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Abstract

In this paper, we study the Kirchhoff equation[
1 +

∫
R3

(
|∇u|2 + u2

)
dx

]
(−∆u+ u) = λα(x)f(u) in R3, (K)

where α ∈ L∞(R3)∩L6/(5−q)(R3) for some q ∈ (0, 1), and the continuous function f : R→ R is sublinear
at infinity and superlinear at zero. We prove the existence of at least two non-trivial solutions when
λ > 0 is large enough and a non-existence result when λ > 0 is small. We also get the stability of (K)
for an arbitrary subcritical perturbation of the equation.

1 Introduction

The following Kirchhoff equation[
1 +

∫
R3

(
|∇u|2 + u2

)
dx

]
(−∆u+ u) = g(x, u) in R3, (1)

has been widely studied in recent years [1, 2, 3, 7, 8, 11, 13, 20, 21, 24, 26]. Equation (1) is well-understood
for the model nonlinearity g(x, s) = |s|p−1s, where p > 0, various existence and multiplicity results are
available for (1) in the case 1 < p < 5. Non-existence results can be found in the papers of Li and Sun [21].

Besides the model nonlinearity g(x, s) = |s|p−1s, important contributions can be found in the theory
of the Kirchhoff equation when the right-hand side nonlinearity is more general, verifying various growth
assumptions near the origin and at infinity. We recall two such classes of nonlinearities (for simplicity, we
consider only the autonomous case g = g(x, ·)):

(AR) g ∈ C(R,R) verifies the global Ambrosetti-Rabinowitz growth assumption, i.e., there exists µ > 4 such
that

0 < µG(s) ≤ sg(s) for all s ∈ R \ {0}, (2)

where G(s) =
∫ s
0
g(t)dt. Note that (2) implies the superlinearity at infinity of g, i.e., there exist c,

s0 > 0 such that |g(s)| ≥ c|s|µ−1 for all |s| ≥ s0. Up to some further technicalities, by the standard
symmetric mountain pass theorem one can prove that (1) has infinitely many nontrivial solutions (see
[20]).

(BL) g ∈ C(R,R) verifies the Berestycki-Lions growth assumptions, i.e.,

—−∞ ≤ lim sups→∞
g(s)
s = 0;

—−∞ < lim infs→0+
g(s)
s5 ≤ lim sups→0+

g(s)
s = −m < 0;

—There exists s0 ∈ R such that G(s0) > 0.
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In this case, Azzollini [1, 2] proved the existence of at least a nontrivial solution u ∈ H1(R3) for the
equation (1) via suitable truncation and monotonicity arguments. Multiple solutions are obtained by
Azzollini et al. [3].

The purpose of the present paper is to describe a new phenomenon for Kirchhoff equations by considering
the non-autonomous eigenvalue problem[

1 +

∫
R3

(
|∇u|2 + u2

)
dx

]
(−∆u+ u) = λα(x)f(u) in R3, (3)

where λ > 0 is a parameter, α ∈ L∞(R3), and the continuous nonlinearity f : R→ R verifies the assumptions

(f1) lim|s|→∞
f(s)
s = 0;

(f2) lims→0
f(s)
s = 0;

(f3) there exists s0 ∈ R such that F (s0) > 0.

When the nonlinearity has a parameter, the situation changes, we want to show the existence of at least
two nontrivial solutions for larger values of λ > 0. To state our main theorem, we consider a perturbed form
of the equation (3) as follows:[

1 +

∫
R3

(
|∇u|2 + u2

)
dx

]
(−∆u+ u) = λα(x)f(u) + θβ(x)g(u) in R3, (4)

where θ ∈ R, β ∈ L∞(R3) ∩ L3(R3), while g : R→ R is a continuous function such that for some c > 0 and
1 < p < 5, one has

(g1) |g(s)| ≤ c(|s|+ |s|p) for all s ∈ R.

The main result reads as follows:

Theorem 1 Let f , g : R → R be continuous functions which satisfy (f1)—(f3) and (g1), respectively, α ∈
L∞(R3) ∩ L6/(5−q)(R3) be a non-negative, non-zero, radially symmetric function for some q ∈ (0, 1), and
β ∈ L∞(R3)∩L3(R3) be a radially symmetric function. Then there exists λ∗ > 0 such that for every λ > λ∗,
there is δ > 0 with the property that for every θ ∈ [−δ, δ], equation (4) has at least two distinct, radially
symmetric, nontrivial solutions ui ∈ H1(R3), i ∈ {1, 2}.

