)αk−1dt, where t ≥ 0.

d15 R-L type Hilfer-Katugampola derivative [43]

φ(x) =
tρ

ρ
, 0 < α < 1,

ρDα,β
a [f(x)] =

ρ1−α

Γ(α)
t1−ρ

d

dx

∫ x

a

f(t)(xρ − tρ)α−1dt, where x > a.

d16 Prabhakar derivative [18]
φ(x) = x, f2 = Eγα,β [λ(t− u)α] in (3.2),

PDα,β [f(x)] =
d

dx

n ∫ t

t0

(t− u)β−1Eγα,β [λ(t− u)α]f(u)du.

d17 Davidson-Essex [53]

f1 =
α

Γ(1− α)
, f2 = (x− t)−α, k = n,

Dα
0 [f(x)] =

α

Γ(1− α)

d

dx

∫ x

0

(x− t)−α d
n

dtn
[f(t)]dt.

d18 Canavati [53]

f1 =
α

Γ(1− α)
, f2 = (x− t)β , k = n,

aD
α
x [f(x)] =

α

Γ(1− α)

d

dx

∫ x

0

(x− t)β d
n

dtn
[f(t)]dt n = bαc, β = n− α.

d19 Atangana-Baleanu R− L type [2]

f1 =
B(α)

1− α, f2 = Eα

(
−α (x− t)α

1− α

)
, k = 0,

ABR−L
a Dα

x [f(x)] =
B(α)

1− α
d

dt

∫ x

a

f(t)Eα

(
−α (x− t)α

1− α

)
dx, x > a.
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d20 Yang [60]

f1 =
R(α)

(1− α)
, f2 = e−

α(x−t)α
1−α , k = 0,

Dα
s [f(x)] =

R(α)

(1− α)

d

dt

∫ x

a

f(t)e−
α(x−t)α
1−α dt.

d21 Generalized R− L type [49]

f1 =
G(α)

1− α, f2 = Eβ

(
−α (x− t)β

1− α

)
,

Dα,β
x [f(x)] =

G(α)

1− α
d

dt

∫ x

b

f(t)Eβ

(
−α (x− t)β

1− α

)
dx, x > b, β ∈ [0, 1].

d22 Yang R− L type [61]

f1 = 1, f2 = Eφ,φ((α1, v1), ..., (αn, vn); (x− t)α), k = 0,

RL
Eφ,φ

Dα[f(x)] =
d

dt

∫ x

a

Eφ,φ((α1, v1), ..., (αn, vn); (x− t)α)f(t)dt.

d23 General R− L type [62]
f1 = 1, f2 = P (x− t), k = 0,

DR−L
P [f(x)] =

d

dt

∫ x

a

P (x− t)f(t)dt.

3.2 Type-2 Class

General form of Type-2 class is,

Dα(f(x)) = f1(α, β;x, t)

∫ x

a

f2(α, β;x, t)fk(t)dt (3.3)

Where f1 and f2 are outer and inner kernal functions which are continuous on (a, x). In most of the cases
f1 is constant. Domain of Type-2 class of derivatives is the k differentiable functions. Similar to Type-1,
we are not imposing any constraints on the kernel function here. While there are fractional operators with
both singular and non-singular kernals, all of the kernal functions that are known to exist are continuous on
(a, x). It does not imply that C(a, b) is the home of the kernel function. In the future, we intend to define
fractional operators with discontinuous kernal functions. However, for this definition to make sense, f2 must
be integrable.

d1 Caputo-Fabrizio [11]

f1 =
M(α)

1− α , f2 = e−
α(x−t)
1−α , k = 0,

Dα
t [f(x)] =

M(α)

1− α

∫ x

a

f ′−
α(x−t)
1−α dt.

d2 Atangana-Baleanu Caputo type [2]

f1 =
B(α)

1− α, f2 = Eα

(
−α (x− t)α

1− α

)
, k = 0,

ABC
a Dα

x [f(x)] =
B(α)

