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Abstract

In this paper, h(z) Lucas p-polynomials and a new Lucas @p,n(z) matrix are defined where p(> 0)
is an integer and h(z)(> 0) is a polynomial with real coeflicients. The properties of Qp ,(z) matrix,
relations among the code matrix elements and correct ability are mentioned.

1 Introduction
The Lucas p-numbers [3] are given by the recurrence relation
Ly(n) = Ly(n = 1)+ Ly(n—p—1)
with n > p+ 1 and initial seeds
Ly(1) = Lp(2) = --- = Lp(p) = 1, Lp(p+1)=p+2

where p =0,1,2,---.

Forp =1, Li(n) = L, are known as classical Lucas numbers. The ratio of two consecutive Lucas numbers
converges to the irrational number, p = lim,, Lz—:l = 1"'2—\/5 which is known as golden mean or golden ratio
or golden proportion. The Lucas numbers and golden mean are useful in physical sciences, chemical sciences,
mathematical sciences, computer sciences, biological sciences, architectures and arts [7, 8, 9, 10, 11, 15].

Extensions of Lucas p-numbers [4] are given by the recurrence relation
Ly m(n) =mLy,m(n—1)4+ Ly mn—p—1)
with initial seeds
Lpm(1) = a1, Lpm(2) = a2, Lpm(3) = a3, -+, Lym(p + 1) = ap41

where p(> 0) is integer, m(> 0), n > p+ 1 and a1, ag, as, ..., apy1 are arbitrary real or complex numbers.
Different types of polynomials are given by Lucas-like recurrence relations. Such polynomials are known
as Lucas polynomials. Lucas polynomials, L, (z) given by the recurrence relation

Ly(x)=xL,_1(x)+ Lp—2(x), n>2
with initial seeds
Lo(.'lf) = 2, L1 (.’I}) =X.

h(z) Lucas polynomials, Ly, ,(x) (where h(x) is a polynomial with real coefficients) are given by Nalli and
Haukkanen [5] as follows:
L pt1(z) = h(@)Lpn(x) + Ly p1(x), n>1

with initial seeds
Lyo(z) =2, Lpi(z) = h(x).
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478 On h(x) Lucas p-Polynomials

In this paper, we introduce h(z)(> 0) Lucas p-polynomials, L, ,(n,z) by the recurrence relation
L,n(n,x) =h(z)Lyp(n—1,2)+ Lyp(n—p—1,2)
with initial seeds
Lpn(l,2) =b1, Lpp(2,2) =ba, Lpp(3,2)=0b3,---, Lpyp(p+1,2)=by1

where p (> 0) is integer, h(x) (> 0) is a polynomial with real coefficients, n > p+1 and by, b, b3, -+, bpy1
are arbitrary real or complex numbers.

1.1 h(z) Lucas p-Polynomials, L, ,(n,z)
We consider the recurrence relation for integer p (> 0), h(z)(> 0) and n =0,+1,4+2,+3,...,
Lpn(n,z) =h(z)Lyp(n—1,2)+ Lyp(n—p—1,2) (1)

with the initial seeds
Lp,h(n7$) :hn_l(x)a n= 172737"' 7p+1 (2)

With the help of (1) and (2) we get the following table: Thus, we get h(x) Lucas p-polynomials,

Table 1: h(z) Lucas p-polynomials, L, 5(n,x)

n— e |0 -2 —p+1 | —p| —p—-1| .. —2p+1 —2p | —2p—1| —2p—2
Lyp(n,z) | ... |0] 0 | .. 0 1 0 0 —h(x) 1 0
Lon(n,z) =h(z)Lyp(n—1,2)+ Lypn(n—p—1,2) (3)

for h(z)(>0),n=0,+1,+2,43,...andp =0,1,2,3,..., where L, p(n,z) = k"~ (z),n = 1,2,3,4,...,p+1.
The characteristic equation of h(x) Lucas p-polynomials are given by

Y = h(z)y? —1=0. (4)

The equation (4) has (p+1) roots. The only one positive root y = p,, ,(z), called golden (p, h(x))-proportion,
coincides with y, .., golden (p, m)-proportion when h(z) = m. Also when h(x) = 1, p, ,(x) coincides with
Hp golden p-proportion.

