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Abstract

This article is a subject about some results of the existence and Ulam stability results for four classes
of implicit neutral fractional differential equations involving the Caputo tempered fractional derivative
with delay. The results are based on Krasnoselskii’s fixed point theorem in Banach spaces, and the notion
of the stability of Ulam kind. To illustrate our results, we will give some examples.

1 Introduction

The study of differential equations plays a fundamental role in understanding and modeling various natural
phenomena and engineering systems [2,9,39-41]. In recent years, there has been a growing interest in
extending the classical theory of differential equations to encompass more complex scenarios, we recommend
consulting monographs such as [10,22], as well as papers like [1,3-6,11,12,17]. One such extension is the
introduction of tempered fractional derivatives. Buschman’s earlier work [13] was the first to disclose the
definitions of fractional integration with weak singular and exponential kernels.

The notion of tempered fractional derivatives extends the classical concept of fractional derivatives by
considering functions with exponentially decaying tails. This extension is particularly relevant in applica-
tions where memory effects are essential, such as in viscoelastic materials, nonlocal models in physics, and
fractional-order control systems. The tempered fractional derivative allows for a more accurate descrip-
tion of the underlying dynamics, capturing both long range memory and fast decaying behaviors. Further
elaboration on this topic can be found in [24,26-28,35, 36].

Implicit neutral problems represent a class of differential equations where the equation involves both the
dependent variable and its derivatives. These problems arise in various fields, including biology, physics,
and engineering, and pose significant challenges in terms of mathematical analysis and numerical solutions
we refer to the monographs of Hale [16], Hale and Verduyn Lunel [15], Hino et al. [19], Kolmanovskii and
Myshkis [23], and the references therein, see also [25]. The incorporation of tempered fractional derivatives
in implicit neutral problems offers a novel perspective, providing a deeper understanding of their behavior
and characteristics.

The Ulam stability of ordinary and fractional differential equations has recently been studied in [8, 20,
29-33].

In this paper, we study existence, uniqueness and Ulam stability results for the Cauchy problem of implicit
neutral fractional differential equation involving the Caputo tempered fractional derivative with finite delay
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where 0 < ( < 1, w > 0, 3,6 > 0, OC’DE’“ is the Caputo tempered fractional derivative, h: J x . — R, U :
J X E. x R — R are given continuous functions, ¢ € E. and E. := C([—¢,0],R).
For any t € I, we defined y; € E. by

v (0) =y(t+0); for 0€[—c,0].

Next we consider the Cauchy problem of implicit neutral fractional differential equation involving the
Caputo tempered fractional derivative with infinite delay

D7 ((t) = blt.y) = ¥ (tye §DF (w(t) = blt.y))) 5t € J = (0,4, (3)

y(t) = ¢(t); te (700, 0]7 (4)
where h: J x B— R, ¥ :J x B xR — R are given continuous functions, ¢ € B and B is the phase space to

be specified later.
For any t € I, we defined y; € B by

y(0) =y(t+0); for 6 € (—oc0,0].

In addition to that, we study the Cauchy problem of implicit neutral fractional differential equation
involving the Caputo tempered fractional derivative with state-dependent delay (the finite delay case)

ggg,w (y(t) - h(tayg(t,yt))) =¥ (t; Yo(t,ys)s OC'@%',QJ (y(t) - h(tyyg(t,yt)))) ;t €J:= [07 %]v (5)

y(t) =o(t);  te[=,0] (6)
where p: J X Ec = R, h: J x BEc = R, ¥ :J x E. x R— R are given continuous functions and ¢ € E..
Finally, we treat the last Cauchy problem of implicit neutral fractional differential equation involving the
Caputo tempered fractional derivative with state-dependent delay (the infinite delay case)

D5 (0t) = Bt oe00)) = ¥ (B o §D5° (00 = Bt Yaean)) ) it € T =05, (7)

y(t) = o(t);  te(—00,0], (8)
where 0: J X B—=R,h: J xB—=R,¥:Jx B xR — R are given continuous functions and ¢ € B.

This paper is arranged as follows: Section 2 introduces some preliminaries, definitions, lemmas and
auxiliary results that are used throughout this work. In section 3, we give some existence results for the
problem (1)—(2) that are based on Krasnoselskii fixed point theorem, moreover we establish the Ulam stability
of this problem. The same study applied to problem (1)—(2) in last section, we apply in section 4 to problem
(3)—(4) and in section 5 to problems (5)—(6) and (7)—(8). Finally we present some examples to show the
validity of our results.