1− α

∫ x

a

f ′(t)Eα

(
−α (x− t)α

1− α

)
dx, x > b.
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d3 Generalized Caputo type [49]

f1 =
G(α)

1− α, f2 = Eβ

(
−α (x− t)β

1− α

)
, k = 0,

gCDα,β
x [f(x)] =

G(α)

1− α

∫ x

b

f ′(t)Eβ

(
−α (x− t)β

1− α

)
dx, x > b, β ∈ [0, 1],

d4 Sun-Hao-Zhang-Baleanu [48]

f1 =
M(α)

(1− α)
1
α

, f2 = e−
α(x−t)α
1−α , k = 0,

SEDα
x [f(x)] =

M(α)

(1− α)
1
α

∫ x

a

f ′−
α(x−t)α
1−α dt.

d5 Caputo-Fabrizio with Gaussian kernel [12]

f1 =
1 + α2)√
πα(1− α)

, f2 = e−
α(x−t)2
1−α , k = 0,

CFDα[f(x)] =
1 + α2)√
πα(1− α)

∫ x

a

f ′−
α(x−t)2
1−α dt f(a) = 0.

d6 Yang Liouville-Caputo type [61]

f1 = 1, f2 = Eφ,φ((α1, v1), ..., (αn, vn); (x− t)α), k = 0,

C
Eφ,φ

Dα[f(x)] =

∫ x

a

Eφ,φ((α1, v1), ..., (αn, vn); (x− t)α)
d

dt
f(t)dt.

d7 General Liouville-Caputo type [62]

f1 = 1, f2 = P (x− t), k = 0,

DC
P [f(x)] =

∫ x

a

P (x− t)f ′(t)dt.

d8 R-L type Hilfer derivative [20]
φ(x) = x, 0 < α < 1,

Dα,β
a [f(x)] =

1

Γ(α)

d

dx

∫ x

a

f(t) (x− t)α−1
dt, where t ≥ a.

d9 R-L type K-Hilfer derivative [55]
φ(x) = x, 0 < α < 1,

kDα[f(x)] =
1

kΓk(α)

d

dx

∫ x

0

f(t) (x− t)
α
k−1

dt, where t ≥ 0.

d10 R-L type Hilfer-Katugampola derivative [43]

φ(x) =
tρ

ρ
, 0 < α < 1,

ρDα,β
a [f(x)] =

ρ1−α

Γ(α)
t1−ρ

∫ x

a

f ′ρ − tρ)α−1dt, x > a where ρ > 0,

Dα(f(x)) =
1

Γ(n− α)

∫ x

a

(x− t)n−α−1fn(t)dt.



Rajasekharan et al. 527

d13 φ-Capito fractional derivative [4]

Dα(f(x)) =
1

Γ(n− α)

∫ x

a

φ′n−α−1

(
1

φ′(t)

)n
fn(t)dt (3.4)

d14 Caputo-Katugampola fractional derivative [6]

φ(x) = xr in (3.4).

d15 Caputo Derivative [9] in (3.4).

d16 Caputo-Hadamard [5]
φ(x) = ln(x) in (3.4).

d17 Liovillie- Caputo derivative [40]
φ(x) = x, a = −∞ in (3.4).

d18 Caputo-Riesz derivative [26]
φ(x) = x in (3.4).

d19 Prabhakar derivative [18]
φ(x) = x, f2 = Eγα,β [λ(t− u)α] in (3.4),

PDα,β [f(x)] =

∫ t

t0

(t− u)β−1Eγα,β [λ(t− u)α]fn(u)du.

d20 φ fractional derivative [23]

D−α(f(x)) =
1

Γ(α)

∫ x

a

φ′(t)f(t)

(φ(x)− φ(t))1−α dt. (3.5)

3.3 Type-3 Class

This Type-3 class mainly includes the local operators. The general form of this class of derivatives is,

Dαf(x) = lim
x→y

kf(g(x, t, y))− f(y)

(xα − yα)1−β(x− y)β
h = (x− y).