In section 2, Q, n(x) matrix are defined and the properties of @), »(z) matrix are illustrated. In section
3, Lucas coding and decoding method are presented with an example. In section 4, code matrix is defined.
In section 5, relations among the code matrix elements on h(z) Lucas p-polynomials are established. We
also show that the relations, among the code matrix elements for h(zx) = m(> 0), coincide with the relations
among the code matrix elements for the m-extension of the Lucas p-numbers in information theory [1] and
the relations among the code matrix elements for h(x) = 1, coincide with the generalized relations among
the code matrix elements for the coding theory on Lucas p numbers [2]. In section 6, error detection and
correction are described as in [2].

2 Lucas @, () Matrix

In this paper, we define a new matrix called Lucas @ »(z) matrix of order (p+1) on h(z) Lucas p-polynomial
where p (> 0) is an integer and h(z) (> 0) is a polynomial with real coefficients. The Q,, (x) matrix is given
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by
h(z) 1 0 0 O 0
0 01 00 0
0 0 010 0
Qpi(z) = 0 0 0 01 0
0 0000 --- 1
1 0O 00 0 --- 0
LPJL(Q’ .’E) L:D,h(L '73) T Lp,h(3 - Db .’L‘) Lp,h(2 - D 33)
L,n(2—p,x) Lpn (1 —p,x) -+ Lpp(3—2p,x) Lpp(2—2p,x)
Ly, (0,) Lyn ( ) e Ly n(1—p, ) L:o’h(_pa )
LP7 ( 7m) L h(O l’) Lp,h(2 - D .’L') Lp,h(l 2 J})

by using (2).
For examples,

h(x) 1 0 Lgyh(Q,J}) Lgyh(l,l‘) L27h(0,x
Qa2,n(z) = 0 0 1 |=| Lon(0,2) Lop(—=1,2) Lon(—2,2) |,
1 0 0 Lgﬁh(l, :L') L2 h(O, :L') Lgvh(fl, x)
Det Qo p(z) =1=(—1)2,
h(x) 1 O O L3,}L(27$) L3 h( ) ) L3,h(0ax) L3,}L(_17$)
Q (l‘): O 0 1 0 _ L37h( 1,33) L37h( 2:E) L37h(73,z) L37h(74,x)
3h 0 00 1 L3n(0,2)  Lan(—1,2) Lzn(—2,2) Lan(=3,2) |’
1 0 0 O Lg’h(17"L‘) Lg’h( ) Lg’h(—l,x) L3’h(—27—1‘)
Det Q3 p(z) =—1= (—1)3,
hz) 1 0 0 0
0 01 0 O
Q4,h(37) = 0 0 01 0
0 0 0 0 1
1 0 0 0O
L4,h (2a .73) L4 h(la x L4,h(07 1‘) L4,h(_17 $) L4,h(_2a $)
Lyn(=2,2) Lyn(—=3,2) Lan(—4,2) Lyn(—=52) Lsn(—6,1)
= Lyn(—=1,2) Lyn(—2,2) Lan(=3,2) Lyn(—4,2) Lan(-5,2) |,
L4,h(0,.’17) L4h(—1,$) L4’h(—27.’L') L4’h(—371') L4’h(—4,$)
L4,h(1,x) L4,h(0,$ L4’h(—1,.’L‘) L47h(—2,.’13) L4,h(—3,x)

Det Qupn(z) =1=(-1)%,

and so on. Thus, Det Q, n(x) = (—1)P, which is independent of h(zx).
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2.1 Properties of Q, ()
Theorem 1 For a given integer n (n =0, £1, £2, £3, ...) the nth power of the Qp n(x) matriz is given by

Ly,p(n+1,z) Ly, (n,x) o Lpp(n—p+2,2) Lypn—p+1,x)
Loyin—p+1,2) Lpp(n—p,x) -+ Lpp(n—2p+2,2) Lpp(n—2p+1,2)
(7)) = : : - : :
Lyp(n—1,z) Lyp(n—2,2) --- Ly yn(n—p,z) L,p(n—p—1,2)
Ly, n(n,x) Lop(n—1,2) .-+ Lypn—p+1,x) L, n(n—p,z)

where Ly, p(n,z) = h""Y(z), n=1,2,3,4,--- ,p+ 1.
Proof. When p = 1, we have to prove

. (2) = ( Lin(n+1,2)  Lyp(n,z) > (5)

T
Lh Lin(n,x)  Lip(n—1,2)