2 Preliminaries
We denote by C(J,R) the Banach space of all continuous functions from J into R, with the following norm
[9lloc = sup [y(t)].
ted

Consider E. := C([—¢,0],R) the Banach space with the norm

lylle, = sup [y(t)].
te[—s,0]
Let B the phase space introduced by Hale and Kato in [14] and follow the terminology used in [19]. Thus,
(B, || - |Ig) will be seminormed linear space of functions mapping (—oo, 0] into R, and satisfying the following
axioms :
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(A1) If y : (—o0, 3] — R is continuous on J and yo € B, then for every ¢ € J the following conditions hold:

(i) vt € B;
(ii) there exists a positive constant f such that |[y(t)| < F |jy:|s;

(#ii) there exists two functions f (-),F (-) : Ry — R, independent of y with /~ continuous and bounded
and I locally bounded such that

lyells < F(t) sup, (k)] + F (@)llyolls-
re(0,t

(A2) For the function y in (A;), y: is a B-valued continuous function on J.
(A3) The space B is complete.

Denote [ * =sup,c, F(t), F*=sup,,F(t).
Remark 1 1. (A1)(ii) is equivalent to |¢(0)| < F ||¢||s for every ¢ € B.

2. Since || - ||g is a seminorm, two elements ¢,w € B can verify ||¢ — w|p = 0 without necessarily

#(0) = w(0) for all < 0.

3. From the equivalence in the first remark, we can see that, for all ¢,w € B such that ||¢ — wl||p = 0.
We necessarily have that ¢(0) = w(0).

Definition 1 ( [26,34,37]) Suppose that the function ¥ € C([51,s%],R), w > 0. Then, the Riemann-
Liouville tempered fractional integral of order ¢ is defined by

[t e ()
W ICU(t) = et IE (e*M (1)) = / dr, (9)
o o 0(Q) Joey (E=7)=¢
where ,{IIf denotes the Riemann-Liowville fractional integral [21], defined by
1 Low(rn)
W I U(t) = dr. 10
T = g [ et (10)

Obviously, the tempered fractional integral (9) reduces to the Riemann-Liouville fractional integral (10) if
w = 0.

Definition 2 ( [26,34]) Forn—1 < ( <n;n € NT, w > 0. The Riemann-Liouville tempered fractional
derivative is defined by

w —w w e~ dr [t evTU(r
D) = e () = s [

where %1®§ denotes the Riemann-Liouville fractional derivative [21], given by

cayn - 4 n—¢ 1t ()
Dy () = dtn ( ailt \Ij(t)) - T(n—¢)dtn /%1 (t — T)candT'

Definition 3 ( [26,37]) Forn —1< (¢ <n;n € NT, w>0. The Caputo tempered fractional derivative is
defined as

w —w w e—wt ! 1 d" wT
Slgtc’ \Ij(t) =e ;c{'l@tc (e t\Ij(t)) = F(n — o / (t _ T)(—n+1 drm (e \IJ(T)) dr,

where 2133%’“’ denotes the Caputo fractional derivative [21], given by

1

C i 1 K 1 dn
%1©tq}(t) - F(n _ C) / (t _ T)(—n—i—l dTn\II(T)dT'

1
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Lemma 1 ( [26]) For a constant C,
W DPUC = Cet, Die!,  CDPUC =Ce  Djet.

Obviously, ,,, D% (C) # EIQE’W(C’). And, € D% (C) is no longer equal to zero, being different from ¢ D30 =

J b4
0.

Lemma 2 ( [26,37]) Let ¥ € C"([»11,2],R), w >0 and n — 1 < { <n. Then we have:

)
t=us1

Now, we consider the Ulam stability for the problem (1)—(2). Let € > 0 and X : J — R, be a continuous
and positive function. We put the following inequalities

W I [ CDE ] = W) - Y e 2 i
k=0

E (=) [dk G 10)

and

7 | WIFUw(D)] = (), for ¢ € (0,1).