The kernal function g belongs to C(a, b).

d1 Chen [52]
g = x, k = 1,

Dαf(x) = lim
y→x

f(x)− f(y)

xα − yα .

d2 Conformable [31]
g = x+ hx1−α, k = 1, β = 1,

Dαf(x) = lim
h→0

f(x+ hx1−α)− f(x)

h
.

d3 Katugampola [33]
g = xehx

−α
, k = 1,

Dαf(x) = lim
h→0

f(xehx
−α

)− f(x)

h
.
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d4 M [56]
g = xEβ(hx−α), k = 1,

Dαf(x) = lim
h→0

f(xEβ(hx−α))− f(x)

h
β > 0.

d5 Beta [1]

g =

(
x+ h

(
x+

1

Γ(β)

))
, k = 1,

0D
β
xf(x) = lim

h→0

f

(
x+ h

(
x+ 1

Γ(β)

)1−β
)
− f(x)

h
.

d6 Deformable [64]
g = xehx

−α
, k = 1 + hp,

Dαf(x) = lim
h→0

(1 + hp)f(x+ hα)− f(x)

h
p+ α = 1.

d7 Generalized conformable [21]
g = x+ h(K(x))1−α, k = 1,

Dαf(x) = lim
h→0

f(x+ h(K(x))1−α)− f(x)

h
.

d8 Generalized [3]

g =

(
x− k(x) + k(x)e

h(k(x))−α
k′(x)

)
, k = 1,

Dαf(x) = lim
h→0

f

(
x− k(x) + k(x)e

h(k(x))−α
k′(x)

)
− f(x)

h
.

d9 Truncated-ϑ [57]
g = xiH

α,p,q
γ,β,δ (hx−α), k = 1,

ϑα,p,qγ,β,δf(x) = lim
h→0

f(xiH
α,p,q
γ,β,δ (hx−α))− f(x)

h
.

d10 General conformable [66]
g = x+ hφ(x, p)), k = 1

Dαf(x) = lim
h→0

f(x+ hφ(x, p))− f(x)

h
.

d11 N-conformable [16]
g = x+ het

−α
, k = 1,

Nα
1 f(x) = lim

h→0

f(x+ het
−α

)− f(x)

h
.

d12 Multi Index Generalized Derivative [58]

g = x+ hv(x, α), k = 1,

Nαv f(x) = lim
h→0

f(x+ hv(t, α)− f(x)

h
.

d13 Juan derivative [22]

Dαf(x) = lim
y→x

dq(f(y)− f(x))

d(x− y)α
.



Rajasekharan et al. 529

3.4 Type-4 Class

This section includes the fractional derivative having series expression in its definition. The general form of
this class of derivative is

Dα
a [f(x)] = lim

h→0

p(α, t)

hα

∞∑
k=−∞

(−1)kf1(α;x, t)f(f2(α;x, t)).

The kernal functions f1 and f2 belongs to C(a, b).

d1 Grünwald-Letnikov derivative

f1 =
Γ(α+ 1)

Γ(k + 1)Γ(α− k + 1)
, f2 = x− kh, p = 1,

GLDα
a [f(x)] = lim

h→0

1

hα

bnc∑
k=0

(−1)k
Γ(α+ 1)f(x− kh)

Γ(k + 1)Γ(α− k + 1)
nh = b− x.

d2 Unified fractional derivative [41]

f1 =
Γ(α+ 1)f(x−kh+γh

2 )

Γ (α+t)
(2−k+1)Γ (α−t)

(2−k+1)

, f2 = x− kh, p = 1,

UDDα
a [f(x)] = lim

h→0

1

hα
e
−jπ(α−t)

2

∞∑
k=−∞

(−1)k
Γ(α+ 1)f(x−kh+γh

2 )

Γ (α+t)
(2−k+1)Γ (α−t)

(2−k+1)

.

d3 Generalized Conformable derivative [15]

f1 = (−1)k
(
bα+ 1c

k

)
, f2 = x− khT (x, α), p =

1

hbα+1c ,

GαT [f(x)] = lim
h→0

1

hbα+1c

bα+1c∑
k=0

(−1)k
(
bα+ 1c

k

)
f(x− khT (x, α)).

