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Abstract

In this paper, a generalization of Lupaş operators is defined which establishes better convergence. This

generalized Lupaş operator satisfies the Korovkin conditions for density theorems for the extended value

of parameter a, and also leads to better approximation results. This generalization removes the limitation

of Lupaş operators which satisfies Korovkin conditions for only one value of a, i.e., a = 1/2. The rate of

convergence and approximation properties are discussed with proofs. Graphical representations are also

included to show better performance of generalized operators with the original operators.

1 Introduction

Lupaş [1] presented the following operators

Lm(ρ ; y) = (1 − a)my
∞

∑

j=0

(my)j

j!
aj ρ

(

j

m

)

, |a| < 1, y ≥ 0, (1)

for ρ : R
+ → R, m ∈ N and (my)0 = 1 and (my)j = (my)(my +1) · · · (my + j −1), j ∈ N, where for my = β,

1

(1 − a)β
=

∞
∑

j=0

(β)j

j!
aj , |a| < 1.

Agratini [2] studied operators (1) and found that for these operators to satisfy limm→∞ Lm(ei; y) = ei(y),
where ei(y) = yi, i = 0, 1, 2, possible value for a is a = 1/2. Agratini [2] defined the following operators, by
choosing a = 1/2 in (1),

Lm(ρ ; y) = 2−my
∞
∑

j=0

(my)j

2jj!
ρ

(

j

m

)

, m ∈ N, y ≥ 0. (2)

As shown by Agratini [2], by fixing p > 0 and considering Hp as mappping from C([0,∞)) into C([0, p]),
defined by Hp(g) = g|[0,p], it is the case that for Lm operators defined by (1), Hp(Lmei) converges uniformly
to Hp(ei) on [0, p], where i = 0, 1, 2. Also, using the test functions, ei(y) = yi, for i = 0, 1, 2, and Korovkin-
type results [[3],[4]], Agratini [2] proved the density theorem for convergence of operators given by (2) as
mentioned below:
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Let Lm be as defined by (2), then

lim
m→∞

Lm(ρ ; y) = ρ(y)

uniformly on [0, p] for any p > 0.
The aim of all such work carried out is to get as much better approximation as possible, to the Weistrass-

type of approximation process. Many modifications were proposed with the same objective. For a better
idea of such modifications, one can refer to [5–8, 10–31]. Lupaş operators proposed by Agratini [2] are
conditioned to have only one value of the parameter a, i.e., a = 1/2 to satisfy the Korovkin-type theorem
for uniform convergence of the operators. The generalization of Lupaş discussed in this study removes that
constraint.

The present work is structured into sections as follows. The definition of the generalization of Lupaş
operators and its value at test functions and moments are discussed in section 2. In section 3, the Korovkin-
type theorem is discussed and proved for this operator. The rate of convergence is discussed in section 4.
Also, we prove density theorems using the modulus of smoothness. In section 5, asymptotic formulas for this
generalization of Lupaş operators are given. In section 6, we represent Lupaş operator and its generalization
at different values of m by graphical method. In the last section, we present some future scopes.

2 Construction of Operators

We establish a generalization of Lupaş operators as follows:

L∗

m,a(ρ ; y) = (1 − a)mr(y)
∞

∑

j=0

(mr(y))j

j!
aj ρ

(

j

m

)

, |a| < 1, a 6= 0, y ≥ 0, (3)

where ρ : R
+ → R, m ∈ N and r(y) is a function defined as,

r(y) =
(1 − a)y

a
, a is a parameter.

It is to be observed that by putting a = 1/2 in this operator, we get the original Lupaş operator mentioned
in (2) which was proposed by Agratini [2]. This paper is focused on the detailed study of these operators
defined by (3). The following Lemmas 1 and 2 are mentioned with proof and they are necessary to support
our key results.

