Regular Ideal Convergence Of Double Sequences Of Functions In 2-Normed Spaces^{*}

Erdinç Dündar[†]

Received 14 December 2023

Abstract

In this study, we introduce the concepts of regular ideal convergence types and regular ideal Cauchy for double sequences of functions in 2-normed spaces. Also, we study some properties of these new concepts.

1 Introduction

Throughout the paper, N and \mathbb{R} denote the set of all positive integers and the set of all real numbers, respectively. The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [19] and Schoenberg [37]. This concept was extended to the double sequences by Mursaleen and Edely [29]. The idea of ideal convergence was introduced by Kostyrko et al. [27] as a generalization of statistical convergence. Nuray and Ruckle [31] independently introduced the same concept with another name generalized statistical convergence. Das et al. [5] introduced the concept of ideal convergence of double sequences in a metric space and studied some properties. Tripathy and Tripathy [40] studied on ideal convergence and regular ideal convergence of double sequences. Dündar and Altay [10] introduced ideal convergence and regular ideal convergence of double sequences. Also, Dündar [6] introduced regular ideal convergence of double sequences of functions. Recently, Dündar and Akm [15] studied regular ideal convergence of double sequences. Also, Bard and Akm [15] studied regular ideal convergence of double sequences. Also, 12] investigated regular ideal invariant convergence of double sequences. A lot of development have been made in this area after the works [7, 8, 9, 11, 12, 13, 17, 18, 28, 40, 38].

The concept of 2-normed space was initially introduced by Gähler [20, 21] in the 1960's. Since then, this concept has been studied by many authors [23, 24, 26]. Shiner et al. [39] and Gürdal [26] studied \mathcal{I} convergence in 2-normed spaces. Gürdal and Açık [25] investigated \mathcal{I} -Cauchy and \mathcal{I}^* -Cauchy sequences in 2normed spaces. Sarabadan and Talebi [34] defined statistical convergence and ideal convergence of sequences of functions in 2-normed spaces. Sarabadan and Talebi [35] investigated the concepts \mathcal{I}_2 -convergence, \mathcal{I}_2 -limit points and \mathcal{I}_2 -cluster points of double sequences in 2-normed spaces. Dündar and Sever [14] introduced the notions of \mathcal{I}_2 and \mathcal{I}_2^* -Cauchy double sequences, and studied their some properties with (AP2) in 2-normed spaces. Yegül and Dündar [45, 46, 47] studied statistical convergence and ideal convergence of double sequences of functions and investigated some properties of these convergence types in 2-normed spaces.

Now, we recall some fundamental definitions and notations (See [1-5, 16, 20, 22, 24, 25, 27, 33-36, 40-47]).

Let X be a real vector space of dimension d, where $2 \leq d < \infty$. A 2-norm on X is a function $\|\cdot, \cdot\|$: $X \times X \to \mathbb{R}$ which satisfies the following statements:

- (i) ||x, y|| = 0 if and only if x and y are linearly dependent.
- (ii) ||x, y|| = ||y, x||.
- (iii) $\|\alpha x, y\| = |\alpha| \|x, y\|, \alpha \in \mathbb{R}.$

^{*}Mathematics Subject Classifications: 40A35, 40B05, 46A70.

[†]Department of Mathematics, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey

(iv) $||x, y + z|| \le ||x, y|| + ||x, z||$.

The pair $(X, \|\cdot, \cdot\|)$ is called a 2-normed space. As an example of a 2-normed space, we may take $X = \mathbb{R}^2$ being equipped with the 2-norm ||x, y|| := the area of the parallelogram based on the vectors x and y which may be given explicitly by the formula

$$||x, y|| = |x_1y_2 - x_2y_1|; \quad x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2.$$

In this study, we suppose that X is a d-dimensional 2-normed space, where $2 \le d < \infty$.

If $K \subseteq \mathbb{N}$, then K_n denotes the set $\{k \in K : k \leq n\}$ and $|K_n|$ denotes the cardinality of K_n . The natural density of K is given by $d(K) = \lim_{n \to \infty} \frac{1}{n} |K_n|$, if it exists. The number sequence $x = (x_k)$ is statistically convergent to L provided that for every $\varepsilon > 0$ we have

 $d(K(\varepsilon)) = 0$, where $K(\varepsilon) := \{k \in \mathbb{N} : |x_k - L| \ge \varepsilon\}$. In this case, we write $st - \lim x = L$.

Let $X \neq \emptyset$. A class \mathcal{I} of subsets of X is said to be an ideal in X provided:

(i) $\emptyset \in \mathcal{I}$, (ii) $A, B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$, (iii) $A \in \mathcal{I}, B \subset A$ implies $B \in \mathcal{I}$.

 \mathcal{I} is called a nontrivial ideal if $X \notin \mathcal{I}$. A nontrivial ideal \mathcal{I} in X is called admissible if $\{x\} \in \mathcal{I}$ for each $x \in X$. Throughout the paper, we take \mathcal{I} as a nontrivial admissible ideal in \mathbb{N} .

Let $X \neq \emptyset$. A non empty class \mathcal{F} of subsets of X is said to be a filter in X provided:

(i) $\emptyset \notin \mathcal{F}$, (ii) $A, B \in \mathcal{F}$ implies $A \cap B \in \mathcal{F}$, (iii) $A \in \mathcal{F}, A \subset B$ implies $B \in \mathcal{F}$.

If \mathcal{I} is a nontrivial ideal in $X, X \neq \emptyset$, then $\mathcal{F}(\mathcal{I}) = \{M \subset X : (\exists A \in \mathcal{I}) (M = X \setminus A)\}$ is a filter on X, called the filter associated with \mathcal{I} .

Throughout the paper, we take \mathcal{I}_2 as a nontrivial admissible ideal in $\mathbb{N} \times \mathbb{N}$.

A nontrivial ideal $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ is called strongly admissible if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times \{i\}$ belong to \mathcal{I}_2 for each $i \in \mathbb{N}$. It is evident that a strongly admissible ideal is also admissible. After this, we take \mathcal{I}_2 as a strongly admissible ideal in $\mathbb{N} \times \mathbb{N}$.

Let $\mathcal{I}_2^0 = \{A \subset \mathbb{N} \times \mathbb{N} : (\exists m(A) \in \mathbb{N}) (i, j \ge m(A) \Rightarrow (i, j) \notin A)\}$. Then \mathcal{I}_2^0 is a nontrivial strongly admissible ideal and clearly an ideal \mathcal{I}_2 is strongly admissible if and only if $\mathcal{I}_2^0 \subset \mathcal{I}_2$.

Throughout the paper, we take X and Y be two 2-normed spaces, $\{f_n\}_{n\in\mathbb{N}}$ and $\{g_n\}_{n\in\mathbb{N}}$ be two sequences of functions and f, g be two functions from X to Y.

The sequence $\{f_n\}_{n\in\mathbb{N}}$ is said to be convergent to f if $f_n(x) \xrightarrow{\|.,\|_Y} f(x)$ for each $x \in X$. We write $f_n \stackrel{\| \dots \|_Y}{\longrightarrow} f.$ This can be expressed by the formula

$$(\forall z \in Y)(\forall x \in X)(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0) \|f_n(x) - f(x), z\| < \varepsilon.$$

The sequence $\{f_n\}$ is said to be \mathcal{I} -pointwise convergent to f, if for every $\varepsilon > 0$ and each nonzero $z \in Y$,

$$A(\varepsilon, z) = \{ n \in \mathbb{N} : \| f_n(x) - f(x), z \| \ge \varepsilon \} \in \mathcal{I},$$

for each $x \in X$. In this case, we write $f_n \xrightarrow{\|\cdot,\cdot\|_Y} \mathcal{I} f$. The sequence $\{f_n\}$ is said to be (pointwise) \mathcal{I}^* -convergent to f, if there exists a set $M \in \mathcal{F}(\mathcal{I})$, (i.e., $\mathbb{N}\setminus M \in \mathcal{I}$, $M = \{m_1 < m_2 < \cdots < m_k < \cdots\}$, such that for each $x \in X$ and each $z \in Y$,

$$\lim_{k \to \infty} \|f_{m_k}(x), z\| = \|f(x), z\|$$

and we write $\mathcal{I}^* - \lim_{n \to \infty} ||f_n(x), z|| = ||f(x), z||.$

A double sequence $x = (x_{mn})$ of real numbers is said to be convergent to $L \in \mathbb{R}$ in Pringsheim's sense if for every $\varepsilon > 0$, there exists $N_{\varepsilon} \in \mathbb{N}$ such that $|x_{mn} - L| < \varepsilon$, whenever $m, n > N_{\varepsilon}$. In this case, we write $\lim_{m,n\to\infty}x_{mn}=L.$

A double sequence $x = (x_{mn})$ of real numbers is said to be bounded if there exists a positive real number M such that $|x_{mn}| < M$ for all $m, n \in \mathbb{N}$, that is, $||x||_{\infty} = \sup |x_{mn}| < \infty$. We let the set of all bounded double sequences by L_{∞} .