Here, the characteristics of kernel functions are not described, due to the fact that it is the kernal
function’s general form. Depending on what we require, we can explain the kernel function’s characteristics.
We can describe the properties of kernal functions for each proof that someone wants to use to establish
certain properties of the fractional derivative. This allows us to choose which fractional operator to employ
and which kernal functions will work best for our purposes.

4 CNR Concept

4.1 Advantage of Classification in Criteria of Fractional Derivative

Ross’s criteria

1. fractional derivative preserve analyticity.

2. fractional derivative should satisfy ordinary derivative also.

3. D0f(x) = f(x).

4. Fractional derivative should be a linear operator.
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5. Fractional derivative should satisfy semigroup property.

Ortigueira and Machado modify this criteria as follows.

1. Fractional derivative should be a linear operator.

2. fractional derivative should satisfy ordinary derivative also.

3. D0f(x) = f(x).

4. DαDβ = Dα+β for every real α, β.

5. Fractional derivative satisfies Generalized Leibniz rule.

Criteria for local operators proposed by Teodoro, Tenreiro, and Oliveira are as follows.

1. Fractional derivative should be a linear operator.

2. fractional derivative should satisfy ordinary derivative also.

3. Derivative of a constant function is 0.

4. Fractional derivative satisfies Chain rule.

5. Fractional derivative satisfies Generalized Leibniz rule.

Using the criteria explained and the classification, the criteria itself can be classified into two. strict sense
criteria and wide sense criteria.
Strict sense criteria(SSC):- The criteria can be proved in every class of derivatives.
Wide sense criteria(WSC):- The criteria cannot be proved in every class of derivatives.
After classifying the criteria in this way, the next question is which criteria will be included in SSC and which
criteria will be included in WSC. At the end of this work, we can come to an agreement about that. We
need to re-specify WSC itself because there are criteria that some operators obey only in special cases. For
example, the Caputo-Fabrizio operator, ABC operator, Generalized Caputo operator, and General liovillie
Caputo operator obey the zero-order unification rule only in special cases. The semigroup property can also
be included in the same category. But in this work, everything is contained in a single class called WSC,
because we are concerned with the rules that the fractional derivative must obey. The criteria can be clearly
categorized from the table 1. Let us first consider the linearity property, which all studies undoubtedly accept.
section 4.2 will be a guide of how a property should be proved using the classification suggested here. This
method of proving criterion in the generalized format is called CNR(classification rule) concept. In many
scientific and engineering applications where fractional calculus is used, the criterion analysis of fractional
operators is essential. Non-local behaviours, long-range dependencies, and memory are all modelled using
fractional operators, such as fractional derivatives and integrals. The following are some major points that
emphasise how crucial criterion analysis is for fractional operators:

1. The correctness of mathematical models used to explain occurrences in the actual world is strongly
influenced by the choice of fractional operators. Criteria analysis aids in the selection of suitable
fractional operators so that the behaviour of the system is correctly described in the model.

2. It is crucial to comprehend the physical meaning of fractional operators. By applying criteria analysis,
researchers may determine if a given fractional operator is consistent with the physical properties of
the system they are modelling, leading to a more meaningful representation.

3. Different system dynamics can result from different fractional operators. Criteria analysis is a useful
tool for assessing how the selection of fractional operators affects the system’s general behaviour,
stability, and convergence over time.
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4. The selection of fractional operators determines the stability and effi ciency of algorithms in numer-
ical simulations and computational investigations. The process of choosing operators that preserve
computational effi ciency and numerical stability is aided by criteria analysis.