Lemma 1 For the operators defined by (3) and for test functions ei(y) = yi, we have

1. L∗

m,a(e0 ; y) = 1,

2. L∗

m,a(e1 ; y) = y,

3. L∗

m,a(e2 ; y) = y2 +
y

(1 − a)m
,

4. L∗

m,a(e3 ; y) =
y(a + 1)

(1 − a)2m2
+

3y2

(1 − a)m
+ y3 .

Proof.

1. For e0(y) = y0 = 1, we have

L∗

m,a(e0 ; y) = (1 − a)mr(y)
∞

∑

j=0

(mr(y))j

j!
aj = (1 − a)mr(y)(1 − a)−mr(y) = 1.
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2. For e1(y) = y, we get

L∗

m,a(e1; y) = (1 − a)mr(y)
∞

∑

j=0

(mr(y))j

j!
aj

(

j

m

)

=
(1 − a)mr(y)

m

∞
∑

j=1

(mr(y))j

(j − 1)!
aj

=
a(1 − a)mr(y)

m

∞
∑

j=1

(mr(y))(mr(y) + 1)j−1

(j − 1)!
aj−1,

replacing j by j + 1, we get

L∗

m,a(e1; y) =
a(1 − a)mr(y)

m

∞
∑

j=0

((mr(y))(mr(y) + 1)j

j!
aj

=
a(1 − a)mr(y)(mr(y))

m
(1 − a)−(mr(y)+1)

= a

(

(1 − a)y

a

)

(1 − a)−1

= y.

3. Considering e2(y) = y2,

L∗

m,a(e2; y) = (1 − a)mr(y)
∞
∑

j=0

(mr(y))j

j!
aj

(

j2

m2

)

=
a(1 − a)mr(y)

m2

∞
∑

j=1

(mr(y))(mr(y) + 1)j−1

(j − 1)!
aj−1((j − 1) + 1)

=
a(1 − a)mr(y)

m2

∞
∑

j=0

(mr(y))(mr(y) + 1)j

j!
aj(j) +

a(1 − a)mr(y)mr(y)

m2

∞
∑

j=0

(mr(y) + 1)j

(j)!
aj

=
a2(1 − a)mr(y)mr(y)

m2

∞
∑

j=1

(mr(y) + 1)j

(j − 1)!
aj−1 +

a(1 − a)mr(y)mr(y)

m2
(1 − a)−(mr(y)+1)
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a2(1 − a)mr(y)mr(y)

m2

∞
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j=1

(mr(y) + 1)(mr(y) + 2)j−1

(j − 1)!
aj−1 +

y

m

=
a2(1 − a)mr(y)mr(y)(mr(y) + 1)

m2

∞
∑

j=0

(mr(y) + 2)j

(j)!
aj +

y

m

=
a2(1 − a)mr(y)mr(y)(mr(y) + 1)

m2
(1 − a)−(mr(y)+2) +

y

m

= y2 +
ay

(1 − a)m
+

y

m

= y2 +
y

(1 − a)m
.

4. Considering e3(y) = y3, the result follows from the calculations similar to the previous calculations.

Lemma 2 For the operators defined by (3) and µy
i (t) = (t − y)i, moment estimates are given as follows,
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1. L∗

m,a(µy
0(t); y) = 1,

2. L∗

m,a(µy
1(t); y) = 0,

3. L∗

m,a(µy
2(t); y) =

y

(1 − a)m
,

4. L∗

m,a(µy
3(t); y) =

y(a + 1)

(1 − a)2m2
.

Proof. The claims can be proved by using linearity property of opearators (3) and results of Lemma 1.

The convergence of operators is discussed in next section.

3 Korovkin-type Theorem

The Korovkin and Korovkin-type theorems [3, 4] are results to establish uniform convergence for a sequence
of linear positive operators on a function space given that the sequence converges uniformly for the functions
ei(y) = yi, i = 0, 1, 2, called test functions.

Theorem 1 Let ρ ∈ C([0, p]) and L∗

m,a(ρ ; y) be as defined in (3). Then

lim
m→∞

L∗

m,a(ρ ; y) = ρ(y)

uniformly on [0, p] for any p > 0.