695 (w(®) = bt 9e) = ¥ (83, §D5° (w(®) —blt.we)))| <& te . (1)
595 (w(t) = b)) = ¥ (8, §D5° (9(8) = blt.we))) | < N(D): e (12)
625 () = bt 30)) = ¥ (Lyes §DF () — blt,w)) )| <R te (13)

Definition 4 ( [9,33]) The problem (1)—(2) is Ulam-Hyers stable if there exists a real number cy > 0 such
that for each € > 0 and for each solution y € C(J,R) of the inequality (11) there exists a solution § € C(J,R)

of (1)-(2) with
ly(t) —g(t)| <ecw; ted

Definition 5 ( [9,33]) The problem (1)-(2) is generalized Ulam-Hyers stable if there exists cg € C(Ry,Ry)
with cg(0) = 0 such that for each € > 0 and for each solution y € C(J,R) of the inequality (11) there exists
a solution g € C(J,R) of (1)-(2) with

ly(t) —g(t)] < cule); te

Definition 6 ( [9,33]) The problem (1)-(2) is Ulam-Hyers-Rassias stable with respect to N if there exists
a real number cyrn > 0 such that for each € > 0 and for each solution y € C(J,R) of the inequality (13)
there exists a solution § € C'(J,R) of (1)-(2) with

ly(t) — g(t)| < ecrnR(t); te€J.

Definition 7 ( [9,33]) The problem (1)-(2) is generalized Ulam-Hyers-Rassias stable with respect to Y if
there exists a real number cprn > 0 such that for each solution y € C(J,R) of the inequality (12) there exists
a solution § € C(J,R) of (1)-(2) with

ly(t) = G(t)| < crxR(t); te
Notice that
(i) Definition 4 = Definition 5.
(#4) Definition 6 = Definition 7.
(#3I) Definition 6 for &(-) = 1 = Definition 4.

One can have similar remarks for the inequalities (11) and (13).
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3 Implicit Neutral Caputo Tempered Fractional Differential Equa-
tions with Finite Delay

In this section, we study the existence, uniqueness and Ulam stability results for the problem (1)—(2) in a
Banach space. Let
E={y:[-¢x =R y|_¢o€ Es, ¥ o€ C(J,R)}.

We note that E is Banach space with the norm

lylle = sup |y(t)].
tE[—S‘,%]

Lemma 3 Let0< (<1, and pu:J —R, g:J — R be two continuous functions. Then the problem
6D (y(t) — u(t) = a(t);  teJ:= [0, (14)

y(t) =o(t);  te[=,0] (15)

has a unique solution defined by

[ e B0) — O]+ ple) + e JL e (- ) gl e,
y(t)_{ W =ol), tef0. (16)

Proof. Applying The Riemann-Liouville tempered fractional integral of order ¢ to both sides the equation
(14), and by using Lemma 2 and if t € J, we get

y(t) — p(t) — e y(0) — p(0)] = 1) / e (1 — k) g () dr.

NG

From the condition (15), we get

y(t) = e~ 5(0) — (0] + u(t) + % / R (1 p) g (w)ds, tE J

Conversely, we can easily show by Definition 3, Lemma | and Lemma 2 that if y verifies (16), then it satisfies
the problem (14)-(15). m

Definition 8 By a solution of the problem (1)—(2), we mean a function y € E that satisfies the equation
(1) on J, and the initial condition (2) on [—s,0].

As a consequence of Lemma 3, we give the following result.

Lemma 4 LetV:JXx E. xR —R, h:Jx E. — R be two continuous functions. Then the problem (1)-(2)
is equivalent to the following integral equation

e—wt[(b(o) - h(07 ¢)] + h(t’ yt)
y(t) = —l—ﬁ f(f e R (t — K)CTIW (R, ys, f(K))dR, tEJ, (17)

¢(t), tel=,0]

where § € C(J,R) satisfies the following functional equation

f(t) = W(t,ye, §())-
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Corollary 1 The solutions of the problem (1)-(2) are the fixed points of the operator M : E — E defined

by
e~ “*$(0) — (0, ®)] + b(t,ye)

My(t) = +== f(: e R (t — )W (R, ys, f(K))dR, tEJ,

¢(t), tel=,0]

where f € C(J,R) satisfies the following functional equation
f(t) = W(t, e, §(2)),
Remark 2 Consider the operators T, L : E — E defined by
e~ [¢(0) — h(0,9)]
Ty(t) = +5i5 Jo (= 8)TIW(R, ys, f(1)dr, €,
0, te][-,0],
where f € C(J,R) satisfies the following functional equation

f(t) = W (t, yr, §(1)),

and

Then

3.1 Existence of Solution

(19)

(20)

The existence result is based on Krasnoselskii’s fixed point theorem. Let us introduce the following hypothe-

ses:
(Hy) There exist constants p5 > 0, 0 < p < 1 such that
(W (t,y, ) = (5, m)| < pally — vlle, +pslw—al,
for any y, 5 € E., p, i € Rand t € J.