5. The choice of fractional operators should be in line with observed behaviours when using fractional
calculus to analyse experimental data. By helping to match the model with actual data, criteria
analysis increases the prediction capacity of the model.

6. Researchers can better appreciate the importance of fractional operators in capturing system complex-
ity by comparing fractional and classical models with the aid of criteria analysis.

7. Fractional orders are frequently used as parameters in fractional operators. By assisting in the selec-
tion of suitable fractional orders, criteria analysis guarantees that the model accurately captures the
fundamental physical characteristics of the system.

To sum up, criterion analysis for fractional operators is crucial since it helps to guarantee the precision,
usefulness, and effectiveness of fractional calculus models in a variety of engineering and scientific fields. To
obtain relevant and trustworthy findings, researchers and practitioners must carefully evaluate and choose
fractional operators according to predetermined criteria.

4.2 Linearity Property of Derivatives Using Generalized Classification

4.2.1 Linearity of Type-1 Generalization

Theorem 4.1 If

Dα[f(x)] = f1(α, β;x, t)
d

dx

k ∫ x

a

f2(α, β;x, t)f(t),

then Dα(λf + g) = λDαf +Dαg.

Proof.

Dα[(λf + g)] =f1(α, β;x, t)
d

dx

k ∫ x

a

f2(α, β;x, t)(λf(t) + g(t))

=f1(α, β;x, t)
d

dx

k ∫ x

a

λf2(α, β;x, t)f(t) + f2(α, β;x, t)g(t)

=f1(α, β;x, t)
d

dx

k
[∫ x

a

λf2(α, β;x, t)f(t) +

∫ x

a

f2(α, β;x, t)g(t)

]

=f1(α, β;x, t)
d

dx

k ∫ x

a

λf(t)f2(α, β;x, t) + f1(α, β;x, t)
d

dx

k ∫ x

a

g(t)f2(α, β;x, t)

=λDαf +Dαg.

Theorem 4.1 proves the linearity of the generalized version of Type-1 class of derivatives. Now we cannot
verify the linearity of derivatives in this class separately. Linearity of Type-2 class of derivatives as follows.

4.2.2 Linearity of Type-2 Generalization

Theorem 4.2 If

Dα[f(x)] = f1(α, β;x, t)

∫ x

a

f2(α, β;x, t)fk(t), (4.1)

then Dα(λf + g) = λDαf +Dαg.
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Proof.

Dα[(λf + g)] =f1(α, β;x, t)

∫ x

a

f2(α, β;x, t)
dk

dt
(λf(t) + g(t))

=f1(α, β;x, t)

∫ x

a

λf2(α, β;x, t)fk(t) + f2(α, β;x, t)gk(t)

=f1(α, β;x, t)

[∫ x

a

λf2(α, β;x, t)fk(t) +

∫ x

a

f2(α, β;x, t)gk(t)

]

=f1(α, β;x, t)

∫ x

a

λf2(α, β;x, t)fk(t) + f1(α, β;x, t)

∫ x

a

f2(α, β;x, t)gk(t)

=λDαf +Dαg.

4.2.3 Linearity of Type-3 generalization

Theorem 4.3 If

Dαf(x) = lim
x→y

kf(g(x, t))− f(y)

(xα − yα)1−β(x− y)β
h = (x− y),

then Dα(λf + h) = λDαf +Dαg.

Proof.

Dα(λf + h) = lim
x→y

k(λf + h)(g(x, t))− (λf + h)(y)

(xα − yα)1−β(x− y)β

= lim
x→y

k(λf)(g(x, t))− λ(f)(y) + λkh(g(x, t))− λh(y)

(xα − yα)1−β(x− y)β

= λDαf +Dαg.