We will prove it by mathematical induction. For n =1,

h(.’l?) 1 Ll, (2,1}) LL L(l,{l))
Ql,h(x) = < 1 0 > = ( Ll,Z(l,x) L1;(0,a:) ) by (2)7

)

which is true for n = 1. For n = 2,
h2(z)+1 h(z) Lin(3,2) Lin(2,2)
2 _ _ 1,n(3, 1,n(2,
Qa(®) = ( w1 )T\ Liw@a) Liae) ) Y@
which is true for n = 2. Suppose (5) is true for integer n = k, then

_( Liatk+12)  Lin(k,2)
Q’f,h(:v)—< IL};,,L(/.;,J;) Ll,hl(}l;—Lx) )

Now, we can write

i = atmautr = ("I L0 ) ()
_ Lin(k+2,2) Lip(k+1,2)
- < L1,:(k+ 1,z) 1Lh17h(k7x) ) by (2).

Hence by mathematical induction, we proved that

" () = ( Lin(n+1,z)  Lip(n,) )

xZ
Lr Ll,h(nwr) Ll,h(n_ 1737)

When p = 2, we have to prove

L2,h (TL + 17 33) LQ,h(nv aj) LQ,}L (n - 17 .’13)
Q;h(aﬁ) = Lop(n—1,2) Lop(n—2,2) Lop(n—3,z) |. (6)
Lop(n,z)  Lop(n—1,2) Lop(n—2,x)

We will prove it by mathematical induction. For n =1,

h(z) 1 0 Lyn(2,2) Lop(l,z) Ly (0,2
QQJL(ZE) = 0 0 1 = Lgﬁh(o,.’t) Lg,h(—l,x) L2$h(—2,1‘) by (2),
1 0 0 Lg,h(l,(l)‘) Lg}h(o,aﬁ) Lg,h( 1,.’)3)
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which is true for n = 1.

For n = 2,
R?(x) h(z) 1 Lon(3,2) Lon(2,z) Lon(l,z)
Q3.5 (x) = 1 0 0 |=| Lon(l,z) Lop(0,2) Lop(—1,z) by (2),
h(l‘) 1 0 L2,h(2ax) L2,h(1ax) L2,h(0ax)
which is true for n = 2.
Suppose (6) is true for integer n = k, then
L27h(/€+ 1,1‘) Lgvh(k,x) Lg,h(k — 1,35)
Q5 p(@)=| Lon(k—1,2) Lon(k—2,2) Lon(k—3,2)
Lg’h(k, LU) LQJL(]{J — 1, x) Lg’h(k — 2, ZL‘)
Now, we can write
b (@) = Q5,(x)Qan(x)
L2,h(k + 1a LE) LQ,h(kv SC) LQ,h(k - 1a I) h(IE) 10
= Lop(k—1,2) Lop(k—2,2) Lop(k—3,x) 0 0 1
Lg,h(k, 313) LQ’h(k - ].,.’L') Lg’h(k - 2,%) 1 0 0
Lgvh(k+2,$) L27h(l€—|—1,1‘) Lg,h(k,lli)
= Lo (K, x) Lop(k—1,2) Lop(k—2,2) by (2).
Lg’h(k—‘r ].,LE) Lg’h(k,x) Lg’h(k — 1,£U)
Hence by mathematical induction, we proved that
Lg,h(n-i- 171') Lg’h(n“’ﬁ) Lg,h(n— 1,5[:)
Qyp(x) = Lon(n—1,2) Lan(n—2,2) Lan(n—3,2)
Lo p(n,x) Lop(n—1,2) Lop(n—2,z)

Therefore, by mathematical induction it can be proved for

Theorem 2 Q7 (z) = h(x) Z;l(w) + Qn_(p+1)($)-

p,h

Proof. By Theorem 1,

Lyn(n+1,z) Ly n(n,x)
Low(n—p+1,2) Lpp(n—p,x)
Z,h(x) = : :
th(n* Ll‘) Lp,h(n*Qﬂz)
Ly n(n,x) Lpn(n—1,z)
When p =1,
n (:L‘) _ Ll’h(n—I—l,x) Ll,h(n,x)
Lk Ly p(n,z) Lip(n—1,x)

( h(m)Ll,h(nax) +L1,h(n_ ].,.’b)
h(z)Lyp(n—1,2) + L1 p(n —2,2)
h(@)Q13 (2) + Q15 ().