E. Dündar

Let $K \subset \mathbb{N} \times \mathbb{N}$. Let K_{mn} be the number of $(j,k) \in K$ such that $j \leq m, k \leq n$. If the sequence $\left\{\frac{K_{mn}}{m,n}\right\}$ has a limit in Pringsheim's sense then we say that K has double natural density and is denoted by

$$d_2(K) = \lim_{m,n \to \infty} \frac{K_{mn}}{m.n}.$$

A double sequence $x = (x_{mn})$ of real numbers is said to be statistically convergent to $L \in \mathbb{R}$ if for every $\varepsilon > 0$, we have $d_2(A(\varepsilon)) = 0$, where

$$A(\varepsilon) = \{ (m, n) \in \mathbb{N} \times \mathbb{N} : |x_{mn} - L| \ge \varepsilon \}.$$

A double sequence (x_{mn}) of real numbers is said to be regularly convergent, if it is convergent in Pringsheim's sense and the limits $\lim_{m\to\infty} x_{mn}$ and $\lim_{n\to\infty} x_{mn}$ exist for each fixed $n \in \mathbb{N}$ and $m \in \mathbb{N}$, respectively. If the double sequence (x_{mn}) is regularly convergent to L in X, then

$$\lim_{n \to \infty} \lim_{m \to \infty} x_{mn} = \lim_{m \to \infty} \lim_{n \to \infty} x_{mn} = L$$

and we write $r - \lim_{m,n \to \infty} x_{mn} = L$.

A double sequence (x_{mn}) in X is said to be regularly $(\mathcal{I}_2, \mathcal{I})$ -convergent $(r(\mathcal{I}_2, \mathcal{I})$ -convergent), if it is \mathcal{I}_2 -convergent in Pringsheim's sense and for each $\varepsilon > 0$ and each nonzero $z \in X$, the following statements hold:

$$\{m \in \mathbb{N} : \|x_{mn} - L_n, z\| \ge \varepsilon\} \in \mathcal{I}, \text{ for some } L_n \in X \text{ and for each } n \in \mathbb{N},$$

and

$$\{n \in \mathbb{N} : ||x_{mn} - K_m, z|| \ge \varepsilon\} \in \mathcal{I}, \text{ for some } K_m \in X \text{ and for each } m \in \mathbb{N}$$

If the double sequence (x_{mn}) is regularly $(\mathcal{I}_2, \mathcal{I})$ -convergent $(r(\mathcal{I}_2, \mathcal{I})$ -convergent) to $L \in X$, then

$$\mathcal{I} - \lim_{n \to \infty} \lim_{m \to \infty} x_{mn} = \mathcal{I} - \lim_{m \to \infty} \lim_{n \to \infty} x_{mn} = L$$

A double sequence (x_{mn}) in X is said to be $r(\mathcal{I}_2^*, \mathcal{I}^*)$ -convergent, if there exist the sets $M \in \mathcal{F}(\mathcal{I}_2)$ (i.e., $\mathbb{N} \setminus \mathbb{N} \setminus M \in \mathcal{I}_2$), $M_1 \in \mathcal{F}(\mathcal{I})$ and $M_2 \in \mathcal{F}(\mathcal{I})$ (i.e., $\mathbb{N} \setminus M_1 \in \mathcal{I}$ and $\mathbb{N} \setminus M_2 \in \mathcal{I}$) such that the limits

$$\lim_{\substack{m,n\to\infty\\(m,n)\in M}} x_{mn}, \quad \lim_{\substack{m\to\infty\\m\in M_1}} x_{mn} \text{ and } \lim_{\substack{n\to\infty\\n\in M_2}} x_{mn},$$

exist for each fixed $n \in \mathbb{N}$ and $m \in \mathbb{N}$, respectively.

A double sequence (x_{mn}) in X is said to be regularly $(\mathcal{I}_2, \mathcal{I})$ -Cauchy sequence $(r(\mathcal{I}_2, \mathcal{I})$ -Cauchy sequence), if it is \mathcal{I}_2 -Cauchy sequence in Pringsheim's sense and for each $\varepsilon > 0$ and each nonzero $z \in X$, there exist $k_n = k_n(\varepsilon, z) \in \mathbb{N}$ and $l_m = l_m(\varepsilon, z) \in \mathbb{N}$ such that the following statements hold:

$$A_1(\varepsilon) = \{ m \in \mathbb{N} : \| x_{mn} - x_{k_n n}, z \| \ge \varepsilon \} \in \mathcal{I}, \ (n \in \mathbb{N})$$

and

$$A_2(\varepsilon) = \{ n \in \mathbb{N} : \|x_{mn} - x_{ml_m}, z\| \ge \varepsilon \} \in \mathcal{I}, \ (m \in \mathbb{N}).$$

A double sequence (x_{mn}) is said to be regularly $(\mathcal{I}_2^*, \mathcal{I}^*)$ -Cauchy sequence $(r(\mathcal{I}_2^*, \mathcal{I}^*)$ -Cauchy sequence), if there exist the sets $M \in \mathcal{F}(\mathcal{I}_2)$, $M_1 \in \mathcal{F}(\mathcal{I})$ and $M_2 \in \mathcal{F}(\mathcal{I})$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus M \in \mathcal{I}_2$, $\mathbb{N} \setminus M_1 \in \mathcal{I}$ and $\mathbb{N} \setminus M_2 \in \mathcal{I}$), for each $\varepsilon > 0$ and each $z \in X$, there exist $N = N(\varepsilon)$, $s = s(\varepsilon)$, $t = t(\varepsilon)$, $(s, t) \in M$, $k_n = k_n(\varepsilon)$, $l_m = l_m(\varepsilon) \in \mathbb{N}$ such that for all $m, n, s, t, k_n, l_m \geq N$,

$$\begin{aligned} \|x_{mn} - x_{st}, z\| < \varepsilon, & \text{for } (m, n), (s, t) \in M, \\ \|x_{mn} - x_{k_n n}, z\| < \varepsilon, & \text{for each } m \in M_1 \text{ and for each } n \in \mathbb{N}, \\ \|x_{mn} - x_{ml_m}, z\| < \varepsilon, & \text{for each } n \in M_2 \text{ and for each } m \in \mathbb{N}. \end{aligned}$$

After this, we let X and Y be two 2-normed spaces, $\{f_{mn}\}_{(m,n)\in\mathbb{N}\times\mathbb{N}}$ and $\{g_{mn}\}_{(m,n)\in\mathbb{N}\times\mathbb{N}}$ be two double sequences of functions, f, g be two functions from X to Y.

A double sequence $\{f_{mn}\}$ is said to be convergent to f if for each $x \in X$ and for every $\varepsilon > 0$, there exists a positive integer $k_0 = k_0(x, \varepsilon)$ such that for all $m, n \ge k_0$ implies $||f_{mn}(x) - f(x), z|| < \varepsilon$, for every $z \in Y$. In this case, we write $f_{mn} \xrightarrow{||...|_Y} f$.