4.3 Linearity of Type-4 Generalizations:

Type-4 includes only two derivatives, its linearity is proved in [41, 29], but we have to prove the linearity in
the generalized format.

Theorem 4.4 If

Dα
a [f(x)] = lim

h→0

p(α, t)

hα

∞∑
k=−∞

(−1)kf1(α;x, t)f(f2(α;x, t)),

then Dα(λf + f1) = λDαf +Dαf1.
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Proof.

Dα
a [λf(x) + g(x)] = lim

h→0

p(α, t)

hα

∞∑
k=−∞

(−1)kf1(α;x, t)
(
(λf + g)(f2(α;x, t)

)
= lim
h→0

p(α, t)

hα

∞∑
k=−∞

(−1)kf1(α;x, t)
(
λf(f2(α;x, t) + g(f2(α;x, t)

)
= lim
h→0

p(α, t)

hα

∞∑
k=−∞

(
λ(−1)kf1(α;x, t)f(f2(α;x, t) + (−1)kf1(α;x, t)g(f2(α;x, t)

)

= lim
h→0

p(α, t)

hα

( ∞∑
k=−∞

λ(−1)kf1(α;x, t)f(f2(α;x, t) +

∞∑
k=−∞

(−1)kf1(α;x, t)g(f2(α;x, t)

)

=λ

∞∑
k=−∞

lim
h→0

p(α, t)

hα
(−1)kf1(α;x, t)f(f2(α;x, t)

+ lim
h→0

p(α, t)

hα

∞∑
k=−∞

(−1)kf1(α;x, t)g(f2(α;x, t)

=λDα
a f +Dα

a g.

Here we have only proved the linearity. No other properties proposed by Ross [44], Ortigueira [42],
and Teodoro [53] are proved here. So many derivatives have real-life applications that do not satisfy the
above-mentioned conditions, for example Chen [52], conformable [31], Katugampola [33], M-operatior [56],
beta [1], truncated-ϑ [57] violating the semi-group structure. Similarly generalized Leibniz rule is not a
global condition for fractional derivative [51]. If these conditions are considered as necessary for a fractional
derivative, then so many derivatives are ruled out from fractional derivatives. Therefore, we prioritize each
set of rules for each derivative class, such as the study of Teodoro [53]. If someone introduces a new condition
for a fractional derivative, we can verify it using the CNR concept. Using CNR concept, generalized Leibniz
rule and chain rule is a WSC because generalized Leibniz rule satisfies only Type-1 and Type-2, similarly
chain rule satisfies only Type-3 and Type-4 [53]. Table 1 is the foundation of CNR concept, we can add
more rows to describe the properties of fractional derivatives in depth. We analyse only five criterion in
this table for describing CNR concept and make Table 3.3. Before concluding this work, we considered the
integer order unification as also a strict sense criterion for fractional derivative. But so many fractional
derivatives defined only in non integer order, for example the derivatives with non singular kernal. The
criterion "Integer order unification" is included in SSC without considering this problem or without using
CNR concept. Because we need the backing of integer order calculus with a clear theory and geometry
foundation. Otherwise fractional calculus cannot be consider as the generalization of integer order calculus.
We simply demonstrated the linearity of fractional operators due to the generalised kernal function. However,
the characteristics of the kernel function can be explained in order to meet the above criteria. For instance,
the generalised form of the kernal function makes it impossible to establish the Leibnitz rule and the chain
rule using the CNR notion. For this reason, we may state that the generalised version of kernel functions
will be important to the future work on this CNR concept.