Proof. As proved in Lemma 1,

L∗

m,a(eo; y) = e0(y), L∗

m,a(e1; y) = e1(y), lim
m→∞

L∗

m,a(e2; y) → e2(y)

uniformly on [0, p]. Therefore, by the Korovkin-type theorem, L∗

m,a(ρ ; y) converges to ρ uniformly for all
ρ ∈ C([0, p]).

4 Rate of Convergence

To establish results on how fast the sequence of linear positive operators converges to the function, it operates
upon, moduli of smoothness is a tool. The moduli of smoothness of order one and two are defined as,

wb(ρ, r) = sup{
∣

∣∆b
aρ(y)

∣

∣ : |a| ≤ r, y, y + ab ∈ A}, r > 0,

where b ∈ {1, 2}, ρ : A → R (A ⊆ R) is a bounded real function, ∆1
aρ(y) = ρ(y + a) − ρ(y) and ∆2

aρ(y) =
∆1

aρ(y + a) − ∆1
aρ(y).

Theorem 2 For L∗

m,a defined by (3) on C([0, p]) and p > 0, the following inequality holds true:

∣

∣(L∗

m,aρ)(y) − ρ(y)
∣

∣ ≤ w1

(

ρ ,
1√
m

)(

1 +

√

p

1 − a

)

.

Proof. We have

|ρ(t) − ρ(y)| ≤ w1(ρ, |t − y|) ≤
(

1 +
|t − y|

r

)

w1(ρ, r), (4)

for all y, t ∈ [0, p] and r > 0. By using this inequality and previously mentioned definitions,

∣

∣L∗

m,a(ρ ; y) − ρ(y)
∣

∣ ≤ L∗

m,a(1 ; y)w1(ρ, r) +
1

r
L∗

m,a(|t − y| ; y)w1(ρ, r). (5)
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Now, using the Cauchy-Schwarz inequality

L∗

m,a(|t − y| ; y) ≤ αm(y)(L∗

m,a(1 ; y))1/2, (6)

where αm(y)2 = L∗

m,a((t − y)2; y). Using (5) and (6), we get

|L∗

m,a(ρ ; y) − ρ(y)| ≤ w1(ρ, r)

(

1 +
1

r

√

p

(1 − a)m

)

.

By choosing r = 1/
√

m, we get the desired inequality.

Remark 1 By taking a = 1/2 in above result, we get the the result proved in [2] for Lupaş operators. By

choosing value of a, where |a| <
1

2
, we get better results than that of Lupaş operators (1) in a sense that

error reduces.

Theorem 3 For L∗

m,a defined as (3) on C([0, p]) where p > 0 and ρ is continuously differentiable on [0, p],
the following inequality is derived

|(L∗

m,aρ)(y) − ρ(y)| ≤
(

√

p

(1 − a)m
+

p

(1 − a)
√

m

)

w1

(

ρ′,
1√
m

)

.

Proof. As ρ is continuously differentiable on [0, p], by the mean-value theorem,

ρ(a) − ρ(b) = (a − b)ρ′(y) + (a − b)(ρ′(t) − ρ′(y)),

for every a, b ∈ [0, p] and a < t < b. Using 4 for ρ′ and Cauchy-Schwarz inequality for further simplification,
we get

∣

∣(L∗

m,aρ)(y) − ρ(y)
∣

∣ ≤
(

L∗

m,a(|t − y| ; y) +
1

r
L∗

m,a(|t− y|2 ; y)

)

w1(ρ
′, r)

≤
(

L∗

m,a(|t − y|2 ; y)
)1/2

(

1 +
1

r
(L∗

m,a(|t − y|2 ; y))1/2

)

w1(ρ
′, r)

≤
√

p

m(1 − a)

(

1 +
1

r

√

p

m(1 − a)

)

w1(ρ
′, r).

After choosing r = 1/
√

m, we get the desired inequality.

Next, we obtain another estimate that involves a second-order modulus of smoothness.