A double sequence $\{f_{mn}\}$ is said to be \mathcal{I}_2 -convergent to f, if for every $\varepsilon > 0$ and each nonzero $z \in Y$,

$$A(\varepsilon, z) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x) - f(x), z|| \ge \varepsilon\} \in \mathcal{I}_2,$$

for each $x \in X$. In this case, we write $\mathcal{I}_2 - \lim_{m,n\to\infty} ||f_{mn}(x), z|| = ||f(x), z||$ or $f_{mn} \xrightarrow{||...||_Y}_{\mathcal{I}_2} f$.

A double sequence $\{f_{mn}\}$ in 2-normed space $(X, \|., .\|)$ is said to be \mathcal{I}_2^* -convergent to f, if there exists a set $M \in \mathcal{F}(\mathcal{I}_2)$ (i.e., $H = \mathbb{N} \times \mathbb{N} \setminus M \in \mathcal{I}_2$) such that for each $x \in X$, each $z \in Y$ and all $(m, n) \in M$, $\lim_{m,n\to\infty} \|f_{mn}(x), z\| = \|f(x), z\|$ and we write $\mathcal{I}_2^* - \lim_{m,n\to\infty} \|f_{mn}(x), z\| = \|f(x), z\|$.

A double sequence $\{f_{mn}\}$ is said to be \mathcal{I}_2 -Cauchy sequence, if for every $\varepsilon > 0$ and each $x \in X$, there exist $s = s(\varepsilon, x), t = t(\varepsilon, x) \in \mathbb{N}$ such that for each nonzero $z \in Y$,

$$\{(m,n)\in\mathbb{N}\times\mathbb{N}: \|f_{mn}(x)-f_{st}(x),z\|\geq\varepsilon\}\in\mathcal{I}_2.$$

A double sequence $\{f_{mn}\}$ is said to be \mathcal{I}_2^* - Cauchy sequence, if there exists a set $M \in \mathcal{F}(\mathcal{I}_2)$ (i.e., $H = \mathbb{N} \times \mathbb{N} \setminus M \in \mathcal{I}_2$) and for every $\varepsilon > 0$ and each $x \in X$, $k_0 = k_0(\varepsilon, x) \in \mathbb{N}$ such that for all $(m, n), (s, t) \in M$ and each $z \in Y \|f_{mn}(x) - f_{st}(x), z\| < \varepsilon$, whenever $m, n, s, t > k_0$. In this case, we write $\lim_{m,n,s,t\to\infty} \|f_{mn}(x) - f_{st}(x), z\| = 0$.

If we take $\mathcal{I} = \mathcal{I}_d = \{A \subset \mathbb{N} : d(A) = 0\}$, then $\mathcal{I} = \mathcal{I}_d$ is a non-trivial admissible ideal of \mathbb{N} and the ideal convergence coincides with statistical convergence.

If we take $\mathcal{I}_2 = \mathcal{I}_{d_2} = \{A \subset \mathbb{N} \times \mathbb{N} : d_2(A) = 0\}$, then $\mathcal{I}_2 = \mathcal{I}_{d_2}$ is a nontrivial strongly admissible ideal of $\mathbb{N} \times \mathbb{N}$ and the ideal convergence coincides with statistical convergence.

An admissible ideal $\mathcal{I} \subset 2^{\mathbb{N}}$ satisfies the property (AP), if for every countable family of mutually disjoint sets $\{A_1, A_2, \ldots\}$ belonging to \mathcal{I} , there exists a countable family of sets $\{B_1, B_2, \ldots\}$ such that $A_j \Delta B_j$ is a finite set for $j \in \mathbb{N}$ and $B = \bigcup_{j=1}^{\infty} B_j \in \mathcal{I}$. (hence $B_j \in \mathcal{I}$ for each $j \in \mathbb{N}$).

An admissible ideal $\mathcal{I}_2 \subset 2^{\mathbb{N}\times\mathbb{N}}$ satisfies the property (AP2), if for every countable family of mutually disjoint sets $\{A_1, A_2, \ldots\}$ belonging to \mathcal{I}_2 , there exists a countable family of sets $\{B_1, B_2, \ldots\}$ such that $A_j \Delta B_j \in \mathcal{I}_2^0$, i.e., $A_j \Delta B_j$ is included in the finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each $j \in \mathbb{N}$ and $B = \bigcup_{j=1}^{\infty} B_j \in \mathcal{I}_2$ (hence $B_j \in \mathcal{I}_2$ for each $j \in \mathbb{N}$).

Throughout the paper, we let convergent instead of pointwise convergent.

Now, we begin with quoting the following lemmas due to Yegül and Dündar [46, 47] which are needed throughout the paper.

Lemma 1 ([46, Theorem 3.2]) For each $x \in X$ and each nonzero $z \in Y$,

$$\lim_{m,n\to\infty} \|f_{mn}(x), z\| = \|f(x), z\| \quad implies \quad \mathcal{I}_2 - \lim_{m,n\to\infty} \|f_{mn}(x), z\| = \|f(x), z\|.$$

Lemma 2 ([46, Theorem 3.8]) For each $x \in X$ and each nonzero $z \in Y$,

$$\mathcal{I}_{2}^{*} - \lim_{m,n \to \infty} \|f_{mn}(x), z\| = \|f(x), z\| \quad implies \quad \mathcal{I}_{2} - \lim_{m,n \to \infty} \|f_{mn}(x), z\| = \|f(x), z\|.$$

Lemma 3 ([46, Theorem 3.9]) Let $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal having the property (AP2). For each $x \in X$ and each nonzero $z \in Y$,

$$\mathcal{I}_2 - \lim_{m,n \to \infty} \|f_{mn}(x), z\| = \|f(x), z\| \quad implies \quad \mathcal{I}_2^* - \lim_{m,n \to \infty} \|f_{mn}(x), z\| = \|f(x), z\|.$$

Lemma 4 ([47, Theorem 3.2]) The double sequence of functions $\{f_{mn}\}$ is \mathcal{I}_2 -convergent if and only if it is \mathcal{I}_2 -Cauchy sequence in 2-normed spaces.

Lemma 5 ([47, Theorem 3.3]) If the double sequence of functions $\{f_{mn}\}$ is a \mathcal{I}_2^* -Cauchy sequence, then it is \mathcal{I}_2 -Cauchy sequence in 2-normed spaces.

Lemma 6 ([47, Theorem 3.5]) Let $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal having the property (AP2). Then, the concepts \mathcal{I}_2 -Cauchy double sequence and \mathcal{I}_2^* -Cauchy double sequence of functions coincide in 2-normed spaces.

2 Main Results

In this section, firstly, we define the concepts of regular convergence and regular Cauchy double sequence of functions in 2-normed spaces and investigate the relation between them.

Definition 1 A double sequence $\{f_{mn}\}$ is said to be regularly convergent, if it is convergent in Pringsheim's sense and for each $z \in Y$ and each $x \in X$ the limits

$$\lim_{m} \|f_{mn}(x), z\|, \ (n \in \mathbb{N}) \ and \ \lim_{n} \|f_{mn}(x), z\|, \ (m \in \mathbb{N})$$

exist. If $\{f_{mn}\}$ is regularly convergent to f, then for each $z \in Y$ and each $x \in X$

$$\lim_{n} \lim_{m} \lim_{m} \|f_{mn}(x), z\| = \lim_{m} \lim_{n} \|f_{mn}(x), z\| = \|f(x), z\|.$$

In this case, for each $z \in Y$ and each $x \in X$ we write

$$r - \lim_{m,n\to\infty} \|f_{mn}(x), z\| = \|f(x), z\| \quad or \quad f_{mn} \xrightarrow{\|\cdot,\cdot\|_Y} r f.$$

Example 1 Let a double sequence $\{f_{mn}\}$ in $(X, \|., .\|)$ as following

$$f_{mn}(x) = \begin{cases} n, & \text{if } m \le 3, \\ 1, & \text{if } m \ge 4. \end{cases}$$

It is clear that $\{f_{mn}\}$ is convergent to 1 in Pringsheim's sense but it isn't regular convergent.