5 Discussion and How CNR Concept is Useful in Mathematical
Modeling

This work establishes a possible way to classify the fractional derivatives into four classes and shows a way
to apply the rules to the derivatives of each class. By dividing the fractional derivatives into four classes,
this is a good resource for the efforts to make this field more approachable and systematic. The classification
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Criteria Type− 1 Type− 2 Type− 3 Type− 4
Linearity X X X X
Semigroup ⊗ ⊗ × ×
Integer order unification X X X X
Generalized Leibniz rule X X × ×
Chain rule ⊗ ⊗ X X

Table 1: Criteria analysis of fractional operators

SSC WSC
Linearity Semigroup
Integer order unification Generalized Leibniz rule

Chain rule

Table 2: Classification of criterion of fractional operators

introduced here is more systematic than others because this is not just a mathematical fantasy. Also, the
CNR concept is worthy of the development of fractional calculus through the derivatives introduced as a
part of new fractional modelling. This work is useful to prove the results in the generalized format, so it
is very easy to verify all the individual derivatives under that generalized format. Table-1 gives the clarity
about it. The symbol X,×,⊗ resapectively represents the property is satisfied, not satisfied and satisfied
partially. The partially satisfied property, which satisfies for certain unique values of the parameter used in
the operator, is nothing but it is not a global property. Table-2 represents the classification of fractional
operator criterion. In summary, the characteristics of fractional operators, including their order and type,
influence how fractional modeling describes real-world phenomena with memory, non-local interactions, and
complex dynamics. These operators provide a powerful mathematical framework for capturing the behavior
of systems that cannot be fully represented by traditional calculus. The attributes must also be switched when
the fractional and integer operators are switched. However, the characteristics of an integer calculus do not
necessarily have to be a fractional operator’s criterion, therefore we must have a thorough comprehension of
these characteristics. In the subject of fractional modelling, optimising the order of the fractional operator
is crucial. In a similar vein, selecting the fractional operator in the CNR idea also heavily depends on
optimising the kernal function.

5.1 Influence of CNR Concept in Mathematical Modelling

Fractional calculus has been widely used to model real-life problems in recent years. Primarily, we consider
modelling the COVID pandemic using fractional operators [8]. Here, the ABC and CF operators are used
to model the spread of COVID-19. This ABC derivative is also used to explain the nature of HIV virus
spreading [37]. So the ABC fractional operator is so important to the mathematical modelling of pandemic
spread. But this ABC derivative doesn’t follow the semigroup property, and the integer order unification is
partially satisfied. This operator actually has a non-singular kernal but doesn’t follow the properties of an
integer-order derivative. At the same time, this has several implications for mathematical modelling. At this
stage, the classification mentioned here is useful to categorize this operator in Type − 2 class and identify
the properties it satisfies. This clarity will help researchers who are interested in fractional modelling in the
future. If Atangana-Baleanu had rejected this operator as not meeting the criteria, it would have been a big
loss for us. This same situation occurs for all fractional operators with non-singular kernal. So this CNR
concept may become the key tool for mathematical modelling.
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5.2 Influence of the CNR Concept on Analyzing Properties such as the Semi-
group Property, Chain Rule, and Leibniz Rule in Mathematical Modeling.

In Nguyen Dinh Cong’s research, semigroups were notably employed [13]. However, a significant challenge
arose due to the non-global nature of the semigroup property, prompting questions about its acceptability as
a condition. The CNR concept emerges as a viable solution to this dilemma, offering an explicit resolution. It
is crucial to note that these investigations specifically focused on Caputo-type operators. The CNR concept
categorizes all Caputo-type operators under Type-1, where the semigroup property is not an absolute criterion
but rather a weak one. Consequently, adherence to the semigroup condition is not obligatory for every order;
it suffi ces to comply with a specific set of real numbers. This flexibility mirrors the situation with classical
derivatives. The validation of Nguyen Dinh Cong’s work through the CNR concept not only addresses
these concerns but also serves as a significant catalyst for advancing further studies on fractional differential
equations. Exploring solutions to fractional differential equations is a key aspect of advancing fractional
modeling. Fractional modeling inherently involves the formulation of fractional differential equations. A
thorough examination of the semigroup property holds the potential to introduce novel methods for effectively
solving these fractional differential equations.