all values of p. Hence the theorem. m

Lon(n—p+2,2) Lpp(n—p+1,2)
Lyn(n—2p+2,2) Lpp(n—2p+1,x)

Lp,h(n —p- 1793)
Ly n(n—p,x)

Ly yn(n—p,x)
Lonin—p+1,2)

h(x)Ll,h(n - 1a (E) + Ll,h(n - 27 .’b) )
h@)Lin(n —2,2) + Lip(n - 3,2)

481
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When p = 2,

Qz.n(2)
Lz,h(n+ 1,1’) Lg,h(n,x) Lzyh(nf 1,$)
Lgyh(n— 1,1’) LQ,h(n—Q,.T) Lzyh(n—?),x)
Ly p(n, ) Lop(n—1,2) Lap(n—2z)

(

= M@)Q5 (2) + Q5 (@),
Similarly, we can show that,
n n— n—(p+1
Q@) = h@)Qp (@) + @y (@),
Hence, the properties of QZJL(J}) can be summarized as
. n n— n— 1
(i) Q@) = h(@)Qp;" @) +Qpr "™ (a).
(i) Det (Q} 1 (z)) = [Det (Qpn(x))]" = (—1)P", which is independent of h(z).
(iii) By inverse matrix method, we get @ (z) from Q) ,, ().
For a particular case p = 1, Q;Z(a)‘) is given by

Lg’h(Qk— 1,;13) _L2,h(2k7$)

QL}L(ﬂ:) = < —Lz,h(%,x) L2,h(2k+ 1,2) > , n =2k, even,

Q_n(.’ll‘) _ *L2,h(2ka LE) L2,h(2k + 1a I)
Lh o ngh(Qk +1, SL') —Lg’h(Zk + 2, x)

where p=1,2,3,--- and n=0,4+1,£2,4£3,---. =

),n:2k+1, odd,

3 Lucas @, ,(z) Coding and Decoding Method

Lucas @y 5 (z) matrix is used to develop applications of the coding theory. We represent the initial message
in the form of the square matrix, M of order (p+ 1) where p =1,2,3,--- . We take @, (z) matrix of order

(p+ 1) as a coding matrix and its inverse matrix Qi (z) as a decoding matrix. We make a transformation
M x Qp ,(z) = E as coding and a transformation E' x @} (z) = M as decoding. We represent E as code

matrix.

3.1 Example of Lucas (), ;(r) Coding and Decoding Method

We represent the initial message in form of the square matrix of order 2

M:(”“ m2>.
ms My

Let us assume that all elements of the matrix are positive integers i.e., my,ms,ms3,my4 > 0. For p =1, let us

select Q’f_’h(x) matrix as the coding matrix for any value of n. For n = 4, we have

%h(z) =

)

( ht(z) +3h2(z) + 1 h3(z)+ 2h(z) >
h3(x) + 2h(x) h2(x) +1 ’

VLo n(n —2,2) + Lan(n —4,z) h(xz)Lan(n—3,z)+ Lap(n—5,z) h(z)Llon(n—4,2)+ Lapn(n — 6, x)

h(z)Lan(n,x) + Lon(n —2,x) h(z)Lan(n—1,2) 4+ Lon(n—3,2) h(z)Lon(n—2,2) + Lo n(n —4,x)
h(z
h(z)Lan(n —1,2) + Lan(n —3,2) h(x)Lopn(n—2,2) + Lan(n —4,2) h(z)Len(n —3,z) + Lo n(n —5,x)

)
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So
Q7 () = h2(x) +1 —h3(x) — 2h(x)
L) = _p3(z) — 2h(z)  hA(z) + 3h3(z) +1 )
Then the Qf h( ) coding of the message, M consists of the multiplication of the message, M by the matrix
Ql)h( x) that is

4 +3h2 )+ 1 h¥(z)+ 2h(x)
Mo Qo) = ( ) ( z) + 2h(z) h?(z) +1 >
( my (h4( )+ 3h%(z) + 1) + ma(h3(z) + 2h(z)) my(h3(z) + 2h(z)) + ma(h?(x) + 1) )
ms(h*(z) + 3h2( ) + 1) + ma(h®(z) + 2h(z)) ma(h3(x) + 2h(z)) + ma(h?(x) + 1)
- < €3 €i ) =k (7)
where