(Hz) The function b satisfies the Lipschitz condition
for y,y € E. and t € J where 0 < k < 1.

Set
p; =sup|¥(¢,0,0)], b* =suplh(t,0)|
teJ teJ
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Remark 3 The hypothesis (Hy) implies that

(W (t,y, m)| < pi+p3llylle, +pilul,
foranyye E., peR andt e J.
Theorem 1 Suppose that the hypotheses (H1), (H2), and the condition

pi°
(1 =p3)L(¢C+1)

hold. Then the problem (1)-(2) has at least one solution defined on [—s, 5].

k+ <1, (21)

Proof. Let T, L be the operators defined in (19 and 20 respectively.). Set

*_ ¢
P17
T Ty
s
=PI (C+)

R > max § |9 z;

and let Qr = {y € E : |ly||g < R} be the closed and convex ball in E. The proof will be given in three steps.
Step 01. Ty + Lu € Qi whenever y, u € Qp.
Let y, u € Qg. Then for each t € [—, 0], we have

Ty(t) + Lu()| = ot)] < [l9lle, <R,

and for each t € J, we have
t
ITy(t) + Lu(t)] < ¢“![6(0) — b(0, &) + [b(t, )| + ﬁ / =) (1 — k) ()| dis
< 16(0)] + 5(0, @) + [B(t. )] + ﬁ / (t — m) (k) di

where f € C(J,R) with §(t) = ¥ (¢, yt, f(¢)). From Remark 3, for each t € J, we get

()] = [V (t, v, f(2))]
< pu(t) + p2()llyel &, + p3(@)]F(t)]
< pi +psllylle + p3lit)|
< pi + 3R+ p3lft)].
This gives
pi +piR
i< =——— -
Thus, by using (Hz), we get
[ Ty(t) + Lut)| < [6(0)| + [5(0,8) — h(0,0)| + [H(0,0)[ + [b(Z, 1) — b2, 0)]

(p} + p3R)»*
(1-p5)T(C+1)

< llolle, +Klglle, +b" + kllu e + 5" +

+[b(t,0)| +

(p} + p3R)s>*
(1—p3)T(C+1)
(p} + p3R)»*

E+1 ER+2b" + ——— .
< (k+Dolls, + kR + 2b T
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Set €' = (k + 1)||¢| 5. + 2b*. Thus

(p} + p3R)»*

|Ty(t) + Lp(t)] < C+ kR + (1_p§)—1‘(c+1) -

Hence, we get
[Ty + Lulle < R.

This proves that Ty + Ly € Qi whenever y, u € Qg.
Step 02. T : Qr — Qg is compact and continuous.
Claim 1. T : Qg — Qg is compact.

From step 1, we have T(Qg) C Qg, and Qp is bounded, then T'(2g) is bounded. Let t,ts € J, be such
that ¢1 < to and let y € Qi. Then, there exist f € C(J,R) with f(t) = ¥ (¢, vz, f(¢)), such that

ti | —w(ta—k) (4. _ NC—1 _ —w(ti—r) (4 _ \¢—1
M%%TWM<Ae “2“>H5 (= n)

ta —w(ta—k) to — g)S—1L
[ la
ty

(r)|dr

I'(¢)
pi +psR [/tl lemw(ta=r) (ty — g)S1 — emwti=r) (1) — )Y dk
— (1-p3) [Jo ')
(ta —t1)°
+ 7F(§+1) — 0, as t; — ts.

Consequently, T'(Q2r) is equicontinuous. According the theorem of Arzela-Ascoli, T : Qg — Qg is compact.

Claim 2. T is continuous.
Let {y™}nen be a sequence such that y™ — y in Qg. Then, we have

n 1 ¢ —w(t—~k —1
u@w—MWSﬁ5£e< )t — 1) (k) — ()|,

where f,,,f € C(J,R) such that
fu(t) = ®(t,ut's n(t)),
and
f(t) = W(t, e, (1)
From (Hy), we get

[fn(t) = F(0)] = [W (& 7', Fn(8)) — W (T, e, (1))
< pallyt” — vell e, + p3lfn (k) — §(5)].