Definition 2 A double sequence $\{f_{mn}\}$ is said to be regularly Cauchy double sequence, if for every $\varepsilon > 0$, each $x \in X$ and each $z \in Y$, there exist $N \in \mathbb{N}$, $m_0 \in \mathbb{N}$ and $n_0 \in \mathbb{N}$ such that we have

$$\|f_{mn}(x) - f_{st}(x), z\| < \varepsilon,$$

for all m, n, s, t > N,

 $\|f_{mn}(x) - f_{k_n n}(x), z\| < \varepsilon, \ (n \in \mathbb{N}),$

for all $m, k_n > m_0$ and

$$||f_{mn}(x) - f_{ml_m}(x), z|| < \varepsilon, \ (m \in \mathbb{N}),$$

for all $n, l_m > n_0$.

Theorem 1 If a double sequence $\{f_{mn}\}$ is regularly convergent, then it is a regularly Cauchy double sequence.

Proof. Let a double sequence $\{f_{mn}\}$ be a regularly convergent. Then, $\{f_{mn}\}$ is convergent in Pringsheim's sense and clearly that $\{f_{mn}\}$ is a Cauchy sequence. Also, for every $\varepsilon > 0$, each $x \in X$ and each $z \in Y$ there exist $m_0, n_0 \in \mathbb{N}$ such that

$$||f_{mn}(x) - f_n(x), z|| < \frac{\varepsilon}{2}, \ (n \in \mathbb{N}),$$

for some f_n and all $m > m_0$, and

$$\|f_{mn}(x) - g_m(x), z\| < \frac{\varepsilon}{2}, \ (m \in \mathbb{N}),$$

for some g_m and all $n > n_0$. Then, for each $z \in Y$ and each $x \in X$ we have

$$\begin{aligned} |f_{mn}(x) - f_{k_n n}(x), z|| &\leq ||f_{mn}(x) - f_n(x), z|| + ||f_{k_n n}(x) - f_n(x), z|| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ &= \varepsilon, \ (n \in \mathbb{N}), \end{aligned}$$

for some f_n and all $m, k_n > m_0$. Similarly, for each $z \in Y$ and each $x \in X$ we have

$$\begin{aligned} \|f_{mn}(x) - f_{ml_m}(x), z\| &\leq \|f_{mn}(x) - g_m(x), z\| + \|f_{ml_m}(x) - g_m(x), z\| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ &= \varepsilon, \ (m \in \mathbb{N}), \end{aligned}$$

for some g_m and all $n, l_m > n_0$. Hence, $\{f_{mn}\}$ is a regularly Cauchy double sequence.

Now, we introduce the concepts of regular $(\mathcal{I}_2, \mathcal{I})$ and regular $(\mathcal{I}_2^*, \mathcal{I}^*)$ -convergence of double sequences of functions in 2-normed spaces and study some properties of them.

Definition 3 A double sequence $\{f_{mn}\}$ is said to be regularly $(\mathcal{I}_2, \mathcal{I})$ -convergent $(r(\mathcal{I}_2, \mathcal{I})$ -convergent), if it is \mathcal{I}_2 -convergent in Pringsheim's sense and for every $\varepsilon > 0$, each $x \in X$ and each nonzero $z \in Y$ the followings hold:

$$\{m \in \mathbb{N} : \|f_{mn}(x) - f_n(x), z\| \ge \varepsilon\} \in \mathcal{I}, \ (n \in \mathbb{N}),$$

for some functions f_n and

$$\{n \in \mathbb{N} : \|f_{mn}(x) - g_m(x), z\| \ge \varepsilon\} \in \mathcal{I}, \ (m \in \mathbb{N})$$

for some functions g_m . If $\{f_{mn}\}$ is regularly $(\mathcal{I}_2, \mathcal{I})$ -convergent to f, then for each $x \in X$ and each nonzero $z \in Y$, we have

$$\mathcal{I} - \lim_{n} \lim_{m} \|f_{mn}(x), z\| = \mathcal{I} - \lim_{m} \lim_{n} \|f_{mn}(x), z\| = \|f(x), z\|$$

In this case, we write

$$r(\mathcal{I}_2, \mathcal{I}) - \lim_{m, n \to \infty} \|f_{mn}(x), z\| = \|f(x), z\|$$

Example 2 Let the ideals $\mathcal{I} = \mathcal{I}_d$, $\mathcal{I}_2 = \mathcal{I}_{d_2}$ and a double sequence $\{f_{mn}\}$ in $(X, \|., .\|)$ as following

$$f_{mn}(x) = \begin{cases} n, & \text{if } m \leq 2, \\ (m+n)x, & \text{if } m = n = k^2, \ k \in \mathbb{N} \text{ and } m \geq 3 \\ 0, & \text{otherwise.} \end{cases}$$

For $m \geq 3$, every $\varepsilon > 0$, each $x \in X$ and each $z \in Y$ we have

$$K(\varepsilon) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : \|f_{mn}(x) - 0, z\| \ge \varepsilon\} = \{(4,4), (9,9), (16,16), \cdots\},\$$

$$K_1(\varepsilon) = \{m \in \mathbb{N} : \|f_{mn}(x) - 0, z\| \ge \varepsilon\} = \{4,9,16,\cdots\},\$$

for each $n \in \mathbb{N}$ and

$$K_2(\varepsilon) = \{n \in \mathbb{N} : ||f_{mn}(x) - 0|| \ge \varepsilon\} = \{4, 9, 16, \cdots\}$$

for each $m \in \mathbb{N}$ and so, $d_2(K(\varepsilon)) = 0$, $d(K_1(\varepsilon)) = 0$ and $d(K_2(\varepsilon)) = 0$. Hence, it is clear that $\{f_{mn}\}$ is \mathcal{I}_2 -convergent to 0 but it isn't regular $(\mathcal{I}_2, \mathcal{I})$ -convergent.

E. Dündar

Example 3 Let the ideals $\mathcal{I} = \mathcal{I}_d$, $\mathcal{I}_2 = \mathcal{I}_{d_2}$ and a double sequence $\{f_{mn}\}$ in $(X, \|., .\|)$ as following

$$f_{mn}(x) = \begin{cases} mn, & \text{if } m = n = k^3 \text{ and } k \in \mathbb{N} \\ 2, & \text{otherwise.} \end{cases}$$

For every $\varepsilon > 0$, each $x \in X$ and each $z \in Y$ we have

$$K(\varepsilon) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x) - 2, z|| \ge \varepsilon\} = \{(1,1), (8,8), (27,27), (64,64), (125,125), \cdots\},\$$

$$K_1(\varepsilon) = \{m \in \mathbb{N} : ||f_{mn}(x) - 2, z|| \ge \varepsilon\} = \{1, 8, 27, 64, 125, \cdots\},\$$

for each $n \in \mathbb{N}$ and

$$K_2(\varepsilon) = \{n \in \mathbb{N} : ||f_{mn}(x) - 2|| \ge \varepsilon\} = \{1, 8, 27, 64, 125, \cdots\}$$

for each $m \in \mathbb{N}$ and so, $d_2(K(\varepsilon)) = 0$, $d(K_1(\varepsilon)) = 0$ and $d(K_2(\varepsilon)) = 0$. Hence, it is clear that $\{f_{mn}\}$ is regularly $(\mathcal{I}_2, \mathcal{I})$ -convergent to 2.

Theorem 2 If a double sequence $\{f_{mn}\}$ is regularly convergent, then it is regularly $(\mathcal{I}_2, \mathcal{I})$ -convergent to same point.