Theorem 4 For L∗

m,a defined as (3) on C([0, p]) and p > 0, the following inequality holds:

|L∗

m,a(ρ ; y) − ρ(y)| ≤
(

3 +
p

(1 − a)
max

{

1,
p

m

}

)

w2

(

ρ,
1√
m

)

.

Proof. This estimate is based upon a theorem by Gonska [9, page 331, theorem 4.1]. So, it can be proved
by considering Lemma 1 and above mentioned result by Gonska.

Remark 2 It is to be noticed that if we take a = 1/2 in all the above identities proved, we get the results
proved for Lupaş operators mentioned in [2].
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5 Voronovskaja-type Theorem

The asymptotic formula for generalized operators, viz., Voronovskaja-type theorem is established in this
section.

Theorem 5 Let the operators L∗

m,a be defined by (3) and ρ ∈ C([0,∞)). If ρ′′(y) exists at some point y > 0
and ρ(t) = O(t2) as t → 0, then

lim
m→∞

m((L∗

m,aρ)(y) − ρ(y)) =
y

1 − a
ρ′′(y).

Proof. We use Taylor’s expansion to prove the desired identity. By Taylor’s theorem

ρ(t) − ρ(y) = (t − y)ρ′2
(

1

2
ρ′′(y) + εy(t)

)

,

where ε is bounded and lim
t→0

εy(t) = 0. After applying L∗

m,a operator on above equation, we get

(L∗

m,aρ)(y) − ρ(y) = L∗

m,a(t − y ; y)ρ′(y) +
1

2
L∗

m,a((t − y)2 ; y)ρ′′(y) + (L∗

m,aαy)(y), (7)

where αy = (t − y)2εy(t). Using Cauchy-Schwarz inequality, we get the following.

(L∗

m,aαy)(y) ≤
(

L∗

m,a((t − y)4 ; y)
)1/2 (

L∗

m,a(ε2y(t); y)
)1/2

.

which leads to lim
m→0

m(L∗

m,aαy)(y) = 0. Lemma 2 using in (7) gives,

lim
m→∞

m((L∗

m,aρ)(y) − ρ(y)) =
y

1 − a
ρ′′(y).

6 Graphical Representation

Figure 1: Identification of all the curves in graphs for m = 10, 30 and 50

As mentioned earlier, this generalization is proposed with the intention to allow values of the parameter
of a other than 1/2. We have represented the comparison between original Lupaş operators and generalized
operators for different values of a and m through graphical representation. The following table is to identify
the curves for all the graphs of Lupaş operator and its modification for different values of m, i.e., m = 10,
30 and 50. We can observe from these graphs that as the value of m increases, all the curves of operators tend
to get closer to the curve of the function. As mentioned earlier, Lupaş operators give the best convergence
for value a = 1/2 proposed by Agratini [2]. It is verified here from this representation that the farthest
curves from the graph of function are graphs of Lupaş operators at other values of a than 1/2. It is observed
that for 0 < a < 1/2, graphs of generalization of operators (3) are closer than graphs at 1/2 < a < 1. For
a = 1/2 in this generalization, we get the original Lupaş operators mentioned in (2). The graphs show that
this generalization provides a better approximation than the original Lupaş operators.
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m = 10
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Figure 2: Graphs of (1) for a = 25/30 (Purple), of (3) for a = 25/30 (Blue), of (1) for a = 1/2 (Black), of
(3) for a = 1/30 (Green), of function ρ(y) = ey (Red) and of (1) for a = 1/30 (Yellow) for m = 10.

m = 30
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Figure 3: Graphs of (1) for a = 25/30 (Purple), of (3) for a = 25/30 (Blue), of (1) for a = 1/2 (Black), of
(3) for a = 1/30 (Green), of function ρ(y) = ey (Red) and of (1) for a = 1/30 (Yellow) for m = 30.

7 Future Scope

We have proposed the generalization of Lupaş operators and discussed some of the approximation properties
of it. More properties can be derived for the same operators for further work. Also, modification of this
operator can be derived which leads to even better approximation by means of the rate of convergence.
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