Then

Ifn(8) = (O] < —22— 2 — el ..
P3

1_
Thus

* t

n p —w(t—r _ n

Ty (0) = Tu(0)] < i [ = 0 = il .
3

By the Lebesgue dominated convergence theorem, we get

ITy" — Tylloo — 0, as mn — o0,
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which implies that
ITy" = Tyle — 0, as n — +oo.

Hance, the operator T is continuous.
Step 3. L is a contraction mapping.
Let y, u € Qg for each ¢ € J, by using (Hz) we have

|Ly(t) — Lu(t)] = [b(t, ye) — bt )| < kllye — 1l 2, -

Thus
Ly — Lpllg < klly — plle,

which implies that the operator L is a contraction.
As a consequence of the three above steps, from Krasnoselskii’s fixed point theorem [7], the operator
equation (T4 L)(y) = y has at least one solution which is a solution of the fractional problem (1)-(2). m

3.2 Generalized Ulam-Hyers-Rassias Stability

Now, we prove a result about the Ulam-Hyers-Rassias stability of the problem (1)-(2). The following
hypotheses will be used in the sequel.

(H3) There exist continuous functions ¢1, g2, g3, N : J — Ry with ¢3(¢) < 1 such that

L+ lyllz)¥ @y, w)] < quOR(E) + g2ORE) |yl 2, + g3(8)[pl,
forany y € E., p € Rand t € J.

(Hy) There exists a continuous function g4 : J — R such that

(L+lly = gllz) b y) =t 9] < @a@OR@) |y - 7lle.,
fory,y € E. and t € J.

(Hs) There exists Ax > 0 such that for each ¢ € .J, we have
ISUN(t) < ApR(t).

Set
¢ =swla®) i€ {1,234}, X =sup|X().
ted ted

Theorem 2 Assume that the hypotheses (Hy)—(Hs) and the condition (21) hold. If ¢;N* < 1, then the
problem (1)-(2) is generalized Ulam-Hyers-Rassias stable.

Proof. Let M be the operator defined in (18) and y be a solution of the inequality (12). For each ¢t € J, we
have

[y(t) = €™ "16(0) = 5(0,0)] = b(t,3¢) — I5 ()] < R(®),
where § € C(J,R) with §(¢t) = U(¢, yt, f(¢)), and let us assume that p is a solution of problem (1)—(2). Thus,

we have
e [¢(0) — (0, 9)] + b(t, 1)
p(t) = +ﬁ fg e =R (t — k) g(k)dr; t € J,

o(t); ¢ €=,0],
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where g € C(J,R) with g(t) = U(¢, uy, f(t)). From the hypotheses (H3)—(Hs), for each ¢t € J, we have

[y(®) = u(t)] < [y(t) = e [6(0) = b(0, )] — h(t 1) = I5“(D)]
10t ) = bt )| + 115 (F — ) (®)]

R S L PN PN
wa (t = R)< () — (s)|d

<N(E) + @R(t) + 2 (qll +;3> IS“N(t)
— 43

<N(t) + @ N(t) +

<R() + () + 2 L Ly )

1—4q3

. * + *
[1 g+ 2D 'ﬂ N(t)
1—-gq3

IN

=: Cq/7h7NN(t).

Hence, we conclude the generalized Ulam-Hyers-Rassias stability of problem (1)—(2). m

4 Implicit Neutral Caputo Tempered Fractional Differential Equa-
tions with Infinite Delay

In this section, we study the existence, uniqueness and Ulam stability results for the problem (3)—(4). Let

B = {y : (7007%] —-R; y ‘(—00,0]e Ba Y |[0,x]€ C(Ja R)}

4.1 Existence of Solution

The existence result is based on Krasnoselskii’s fixed point theorem.

Definition 9 By a solution of the problem (3)-(4), we mean a function y € E* that satisfies the equation
(3) on J, and the initial condition (4) on (—o0,0].

Let us introduce the following hypotheses:
(h1) There exist constants a3 > 0,0 < aj < 1 such that
W (t,y,p) =V (t,5,0)| < aslly —lls + azlp — 7,
for any y,g € B, p,p € Rand t € J.
(hg) The function b satisfies the Lipschitz condition
5(t,y) = b(t,9)| < K'lly — 7l 5,

fory,yeBanthJWhereO<k:’<rl*.