Proof. Let a double sequence $\{f_{mn}\}$ is regularly convergent. Then, $\{f_{mn}\}$ is convergent in Pringsheim's sense and by Lemma 1, $\{f_{mn}\}$ is \mathcal{I}_2 -convergent to same point. Also, for every $\varepsilon > 0$, each $x \in X$ and each $z \in Y$ there exist $m_0 \in \mathbb{N}$ and $n_0 \in \mathbb{N}$ such that

$$||f_{mn}(x) - f_n(x), z|| < \varepsilon, \ (n \in \mathbb{N}),$$

for some f_n and all $m > m_0$, and

$$\|f_{mn}(x) - g_m(x), z\| < \varepsilon, \ (m \in \mathbb{N}),$$

for some g_m and all $n > n_0$. Then, since \mathcal{I} is admissible ideal so for every $\varepsilon > 0$, each $x \in X$ and each nonzero $z \in Y$, we have

$$\{m \in \mathbb{N} : \|f_{mn}(x) - f_n(x), z\| \ge \varepsilon\} \subseteq \{1, 2, ..., m_0\} \in \mathcal{I}, \ (n \in \mathbb{N})$$

and

$$\{n \in \mathbb{N} : \|f_{mn}(x) - g_m(x), z\| \ge \varepsilon\} \subseteq \{1, 2, ..., n_0\} \in \mathcal{I}, \ (m \in \mathbb{N}).$$

Hence, $\{f_{mn}\}$ is regularly $(\mathcal{I}_2, \mathcal{I})$ -convergent.

Definition 4 A double sequence $\{f_{mn}\}$ is said to be regularly $(\mathcal{I}_2^*, \mathcal{I}^*)$ -convergent $(r(\mathcal{I}_2^*, \mathcal{I}^*)$ -convergent), if there exist the sets $M \in \mathcal{F}(\mathcal{I}_2)$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus M \in \mathcal{I}_2$), $M_1 \in \mathcal{F}(\mathcal{I})$ and $M_2 \in \mathcal{F}(\mathcal{I})$ (i.e., $\mathbb{N} \setminus M_1 \in \mathcal{I}$ and $\mathbb{N} \setminus M_2 \in \mathcal{I}$) such that for each $z \in Y$ and each $x \in X$, the limits

$$\lim_{\substack{m,n\to\infty\\(m,n)\in M}} \|f_{mn}(x),z\|, \ \lim_{\substack{m\to\infty\\m\in M_1}} \|f_{mn}(x),z\|, \ (n\in\mathbb{N}) \ and \ \lim_{\substack{n\to\infty\\n\in M_2}} \|f_{mn}(x),z\|, \ (m\in\mathbb{N})$$

exist. If $\{f_{mn}\}$ is regularly $(\mathcal{I}_2^*, \mathcal{I}^*)$ -convergent to f, then for each $x \in X$ and each $z \in Y$, we have

$$\mathcal{I}^* - \lim_n \lim_m \|f_{mn}(x), z\| = \mathcal{I}^* - \lim_m \lim_n \|f_{mn}(x), z\| = \|f(x), z\|$$

In this case, we write

$$r(\mathcal{I}_{2}^{*},\mathcal{I}^{*}) - \lim_{m,n\to\infty} ||f_{mn}(x),z|| = ||f(x),z||.$$

Theorem 3 If a double sequence $\{f_{mn}\}$ is regularly $(\mathcal{I}_2^*, \mathcal{I}^*)$ -convergent, then it is regularly $(\mathcal{I}_2, \mathcal{I})$ -convergent to same point.

Proof. Suppose that $\{f_{mn}\}$ is regularly $(\mathcal{I}_2^*, \mathcal{I}^*)$ -convergent. Then, it is \mathcal{I}_2^* -convergent and so, by Lemma 2, it is \mathcal{I}_2 -convergent. Also, there exist the sets $M_1 \in \mathcal{F}(\mathcal{I})$ and $M_2 \in \mathcal{F}(\mathcal{I})$ (i.e., $\mathbb{N} \setminus M_1 = H_1 \in \mathcal{I}$ and $\mathbb{N} \setminus M_2 = H_2 \in \mathcal{I}$) such that for each $z \in Y$ and each $x \in X$,

$$\left(\forall m \in M_1\right)\left(\forall \varepsilon > 0\right)\left(\exists m_0 \in \mathbb{N}\right)\left(\forall m > m_0\right) \|f_{mn}(x) - f_n(x), z\| < \varepsilon, \ (n \in \mathbb{N})$$

for some functions f_n and

$$\left(\forall n \in M_2\right)\left(\forall \varepsilon > 0\right)\left(\exists n_0 \in \mathbb{N}\right)\left(\forall n > n_0\right) \|f_{mn}(x) - g_m(x), z\| < \varepsilon, \ (m \in \mathbb{N})$$

for some functions g_m . Hence, for each $x \in X$ and each nonzero $z \in Y$ we have

$$A(\varepsilon) = \{ m \in \mathbb{N} : \| f_{mn}(x) - f_n(x), z \| \ge \varepsilon \} \subset H_1 \cup \{ 1, 2, ..., m_0 \}, \ (n \in \mathbb{N})$$

and

$$B(\varepsilon) = \{ n \in \mathbb{N} : \| f_{mn}(x) - g_m(x), z \| \ge \varepsilon \} \subset H_2 \cup \{ 1, 2, ..., n_0 \}, \ (m \in \mathbb{N}).$$

Since \mathcal{I} is admissible ideal, it is clear that

$$H_1 \cup \{1, 2, ..., m_0\} \in \mathcal{I} \text{ and } H_2 \cup \{1, 2, ..., n_0\} \in \mathcal{I}$$

and so we have $A(\varepsilon) \in \mathcal{I}$ and $B(\varepsilon) \in \mathcal{I}$. This shows that the $\{f_{mn}\}$ is regularly $(\mathcal{I}_2, \mathcal{I})$ -convergent.

Theorem 4 Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal with the property (AP), $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal with the property (AP2). If a double sequence $\{f_{mn}\}$ is regularly $(\mathcal{I}_2, \mathcal{I})$ -convergent, then it is regularly $(\mathcal{I}_2^*, \mathcal{I}^*)$ -convergent to same point.

Proof. Let a double sequence $\{f_{mn}\}$ be $r(\mathcal{I}_2, \mathcal{I})$ -convergent. Then, $\{f_{mn}\}$ is \mathcal{I}_2 -convergent and so by Lemma 3, $\{f_{mn}\}$ is \mathcal{I}_2^* -convergent to same point. Also, for every $\varepsilon > 0$, each $x \in X$ and each nonzero $z \in Y$ we have

$$A(\varepsilon) = \{m \in \mathbb{N} : \|f_{mn}(x) - f_n(x), z\| \ge \varepsilon\} \in \mathcal{I}, \ (n \in \mathbb{N}),$$

for some functions f_n and

$$C(\varepsilon) = \{ n \in \mathbb{N} : \| f_{mn}(x) - g_m(x), z \| \ge \varepsilon \} \in \mathcal{I}, \ (m \in \mathbb{N}),$$

for some functions g_m .

Now, for each $x \in X$ and each nonzero $z \in Y$ put

$$A_1 = \{ m \in \mathbb{N} : \| f_{mn}(x) - f_n(x), z \| \ge 1 \}, \ (n \in \mathbb{N})$$

and

$$A_p = \left\{ m \in \mathbb{N} : \frac{1}{p} \le \|f_{mn}(x) - f_n(x), z\| < \frac{1}{p-1} \right\}, \ (n \in \mathbb{N}).$$

for $p \geq 2$, some functions f_n . It is clear that $A_p \cap A_i = \emptyset$ for $p \neq i$ and $A_p \in \mathcal{I}$ for each $p \in \mathbb{N}$. By the property (AP) there is a countable family of sets $\{B_1, B_2, \ldots\}$ in \mathcal{I} such that $A_i \triangle B_i$ is a finite set for each $i \in \mathbb{N}$ and $B = \bigcup_{i=1}^{\infty} B_i \in \mathcal{I}$.