Some remarks are in order.

Remark 1 The proof of Theorem 1 shows that for every compact interval [a, b] ⊂ (λ∗,∞), there exists a
number ν > 0 such that for every λ ∈ [a, b], the solutions ui ∈ H1(R3), i ∈ {1, 2} of (4) verify

‖ui‖H1 ≤ ν. (5)

Remark 2 A Strauss-type argument shows that the solutions in Theorem 1 are homoclinic, i.e., for every
λ > λ∗, θ ∈ [−δ, δ], and i ∈ {1, 2}, we have ui(x)→ 0 as |x| → ∞.

Example 1 Typical nonlinearity which fulfills hypotheses (f1)—(f3) is f(s) = ln(1 + s2).

Remark 3 (a) Property (f1) is a sublinearity growth assumption at infinity on f which complements the
Ambrosetti—Rabinowitz-type assumption (2).

(b) If (f1)—(f3) hold for f , then the function g(s) = −s+f(s) verifies all the assumptions in (BL) whenever
1 < maxs6=0

2F (s)
s2 . Consequently, the results of Azzollini [1] can be applied also for (3), guaranteeing

the existence of at least one nontrivial solution when λ = α(x) = 1, and b > 0 is suffi ciently small.
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Let θ = 0 and according to hypotheses (f1)—(f3), one can define the number

cf = max
s6=0

|f(s)|
|s|+ 4s3

> 0. (6)

The following non-existence result for the equation (3) is expected whenever λ > 0 is small enough. More
precisely, we have

Theorem 2 Let f : R → R be a continuous function which satisfies (f1)—(f3), and α ∈ L∞(R3). Then for
every λ ∈ [0, ‖α‖−1∞ c−1f ) (with convention 1/0 = +∞), problem (3) has only the solution u = 0.

2 Preliminaries and Variational Framework

Notations

• For every p ∈ [1,∞], ‖ · ‖p denotes the usual norm of the Lebesgue space Lp(R3).

• The standard Sobolev space H1(R3) is endowed with the norm ‖u‖H1 =
(∫
R3 |∇u|

2 + u2dx
)1/2

. Note
that the embedding H1(R3) ↪→ Lp(R3) is continuous for every p ∈ [2, 6]; let sp > 0 be the best Sobolev
constant in the above embedding. H1

r (R3) denotes the radially symmetric functions of H1(R3). The
embedding H1

r (R3) ↪→ Lp(R3) is compact for every p ∈ (2, 6)(see Willem’s book [29]).

We are interested in the existence of weak solutions u ∈ H1
r (R3) for the equation (4), i.e.,∫

R3
(∇u · ∇v + uv)dx+

(∫
R3

(|∇u|2 + u2)dx

)2 ∫
R3

(∇u · ∇v + uv)dx

= λ

∫
R3
α(x)f(u)vdx+ θ

∫
R3
βg(u)vdx, (7)

for all v ∈ H1
r (R3), whenever (f1)—(f3) and (g1) hold, α ∈ L∞(R3) and β ∈ L∞(R3) ∩ L3(R3). First, (f1)

and (f2) imply in particular that one can find a number nf > 0 such that

|f(s)| ≤ nf |s| for all s ∈ R. (8)

More precisely, we define the functional I : H1(R3)→ R by

I(u) =
1

2

∫
R3

(|∇u|2 + u2)dx+
1

4

(∫
R3

(|∇u|2 + u2)dx

)2
−λ
∫
R3
α(x)F (u)dx− θ

∫
R3
β(x)G(u)dx, (9)

where F (t) =
∫ t
0
f(s)ds and G(t) =

∫ t
0
g(s)ds, which is of class C1 on H1

r (R3).
Since

H1
r (R3) = {u ∈ H1(R3) : γu = u for all γ ∈ O(3)},

the principle of symmetric criticality of Palais [27] implies that the critical points u ∈ H1
r (R3) of the functional