e1 = my(h*(z) + 3h%(x) + 1) + ma(h®(x) + 2h(z))
ea = mi(h3(z) + 2h(z)) + ma(h*(x) + 1),
ez = ma(h*(z) + 3h*(x) + 1) + my(h®(z) + 2h(x)),
eq = ma(h3(2) + 2h(z)) + ma(h*(x) + 1).
Then the code message, F is sent to the channel. The decoding of the code message, E is given by
( €1 e ) ( h2(x) +1 —h3(x) — 2h(x) )
es €4 —h3(x) — 2h(z) h*(x) +3h%(z) +1
( e1(h?(z) + 1) + ea(=h3(z) — 2h(x)) e1(—h3(x) — 2h(x)) + e2(h*(x) + 3h%(z) + 1) )
es(h?(z) + 1) + eq(—h3(z) — 2h(x)) ez(—h3(x) — 2h(x)) + es(h*(x) + 3h%(z) + 1)

— miom2 o\ gy
m3 My '

4 Determinant of the Code Matrix, £

The code matrix, E is given by the following formula E' = M x @} , (x). From the matrix theory [6] we have

Det E = Det (M x Qy ,(x)) = Det M x Det Qy, ,(x) = Det M x (=1)P" = (=1)"" x Det M.  (8)

5 Relations Among the Code Matrix Elements on h(z) Lucas p-
Polynomials

51 Casel: p=1

Similar to [2], we obtain
€1

€3
— = “1,h($) and — ~ iy h( )
€9 €4

_ h(z)++/h?(z)+4

5 , €1, €2, €3, eq are given in (7).

where iy 5 ()
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5.2 Case 2: p=2

In this case, let the message,
mip Mgz M3
M = myg M5 Mg
m7 Mg My

Then, the Q3 j,(z) coding of the message, M is

€1 €y €3
M x Q’gh(w) = €4 €5 € =F.
€7 €8 €9
Similar to [2], we obtain
€1 €9 el
;2 =~ Mz,h(x)a % ~ Nz,h(x)v g ~ ﬂg,h(x)v
€4 €s €4
; ~ M2,h($)a — = U2,h($)7 — = M%,h(x)’
5 €6 €6
€7 €s €7
— = /L2,h($)a — & M2,h($)7 — = .u%,h,(x)v
€g €9 €9

where

2 4+ 2sh 4h?
g () = 212 (?J“ @) and s = \/108+8h3(az)+12\/81+12h3(x).
’ S

5.3 Case 3: Generalized Relations Among the Code Elements

In general, similar to [2], when p =t and n > p+1 = t+ 1, The generalized relations among the code matrix
elements are

o R (@) E (@) e ot R (),
~ 2 ) ~ 2 . T U
% ~ :ut,h(m)a % ~ /J’t’h(l‘)7 ] e;i ~ ,ut}h(x)a
oA g ()
€t41 t,h\" )
where eq, €2, €3, -+ -, €, €41 are the first row elements of the code matrix, E. We also obtain similar type
of relations among the elements of the second row, third row, -- -, (¢4 1)th row of the code matrix, F where

p,n(2) is golden (¢, h(z))-proportion.

6 Error Detection and Correction

The error-correcting codes [12, 13]) are used widely in information and communication system for the pro-
tection of the data from noise. The main purpose of the coding theory are the detection and correction of
errors arising in the code message, F under influence of noise in the communication channel. For the Lucas
coding and decoding method the correct ability is 93.33% like to [2] and it does not depend on h(z) for
a case p = 1. Also, the correct ability of this method is 99.80% for p = 2 [2]. In general, for p = t and

2
n > p+1=1t+1 the correct ability of this method is %

for large value of p the correct ability of this method is

which depends on p but not on h(z). Hence,

2(p+1)? _ 9
m ~1=100%.
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7 Conclusion

The Lucas coding and decoding method is the main application of the Lucas @ »(z) matrix. The correct
ability of this method for the simple case p = 1 is equal 93.33% that exceeds essentially all well-known
correcting codes. The correct ability of this method for the case p = 2 is 99.80%. The correct ability of this
method increases as p increases and it is independent of h(x) but h(z) being a polynomial, improves the
security in coding theory.

In future, we hope that the Lucas @, (z) matrices have wide applications in mathematics, physics,
genetics, chemical sciences, computer sciences, information and coding theory etc. Future works can be
extended for some new codes on the k-Lucas sequence and balancing sequence [14].

Acknowledgments. The author would like to thank the reviewers and editor for their valuable com-
ments and suggestion for the improvement of this paper.
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