For each $x \in X$ and each $z \in Y$ we prove that

$$\lim_{\substack{m \to \infty \\ m \in M_1}} \|f_{mn}(x) - f_n(x), z\| = 0, (n \in \mathbb{N}),$$

for some function f_n and $M_1 = \mathbb{N} \setminus B \in \mathcal{F}(\mathcal{I})$. Let $\delta > 0$ be given. Choose $p \in \mathbb{N}$ such that $1/p < \delta$. Then, for each $x \in X$ and each nonzero $z \in Y$ we have

$$\{m \in \mathbb{N} : \|f_{mn}(x) - f_n(x), z\| \ge \delta\} \subset \bigcup_{i=1}^p A_i, \ (n \in \mathbb{N}).$$

for some function f_n . Since $A_i \triangle B_i$ is a finite set for $i = 1, \ldots, p$, there exists $m_0 \in \mathbb{N}$ such that

$$\left(\bigcup_{i=1}^{p} B_{i}\right) \cap \{m: m \ge m_{0}\} = \left(\bigcup_{i=1}^{p} A_{i}\right) \cap \{m: m \ge m_{0}\}$$

If $m \notin B$ and $m \geq m_0$, then

$$m \notin \bigcup_{i=1}^{p} B_i$$
 and so $m \notin \bigcup_{i=1}^{p} A_i$.

Thus, for each $x \in X$ and each $z \in Y$ we have

$$||f_{mn}(x) - f_n(x), z|| < \frac{1}{p} < \delta, \ (n \in \mathbb{N}),$$

and so this implies that

$$\lim_{\substack{m \to \infty \\ m \in M_1}} \|f_{mn}(x) - f_n(x), z\| = 0, \ (n \in \mathbb{N}),$$

for some function f_n . Hence, for each $x \in X$ and each $z \in Y$ we have

$$\mathcal{I}^* - \lim_{m \to \infty} \|f_{mn}(x) - f_n(x), z\| = 0, \ (n \in \mathbb{N}),$$

for some function f_n .

Similarly, for the set

$$C(\varepsilon) = \{ n \in \mathbb{N} : \| f_{mn}(x) - g_m(x), z \| \ge \varepsilon \} \in \mathcal{I}, \ (m \in \mathbb{N}),$$

for each $x \in X$ and each $z \in Y$ we have

$$\mathcal{I}^* - \lim_{n \to \infty} \|f_{mn}(x) - g_m(x), z\| = 0, \ (m \in \mathbb{N}),$$

for some function g_m . Consequently, $\{f_{mn}\}$ is $r(\mathcal{I}_2^*, \mathcal{I}^*)$ -convergent.

Now, for a double sequence $\{f_{mn}\}$, we give the definitions of $r(\mathcal{I}_2, \mathcal{I})$ -Cauchy sequence and $r(\mathcal{I}_2^*, \mathcal{I}^*)$ -Cauchy sequence in 2-normed spaces and study some properties of them.

Definition 5 A double sequence $\{f_{mn}\}$ is said to be regularly $(\mathcal{I}_2, \mathcal{I})$ -Cauchy sequence $(r(\mathcal{I}_2, \mathcal{I})$ -Cauchy sequence), if it is \mathcal{I}_2 -Cauchy sequence in Pringsheim's sense and for each $\varepsilon > 0$, each $x \in X$ and each nonzero $z \in Y$, there exist $k_n \in \mathbb{N}$ and $l_m \in \mathbb{N}$ such that the following statements hold:

$$A_1(\varepsilon) = \{ m \in \mathbb{N} : \| f_{mn}(x) - f_{k_n n}(x), z \| \ge \varepsilon \} \in \mathcal{I}, \ (n \in \mathbb{N}),$$

and

$$A_2(\varepsilon) = \{ n \in \mathbb{N} : \| f_{mn}(x) - f_{ml_m}(x), z \| \ge \varepsilon \} \in \mathcal{I}, \ (m \in \mathbb{N}).$$

Theorem 5 If a double sequence $\{f_{mn}\}$ is regularly Cauchy double sequence, then $\{f_{mn}\}$ is regularly $(\mathcal{I}_2, \mathcal{I})$ -Cauchy double sequence.

Proof. Let the double sequence $\{f_{mn}\}$ be a regularly Cauchy double sequence. Then, for every $\varepsilon > 0$, each $x \in X$ and each $z \in Y$, there exist $N \in \mathbb{N}$, $m_0 \in \mathbb{N}$ and $n_0 \in \mathbb{N}$ such that we have

$$\|f_{mn}(x) - f_{st}(x), z\| < \varepsilon,$$

for all m, n, s, t > N,

$$||f_{mn}(x) - f_{k_n n}(x), z|| < \varepsilon, \ (n \in \mathbb{N}),$$

for all $m, k_n > m_0$ and

$$||f_{mn}(x) - f_{ml_m}(x), z|| < \varepsilon, \ (m \in \mathbb{N}),$$

for all $n, l_m > n_0$. Then, for every $\varepsilon > 0$, each $x \in X$ and each nonzero $z \in Y$ there exist $s, t, k_n, l_m \in \mathbb{N}$ such that we have

$$A(\varepsilon) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : \|f_{mn}(x) - f_{st}(x), z\| \ge \varepsilon\}$$

$$\subseteq (\mathbb{N} \times \{1, 2, \dots, m_0\}) \cup (\{1, 2, \dots, n_0\} \times \mathbb{N}),$$

$$B(\varepsilon) = \{m \in \mathbb{N} : \|f_{mn}(x) - f_{k_n n}(x), z\| \ge \varepsilon\} \subseteq \{1, 2, \dots, m_0\}, \ (n \in \mathbb{N})$$

and

$$C(\varepsilon) = \{n \in \mathbb{N} : \|f_{mn}(x) - f_{ml_m}(x), z\| \ge \varepsilon\} \subseteq \{1, 2, \dots, n_0\}, \ (m \in \mathbb{N}).$$

Since \mathcal{I}_2 is a strongly admissible ideal, we have

$$(\mathbb{N} \times \{1, 2, \dots, m_0\}) \cup (\{1, 2, \dots, n_0\} \times \mathbb{N}) \in \mathcal{I}_2,$$

$$\{1, 2, \dots, m_0\} \in \mathcal{I} \text{ and } \{1, 2, \dots, n_0\} \in \mathcal{I}.$$

Then, we have

$$A(\varepsilon) \in \mathcal{I}_2, \ B(\varepsilon) \in \mathcal{I} \text{ and } C(\varepsilon) \in \mathcal{I}$$

and so, $\{f_{mn}\}$ is regularly $(\mathcal{I}_2, \mathcal{I})$ -Cauchy double sequence of functions.

Theorem 6 If a double sequence $\{f_{mn}\}$ is $r(\mathcal{I}_2, \mathcal{I})$ -convergent, then $\{f_{mn}\}$ is $r(\mathcal{I}_2, \mathcal{I})$ -Cauchy double sequence.

Proof. Let $\{f_{mn}\}$ be a $r(\mathcal{I}_2, \mathcal{I})$ -convergent. Then, $\{f_{mn}\}$ is \mathcal{I}_2 -convergent and by Lemma 4, it is \mathcal{I}_2 -Cauchy double sequence. Also, for each $\varepsilon > 0$, each $x \in X$ and each nonzero $z \in Y$, we have

$$A_1\left(\frac{\varepsilon}{2}\right) = \left\{m \in \mathbb{N} : \|f_{mn}(x) - f_n(x), z\| \ge \frac{\varepsilon}{2}\right\} \in \mathcal{I}, \ (n \in \mathbb{N}),$$

for some functions f_n and

$$A_2\left(\frac{\varepsilon}{2}\right) = \left\{ n \in \mathbb{N} : \|f_{mn}(x) - g_m(x), z\| \ge \frac{\varepsilon}{2} \right\} \in \mathcal{I}, \ (m \in \mathbb{N}),$$

for some functions g_m .