Fractional neural networks extend traditional neural network frameworks by integrating principles from
fractional calculus. Their incorporation contributes to the wider investigation of sophisticated mathematical
tools within the realms of artificial intelligence and machine learning. The progress of fractional neural
networks encompasses tasks such as establishing the definitions of fractional derivatives within neural net-
work architectures, formulating training algorithms that incorporate fractional calculus, and examining how
fractional operators impact the network’s performance and capabilities. Exploring the Leibniz rule and the
chain rule for fractional operators is instrumental in advancing the field of fractional neural networks. In the
mathematical theory of neural networks, the primary objective is to determine the optimal weight vector.
Currently, backpropagation heavily relies on conventional gradient descent methods. This domain calls for
the development of novel techniques to minimize the cost function in the context of backpropagation. Insuf-
ficient understanding of the chain rule formula has a detrimental impact on the advancement of fractional
neural networks. Specifically, when dealing with integer-order derivatives, adherence to the rules for a chosen
set of points is adequate. CNR concept allows us to assert that the chain rule may be viewed as a relatively
lenient criterion. Consequently, we can confidently employ fractional derivatives of composite functions even
when they deviate from the entire set of real numbers. As an illustration, Jumarie proposed specific chain
rule formulas for certain system modeling applications [27]. However, Tarasov contradicted these formulas by
employing the function xn [50]. By leveraging the CNR concept, Jumarie can sidestep Tarasov’s argument
since he did not employ functions resembling xn. To eliminate any ambiguity, the CNR concept can be
universally applied across diverse systems. However, clarity is essential—must explicitly outline the set of
fractional orders required for modeling, identify the specific functions to be employed, and formulate rules
within this designated framework for predetermined points. It’s important to note that these rules may not
necessarily be applicable to other functions or orders beyond the specified set. Within a fractional neural
network, the application of chain rule formulas for backpropagation is facilitated by the CNR concept. How-
ever, it is imperative that our cost function aligns with the order of the fractional derivative. Additionally,
the choice of the fractional operator plays a crucial role. It is essential to explicitly state the fractional
operator, categorize its type, and delineate the specific conditions it adheres to. Sousa and Oliveira have
introduced a Leibniz-type rule specifically tailored for the ψ-Hilfer fractional operator [46]. By employing the
CNR concept, we can acknowledge the significance of their contribution, emphasizing that the Leibniz rule
is applicable exclusively to ψ-Hilfer fractional operators. The robustness of this rule is confirmed within the
framework of the CNR concept, as any attempt to disprove it would require the selection of an alternative
fractional operator. However, the CNR concept affi rms the validity of this rule not only for the ψ-Hilfer
fractional operator but also for all operators derived from it, given that the ψ-Hilfer fractional operator serves
as a generalized fractional operator. This combination of ideas enhances the understanding of generalized
fractional operators, representing a comprehensive set of fractional operators. The Leibniz rule tailored for
ψ-Hilfer fractional operators can be applied universally in ψ-Hilfer fractional modeling.
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6 Conclusion and Future Works

This work exposes the lack of clarity about the rules that fractional derivatives should obey and finds a
remedy for it. This clarity about the rules will also help new fractional derivative operators. That is,
if someone proposes a new fractional derivative, we can see what class it belongs to and what rules that
operator should obey. Future research pertaining to the CNR idea is entirely dependent on the fractional
operator’s criteria. This has a positive effect on Stability Analysis, Convergence Analysis, Regularization
Techniques, Spectral Analysis, and Generalized Fractional Operators. The CNR concept proposed in this
work provides great freedom for researchers in the field of fractional modelling. Future research possibilities
for these investigations lie in clarifying which classes of derivatives obey which rules. It is certainly not a
small task, the increasing number of definitions of fractional derivatives must be scrutinized to propose new
rules and to study and categorize existing rules in greater depth.
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