Set
aj =sup |¥(t,0,0)|, b* =suplh(t,0)|.
tedJ teJ

Remark 4 The hypothesis (hy) implies that

(W(t,y, )| < a1 + azlylls + aslul,

foranyye B, ueR andte J.
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Theorem 3 Suppose that the hypotheses (h1), (h2), and the condition

sCayF*

B e

<1, (22)

hold. Then the problem (3)—(4) has at least one solution defined on (—oo, 5.
Proof. Consider the operator N : E* — E* defined by

eiwt[qb(o) - h(ov ¢)] + h(tv yt)
Ny(t) = + 5 fot emwit=r) (t — k) (K, ys, f(K))dr, teJ,

¢(t), te(—o0,0],

where f € C(J,R) satisfies the following functional equation

f(t) = W (t, yr, §1(2))-
Let p: (—o00, 3] — R be a function defined by
67Wt[¢(0) - h(oa ¢)]7 te Ja

p(t) =
o(t), te€ (~00,0].

Then uy = ¢ for all t € (—o00,0]. For each v € E* with v(0) = 0, for each t € (—o0, 5] we denote by U the
function defined by

0, te(—o00,0].

If y satisfies y(t) = Ny(t), we can decompose it as y(t) = v(t)+ u(t) for t € J, which implies that y; = v+,
for every ¢ € J, and the function v(-) satisfies

t
v(t) = b(t,ve + 1) + / e Ut — k)T (k, vy + puy, F(R))dR,

1
() Jo
where § € C(J,R) satisfies the following functional equation
§(6) = W(t.v1 + (D)

Set
Eo={veE*, v(0)=0}

and let || - || g, be the norm in Ey defined by

[Vl 5o = llvolls + sup [v(¢)] = sup [v(t)]; v € Eo,
teJ teJ

where Ey is a Banach space with the norm || - ||g,. Defined the operators IC, P : Ey — Ej by
Kv(t) = b(t,ve + ),

and .
Prit) = ﬁ /0 e U (¢ — k)T (s, v + g1y, () s,
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Obviously, the operator N has a fixed point is equivalent to IC + P having a fixed point, and so we turn to
proving that IC + P has a fixed point. Set

* %S (al+a3D)
KD+ + Goadrién

_ xCazF * ’
(1—a3)T'(¢+1)

R >
1— k™

with D = ||@|lg(F*(F + k) +F*) + F*h*, and let Br. = {v € Eqy : ||v|lm, < R*} be the closed and convex
ball in Eo.

For each v € Ey and from (A;), it follows that We can prove as in Theorem 1 that the operators K and
P satisfy the conditions of Krasnoselskii’s fixed point theorem [7]. This implies that the operator N has at
least a fixed point which is a solution of problem (3)—(4). m

4.2 Generalized Ulam-Hyers-Rassias Stability

Now, we prove a result about the Ulam-Hyers-Rassias stability of the problem (3)-(4). The following
hypotheses will be used in the sequel.

(h3) There exist continuous functions by, b, b3, R:J— Ry with bs(t) < 1 such that

(L4 yls) et y, w)] < brER(E) + ba(OR()lylls + b3 (t)]|
foranyye B,y cRand t e J.
(hy) There exists a continuous function by : J — Ry such that
(L+ ly = gls)b(t. ) = bt 7)] < bsOROly — 7.
for y,y€ Band t € J.

(hs) There exists Az > 0 such that for each t € J, we have
IS“R(t) < AgR(D).

Set

teJ ted

From Theorem 3, we can conclude the following result about the generalized Ulam-Hyers-Rassias stability
of problem (3)—(4).

Theorem 4 Assume that the hypotheses (h1)—(hs) and the condition (22) hold. 1If bjR* < 1, then the
problem (3)-(4) is generalized Ulam-Hyers-Rassias stable.

5 Implicit Neutral Caputo Tempered Fractional Differential Equa-
tion with State-Dependent Delay

5.1 The Finite Delay Case

Set
R(e™) ={o(t,¢): (t,0) € J x E, o(t, ¢) < 0}.

We always assume that g : J x E. — R is continuous. Additionally, we introduce the following hypothesis:
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(Hgy) the function ¢ — ¢, is continuous from R(p~) into E, and there exists a continuous and bounded
function £? : R(0~) — (0, 0) such that

lg:lle, < L2@l¢lle.

Remark 5 The condition (Hy) is frequently verified by functions continuous and bounded. For more details,
see, for instance, [19].