Since \mathcal{I} is an admissible ideal, for each $\varepsilon > 0$, each $x \in X$ and each nonzero $z \in Y$, the sets

$$A_1^c\left(\frac{\varepsilon}{2}\right) = \left\{m \in \mathbb{N} : \|f_{mn}(x) - f_n(x), z\| < \frac{\varepsilon}{2}\right\}, \ (n \in \mathbb{N})$$

for some functions f_n and

$$A_2^c\left(\frac{\varepsilon}{2}\right) = \left\{ n \in \mathbb{N} : \|f_{mn}(x) - g_m(x), z\| < \frac{\varepsilon}{2} \right\}, \ (m \in \mathbb{N})$$

for some functions g_m , are nonempty and belong to $\mathcal{F}(\mathcal{I})$. For $k_n \in A_1^c(\frac{\varepsilon}{2})$ $(n \in \mathbb{N} \text{ and } k_n > 0)$, we have

$$\|f_{k_n n}(x) - f_n(x), z\| < \frac{\varepsilon}{2}$$

for some functions f_n . Now, for each $\varepsilon > 0$, each $x \in X$ and each nonzero $z \in Y$, we define the set

$$B_1(\varepsilon) = \{ m \in \mathbb{N} : \| f_{mn}(x) - f_{k_n n}(x), z \| \ge \varepsilon \}, \ (n \in \mathbb{N}),$$

where $k_n \in \mathbb{N}$. Let $m \in B_1(\varepsilon)$ and $k_n \in A_1^c(\frac{\varepsilon}{2})$ $(n \in \mathbb{N} \text{ and } k_n > 0)$. For each $\varepsilon > 0$, each $x \in X$ and each nonzero $z \in Y$, we have

$$\varepsilon \le \|f_{mn}(x) - f_{k_n n}(x), z\| \le \|f_{mn}(x) - f_n(x), z\| + \|f_{k_n n}(x) - f_n(x), z\| \\ < \|f_{mn}(x) - f_n(x), z\| + \frac{\varepsilon}{2}$$

for some functions f_n . This shows that

$$\frac{\varepsilon}{2} < \|f_{mn}(x) - f_n(x), z\|$$
 and so $m \in A_1(\frac{\varepsilon}{2})$.

Hence, we have

$$B_1(\varepsilon) \subset A_1(\frac{\varepsilon}{2}).$$

Similarly, for each $\varepsilon > 0$, each $x \in X$ and each nonzero $z \in Y$ we have

$$\|f_{ml_m}(x) - g_m(x), z\| < \frac{\varepsilon}{2}, \ (m \in \mathbb{N})$$

for some functions g_m and $l_m \in A_2^c(\frac{\varepsilon}{2})$ $(m \in \mathbb{N} \text{ and } l_m > 0)$. Therefore, for each $\varepsilon > 0$, each $x \in X$ and each nonzero $z \in Y$, it can be seen that

$$B_2(\varepsilon) = \{ n \in \mathbb{N} : \| f_{mn}(x) - g_{ml_m}(x), z \| \ge \varepsilon \} \subset A_2(\frac{\varepsilon}{2}), \quad (m \in \mathbb{N}).$$

Hence, we have

$$B_1(\varepsilon) \in \mathcal{I}$$
 and $B_2(\varepsilon) \in \mathcal{I}$.

This shows that $\{f_{mn}\}$ is $r(\mathcal{I}_2, \mathcal{I})$ -Cauchy double sequence.

Definition 6 A double sequence $\{f_{mn}\}$ is said to be regularly $(\mathcal{I}_2^*, \mathcal{I}^*)$ -Cauchy sequence $(r(\mathcal{I}_2^*, \mathcal{I}^*)$ -Cauchy sequence), if there exist the sets $M \in \mathcal{F}(\mathcal{I}_2)$, $M_1 \in \mathcal{F}(\mathcal{I})$ and $M_2 \in \mathcal{F}(\mathcal{I})$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus M \in \mathcal{I}_2$, $\mathbb{N} \setminus M_1 \in \mathcal{I}$ and $\mathbb{N} \setminus M_2 \in \mathcal{I}$), for each $\varepsilon > 0$, each $x \in X$ and each $z \in Y$ there exist $N \in \mathbb{N}$, $m_0 \in \mathbb{N}$ and $n_0 \in \mathbb{N}$ such that we have

$$||f_{mn}(x) - f_{st}(x), z|| < \varepsilon, \ ((m, n), (s, t) \in M),$$

for all m, n, s, t > N,

$$\|f_{mn}(x) - f_{k_n n}(x), z\| < \varepsilon, \ (m \in M_1, n \in \mathbb{N})$$

for all $m, k_n > m_0$ and

$$|f_{mn}(x) - f_{ml_m}(x), z|| < \varepsilon, \ (n \in M_2, m \in \mathbb{N})$$

for all $n, l_m > n_0$.

Theorem 7 If a double sequence $\{f_{mn}\}$ is $r(\mathcal{I}_2^*, \mathcal{I}^*)$ -Cauchy double sequence, then it is $r(\mathcal{I}_2, \mathcal{I})$ -Cauchy double sequence.

Proof. Since a double sequence $\{f_{mn}\}$ is $r(\mathcal{I}_2^*, \mathcal{I}^*)$ -Cauchy sequence, it is \mathcal{I}_2^* -Cauchy sequence. We know that \mathcal{I}_2^* -Cauchy sequence implies \mathcal{I}_2 -Cauchy sequence by Lemma 5. Also, since the double sequence $\{f_{mn}\}$ is $r(\mathcal{I}_2^*, \mathcal{I}^*)$ -Cauchy sequence so there exist the sets $M_1 \in \mathcal{F}(\mathcal{I})$ and $M_2 \in \mathcal{F}(\mathcal{I})$ (i.e., $\mathbb{N} \setminus M_1 \in \mathcal{I}$ and $\mathbb{N} \setminus M_2 \in \mathcal{I}$), for each $\varepsilon > 0$, each $x \in X$ and each $z \in Y$ there exist $m_0 \in \mathbb{N}$ and $n_0 \in \mathbb{N}$ such that we have

$$\|f_{mn}(x) - f_{k_n n}(x), z\| < \varepsilon, \ (m \in M_1, n \in \mathbb{N}),$$

for all $m, k_n > m_0$ and

$$||f_{mn}(x) - f_{ml_m}(x), z|| < \varepsilon, \ (n \in M_2, m \in \mathbb{N}),$$

for all $n, l_m > n_0$. Therefore, for $H_1 = \mathbb{N} \setminus M_1 \in \mathcal{I}, H_2 = \mathbb{N} \setminus M_2 \in \mathcal{I}$ and for each $\varepsilon > 0$, each $x \in X$ and each nonzero $z \in Y$, there exist $k_n \in \mathbb{N}$ and $l_m \in \mathbb{N}$ such that we have

$$A_1(\varepsilon) = \{ m \in \mathbb{N} : \| f_{mn}(x) - f_{k_n n}(x), z \| \ge \varepsilon \} \subset H_1 \cup \{ 1, 2, \dots, m_0 \}, \ (n \in \mathbb{N}),$$

for $m \in M_1$ and

$$A_2(\varepsilon) = \{ n \in \mathbb{N} : \| f_{mn}(x) - f_{ml_m}(x), z \| \ge \varepsilon \} \subset H_2 \cup \{ 1, 2, \dots, n_0 \}, \ (m \in \mathbb{N}),$$

for $n \in M_2$. Since \mathcal{I} is an admissible ideal,

$$H_1 \cup \{1, 2, \dots, m_0\} \in \mathcal{I} \text{ and } H_2 \cup \{1, 2, \dots, n_0\} \in \mathcal{I}$$

Hence, we have

$$A_1(\varepsilon) \in \mathcal{I}$$
 and $A_2(\varepsilon) \in \mathcal{I}$

and so $\{f_{mn}\}$ is $r(\mathcal{I}_2, \mathcal{I})$ -Cauchy double sequence.