Lemma 5 ( [18, Lemma 2.4]) Ify: [—, x| — F is a function such that yo = ¢, then

lyellz, < L200le, +  sup  |y(@)], teR(e) U,
0€[0,maxz{0,t}]

where L9 = sup |LP(t)].
teR(e™)

5.2 Existence of Solution

The existence result is based on Krasnoselskii’s fixed point theorem.

Definition 10 By a solution of the problem (5)—(6), we mean a function y € E that satisfies the equation
(5) on J, and the initial condition (6) on [—¢,0].

Theorem 5 Suppose that the hypotheses (H1), (H2), (Hy), and the condition

P
(1 =p)T(C+1)
hold. Then the problem (5)—(6) has at least one solution defined on [—g, »].

k+ <1,

Proof. Consider the operators T, L : E — E defined by
e [¢(0) = H(0, Yp(0,6))]

Ty(t) = { 41ty Ji e (t = ) U, Yy T, E €,
0, te][—s,0],

where f € C(J,R) satisfies the following functional equation

f(t) = \I/(ta Yo(t,ye)» ‘f(t))z

and
B h(t,yg(t,yf,))a te Jv
Ly(t) =
¢(t)7 te [_§70]'
Set .
F
E+ aopren

R > max ||¢||E§;

__ ppxe
(1=p3)I'(¢+1)

with E = ||¢||g. (1 + K(2£% + 1)) + 2h* and F = p} + p3L?| ¢ &, and let By = {y €E:|yle < R} be

the closed and convex ball in E. We can prove as in Theorem 1 that the operators T and I:/ satisfy the
conditions of Theorem Krasnoselskii’s fixed point theorem [7]. This implies that the operator T'+ L has at
least a fixed point which is a solution of problem (5)—(6). =
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5.3 The Infinite Delay Case

Set
R(e™) ={olt,¢) : (t,9) € J x B, o(t, ¢) < 0}.

We always assume that ¢ : J x B — R is continuous. Additionally, we introduce the following hypothesis:

(hg) the function t — ¢, is continuous from MR(p~) into B, and there exists a continuous and bounded
function £? : R(0~) — (0,00) such that

lo:lls < £2)|1¢ll.

Remark 6 The condition (hg) is frequently verified by functions continuous and bounded. For more details,
see, for instance, [19].

Lemma 6 ( [18], Lemma 2.4) Ify: (—o0, ] — E is a function such that yo = ¢, then

lyells < (F* + L) élls +L"  sup  |y(@)], teR(e)U/,
0€[0,max{0,t}]

where L» = sup |L2(t)].
teER(0™)

5.4 Existence of Solution

The existence result is based on Krasnoselskii’s fixed point theorem.

Definition 11 By a solution of the problem (7)-(8), we mean a function y € E* that satisfies the equation
(7) on J, and the initial condition (8) on (—o0,0].

Theorem 6 Suppose that the hypotheses (hl), (h2), (hg), and the condition

P
(1 —az)l(C+1)

hold. Then the problem (7)-(8) has at least one solution defined on (—o0, 5.

Er*+ <1,
Proof. Consider the operator N : E* — E* defined by

e p(0) — 5(0,Yo(0,6))] + bt Yo(ty0))

Ny(t) = +%€) fot e wt=r) (¢t — K)C_I\I/(fi,yg(ﬁ7ys),¥(ﬁ))dﬁ; teJ,

¢(t); te (_0070}7

where § € C(J,R) satisfies the following functional equation

f(t) = \Il(tv yg(t,yf,) ) ;(t))

If y satisfies y(t) = Ny(t), then there is similar transformation to that in the proof of Theorem 3, given the
following decomposition y(t) = v(t) + u(t) for ¢t € J, which implies that y, = vy + u, for every ¢t € J, and the
function v(-) satisfies

V(t) :h(ty Vo(kwitp,) + /’[’Q(K,Vt—‘rut))

1 K —w(t—k — ~
+ 1—\7 / € (¢ )(t - H’)C 1\II(H7 I/Q(H,VS+HS) + /“Lg(n,us+,us)7 f(ﬁ))dﬁ,
(€ Jo
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where § € C(J,R) satisfies the following functional equation

f(t) = W(t, Vo(kwetu,) T Mg(ﬁ,vs+u5)7f(t))'
Defined the operators K, P : Ey — Ey by

Ia’/(t) = h(t, Vo(kywitu,) T “Q(merm))’

and )
75 t) = L —w(t—r) t— k) Iy ~ d
I/( ) B F((:) 0 € ( H) (ﬂ» Vo(k,vs+py) + Ho(k,vstp,) f(fi)) K.

Obviously, the operator N has a fixed point is equivalent to K+P having a fixed point, and so we turn to
proving that IC 4 P has a fixed point. Set
/ * %C(aera; G)
s PETY T aard

P * * )
xSasl

- (I—ap)l(¢+1)

C1-Kr

with G = Lh*||¢||g(1 + F*K')(F*F + F* + £?), and let Bp. = {u € Ey:|v|g, < R*} be the closed and
convex ball in Ej. R R

We can prove as in Theorem 1 that the operators K and P satisfy the conditions of Krasnoselskii’s fixed
point theorem [7]. This implies that the operator N has at least a fixed point which is a solution of problem

(7)-(8). =

6 Some Examples

Example 1 Consider the implicit neutral Caputo tempered fractional differential equations with delay

§97% (wt) = bt ) = ¥ (L §97° (1) bt ) it € [0,1], (23)
y(t)=t*  teE, (24)
where
_ 2 .
U(t,u,v) = et+6(t +tu+v); t€[0,1,ueT,veR,
and

__ ¢ =2, 1 .
h(t,u) = T+ Tl <e + €t2+1> ; t€[0,1,ueT.
Case 01. We put 2 =[-5,0] and T = C(]-5,0],R).
For each t € [0,1],u € C([-5,0],R) and v € R, we get

3 2

t
(Ut u0)] < o + s llully + o5l

and
U (t,u,v) — U(t,a,0)| < e bu—al|r+e lv—a].
Then the hypothesis (Hy) is satisfied with

8 2 ot
pi(t) = pravE pa(t) = paE p3(t) = gy

and p} = p; = p} = e~ %. The hypothesis (Hs) is satisfied by k = 2e~1. Take u,u € C([-5,0],R), Then we
have
0(t,w) = bt @)| < 2¢u— .
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The hypothesis (Hs)—-(Hs) are satisfied by
t2 t 1 L 1
N(t)=t, q(t)= peaE q@2(t) = 76 q3(t) = Ay q(t) = (6 + et2+1> )

and Ay = SUP;c(o,1] % Since the conditions of Theorem 1, and Theorem 2 are satisfied. Hence, our
problem (23)-(24) has at least a solution defined on [—5,1], and it is generalized Ulam-Hyers-Rassias stable.

Case 02. We put Z = (—00,0] and T = B.
The phase space B be C., the space for any real positive constant vy, defined by
C,={¢€C((—o0,0],R) : elim e?¢(0) ewist in R}

——00

endowed with the norm
[éllc, = sup [6(0)]-
€ (—00,0]
Then in the space C-, azioms (A;)—~(As3) are satisfied, with [ =1, [ (t)=F (t) =1, (see [2]).
Simple computations show that all conditions of Theorem 3, and Theorem j are satisfied. Hence, our problem
(23)-(24) has at least a solution defined on (—oo,1], and it is generalized Ulam-Hyers-Rassias stable.

Example 2 Consider the implicit neutral Caputo tempered fractional differential equations with stat-dependent
delay

5972 wt) = bt 90)) = ¥ (U000 D77 (0(0) = bt vo00)) ) 3t € [0,1] (25)
y(t) =t+1; tez, (26)
where .
U(t,u,v) = ﬁ(tQ +tu(t+o(u(t)))+v); tel0,1],ue YT,vekR,
and

t (7 e
5+ o)l \© e

b(t,u) = ); tel0,1,ue,

where o € T,

o(t,9) =t +0(o(t), (,¢) € JxT.
Case 01. We put 2 =[-5,0], T =C(R,[0,5]) and T = C([-5,0],R).

Simple computations show that all conditions of Theorem 5, and Theorem 2 are satisfied. Hence, our
problem (25)-(26) has at least a solution defined on [—5,1], and it is generalized Ulam-Hyers-Rassias stable.
Case 02. We put E = (—00,0], T'=C(R,[0,+00)) and T = B.
B = C, is the phase space defined in Example 1.

Simple computations show that all conditions of Theorem 6 and Theorem /j are satisfied. Hence, our
problem (25)-(26) has at least a solution defined on (—o0,1], and it is generalized Ulam-Hyers-Rassias
stable.
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