The following theorem can be proved as in [7, 30]. Therefore, we give this theorem without proof.

Theorem 8 Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal with the property (AP), $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal with the property (AP2). If a double sequence $\{f_{mn}\}$ is $r(\mathcal{I}_2, \mathcal{I})$ -Cauchy double sequence, then it is $r(\mathcal{I}_2^*, \mathcal{I}^*)$ -Cauchy double sequence.

References

- [1] B. Altay and F. Başar, Some new spaces of double sequences, J. Math. Anal. Appl., 309(2005), 70–90.
- [2] M. Arslan and E. Dündar, *I*-convergence and *I*-Cauchy sequence of functions in 2-normed spaces, Konuralp J. Math., 6(2018), 57–62.
- [3] M. Arslan and E. Dündar, On *I*-convergence of sequences of functions in 2-normed spaces, Southeast Asian Bull. Math., 42(2018), 491–502.
- [4] V. Baláz, J. Červeňanský, P. Kostyrko and T. Šalát, *I*-convergence and *I*-continuity of real functions, Acta Math., Faculty of Natural Sciences, Constantine the Philosopher University, Nitra, 5(2004), 43–50.
- [5] P. Das, P. Kostyrko, W. Wilczyński and P. Malik, *I* and *I*^{*}-convergence of double sequences, Math. Slovaca, 58(2008), 605–620.
- [6] E. Dündar, Regularly (\$\mathcal{I}_2, \$\mathcal{I}\$)\$-convergence and (\$\mathcal{I}_2, \$\mathcal{I}\$)\$-Cauchy double sequences of functions, Pioneer J. Algebra, Number Theory and Appl., 1(2011), 85–98.
- [7] E. Dündar and B. Altay, On some properties of *I*₂-convergence and *I*₂-Cauchy of double sequences, Gen. Math. Notes, 7(2011), 1–12.
- [8] E. Dündar and B. Altay, Multipliers for bounded *I*₂-convergent of double sequences, Math. Comput. Modelling, 55(2012), 1193–1198.
- [9] E. Dündar, Ö. Talo and F. Başar, Regularly $(\mathcal{I}_2, \mathcal{I})$ -convergence and regularly $(\mathcal{I}_2, \mathcal{I})$ -Cauchy double sequences of fuzzy numbers, Int. J. Anal., (2013), 7 pages.
- [10] E. Dündar and B. Altay, \mathcal{I}_2 -convergence and \mathcal{I}_2 -Cauchy of double sequences, Acta Math. Sci., 34B(2014), 343–353.
- [11] E. Dündar and B. Altay, *I*₂-convergence of double sequences of functions, Electron. J. Math. Anal. Appl., 3(2015), 111–121.

- [12] E. Dündar, On some results of *I*₂-convergence of double sequences of functions, Math. Anal. Sci. Appl. E-notes, 3(2015), 44–52.
- [13] E. Dündar and B. Altay, \mathcal{I}_2 -uniform convergence of double sequences of functions, Filomat, 30(2016), 1273–1281.
- [14] E. Dündar and Y. Sever, *I*₂-Cauchy double sequences in 2-normed spaces, Global J. Math. Anal., 3(2015), 1–7.
- [15] E. Dündar and N. P. Akın, Wijsman regularly ideal convergence of double sequences of sets, J. Intell. Fuzzy Systems, 37(2019), 8159–8166.
- [16] E. Dündar, M. Arslan and S. Yegül, On *I*-uniform convergence of sequences of functions in 2-normed spaces, Rocky Mountain J. Math., 50(2020), 1637–1646.
- [17] E. Dündar, M. R. Türkmen and N. P. Akın, Regularly ideal convergence of double sequences in fuzzy normed spaces, Bull. Math. Anal. Appl., 12(2020), 12–26.
- [18] E. Dündar and Ö. Talo, Wijsman regularly ideal invariant convergence of double sequences of sets, J. Appl. Math. and Infor., 39(2021), 277–294.
- [19] H. Fast, Sur la convergence statistique, Colloq. Math., 2(1951), 241–244.
- [20] S. Gähler, 2-metrische Räume und ihre topologische Struktur, Math. Nachr., 26(1963), 115–148.
- [21] S. Gähler, 2-normed spaces, Math. Nachr., 28(1964), 1–43.
- [22] F. Gezer and S. Karakuş, \mathcal{I} and \mathcal{I}^* -convergent function sequences, Math. Commun., 10(2005), 71–80.
- [23] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27(2001), 631–639.
- [24] H. Gunawan and M. Mashadi, On finite dimensional 2-normed spaces, Soochow J. Math., 27(2001), 321–329.
- [25] M. Gürdal and I. Açık, On *I*-Cauchy sequences in 2-normed spaces, Math. Inequal. Appl., 11(2008), 349–354.
- [26] M. Gürdal, On ideal convergent sequences in 2-normed spaces, Thai J. Math., 4(1)(2006), 85–91.
- [27] P. Kostyrko, T. Šalát and W. Wilczyński, *I*-convergence, Real Anal. Exchange, 26(2000), 669–686.
- [28] V. Kumar, On \mathcal{I} and \mathcal{I}^* -convergence of double sequences, Math. Commun., 12(2007), 171–181.
- [29] M. Mursaleen and O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288(2003), 223–231.
- [30] A. Nabiev, S. Pehlivan and M. Gürdal, On *I*-Cauchy sequence, Taiwanese J. Math., 11(2007), 569–576.
- [31] F. Nuray and W. H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl., 245(2000), 513–527.
- [32] N. Pancaroğlu Akın, Regularly ideal invariant convergence of double sequences, J. Inequal. Appl., (2021) 2021:131, DOI:10.1186/s13660-021-02664-1
- [33] A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53(1900), 289–321.
- [34] S. Sarabadan and S. Talebi, Statistical convergence and ideal convergence of sequences of functions in 2-normed spaces, Int. J. Math. Math. Sci., 2011(2011), 10 pages.

- [35] S. Sarabadan and S. Talebi, On *I*-convergence of double sequences in 2-normed spaces, Int. J. Comtemp. Math. Sci., 7(2012), 673–684.
- [36] E. Savaş, U. Yamancı and M. Gürdal, *I*-lacunary statistical convergence of weighted g via modulus functions in 2-normed spaces, Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68(2019), 2324–2332.
- [37] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66(1959), 361–375.
- [38] Y. Sever and E. Dündar, Regularly ideal convergence and regularly ideal Cauchy double sequences in 2-normed spaces, Filomat, 28(2015), 907–915.
- [39] A. Şahiner, M. Gürdal, S. Saltan and H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math., 11(2007), 1477–1484.
- [40] B. Tripathy and B. C. Tripathy, On *I*-convergent double sequences, Soochow J. Math., 31(2005), 549– 560.
- [41] U. Yamancı and M. Gürdal, *I*-Statistical convergence in 2-normed space, Arab J. Math. Sci., 20(2014), 41–47.
- [42] U. Yamanci, E. Savaş and M. Gürdal, *I*-localized sequence in two normed spaces, Malaysian J. Math. Sci., 14(2020), 491–503.
- [43] U. Yamancı, A. A. Nabiev and M. Gürdal, Statistically localized sequences in 2-normed spaces, Honam Math. J., 42(2020), 161–173.
- [44] S. Yegül and E. Dündar, On statistical convergence of sequences of functions in 2-normed spaces, J. Class. Anal., 10(2017), 49–57.
- [45] S. Yegül and E. Dündar, Statistical convergence of double sequences of functions and some properties in 2-normed spaces, Facta Univ. Ser. Math. Inform., 33(2018), 705–719.
- [46] S. Yegül and E. Dündar, *I*₂-convergence of double sequences of functions in 2-normed spaces, Univ. J. Math. Appl., 2(2019), 130–137.
- [47] S. Yegül and E. Dündar, On *I*₂-convergence and *I*₂-Cauchy double sequences of functions in 2-normed spaces, Facta Univ. Ser. Math. Inform., 35(2020), 801–814.