I|H1
r (R3) are also critical points of I thus are weak solutions for the equation (4).
We conclude this section by recalling the following Ricceri-type three critical point theorem which plays

a crucial role in the proof of Theorem 1. Before doing that, we recall the following notion: if X is a Banach
space, we denote by WX the class of that functional E : X → R having the property that if {un} is a
sequence in X converging weakly to u ∈ X and lim infn→∞E(un) ≤ E(u) then {un} has a subsequence
converging strongly to u.
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Theorem 3 Let X be a separable and reflexive real Banach space, let E1 : X → R be a coercive, sequentially
weakly lower semicontinuous C1 functional belonging toWX , bounded on each bounded subset of X and whose
derivative admits a continuous inverse on X∗; and E2 : X → R a C1 functional with a compact derivative.
Assume that E1 has a strict local minimum u0 with E1(u0) = E2(u0) = 0. Setting the numbers

τ = max

{
0, lim sup
‖u‖→∞

E2(u)

E1(u)
, lim sup
u→u0

E2(u)

E1(u)

}
(10)

and

ξ = sup
E1(u)>0

E2(u)

E1(u)
. (11)

Assume that τ < ξ. Then, for each compact interval [a, b] ⊂ (1/ξ, 1/τ) (with the conventions 1/0 = ∞
and 1/∞ = 0) there exists κ > 0 with the following property: for every λ ∈ [a, b] and every C1 functional
E3 : X → R with a compact derivative, there exists δ > 0 such that for each θ ∈ [0, δ], the equation

E′1(u)− λE′2(u)− θE′3(u) = 0

admits at least three solutions in X having norm less than κ.

This theorem is a powerful tool for studying the elliptic problems, see e.g. the references [16, 18, 5, 12,
17, 15].

3 Proofs

In this section, we assume that the assumptions of Theorem 1 are fulfilled.
For every λ ≥ 0 and θ ∈ R, let

I(u) = E1(u)− λE2(u)− θE3(u)

where

E1(u) =
1

2
‖u‖2 +

1

4
‖u‖4, E2(u) =

∫
R3
α(x)F (u)dx, E3(u) =

∫
R3
β(x)G(u)dx. (12)

It is clear that Ei are C1 functionals, i ∈ {1, 2, 3}. To complete the proof of Theorem 1, some lemmas need
to be proven.

Lemma 1 The functional E1 is coercive, sequentially weakly lower semicontinuous which belongs toWH1
r (R3),

bounded on each bounded subset of H1
r (R3), and its derivative admits a continuous inverse on H1

r (R3)∗.

Proof. It is clear that E1 is coercive on H1
r (R3). On account of Brezis [4], the functional E1 is sequentially

weakly lower semicontinuous on H1
r (R3). Now, let {un} ⊂ H1

r (R3) which converges weakly to u ∈ H1
r (R3)

and lim infn→∞E1(un) ≤ E1(u). On account of proposition of the norm, we obtain

lim inf
n→∞

‖un‖2H1 ≤ ‖u‖2H1 .

Thus, standard arguments show that un → u strongly in H1
r (R3), i.e., E1 belongs to WH1

r (R3). The propo-
sition of the norm implies that E1 sends bounded sets of H1

r (R3) to bounded sets. It remains to show that
the derivative of E1 has a continuous inverse on H1

r (R3)∗. This was asserted in [28].

Lemma 2 E2 and E3 have compact derivatives.
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Proof. We prove the statement only for E2; the argument for E3 is similar. Let {un} ⊂ X be a bounded
sequence. In particular, for some c > 0, one has that supn ‖un‖2 ≤ c for some c > 0. First, we prove that
the sequence {E′2(un)} ⊂ X∗ is bounded; the latter fact follows from the uniform boundedness principle,
i.e., the sequence {|〈E′2(un), v〉|} is uniformly bounded for every v ∈ X. Indeed, due to (8), for every v ∈ X
one has

|〈E′2(un), v〉| ≤
∫
R3
α(x)|f(un)||v|dx ≤ nf‖α‖∞

∫
R3
|un||v|dx,

≤ nf‖α‖∞‖un‖2‖v‖2 ≤ nf‖α‖∞c‖v‖2 <∞.

Up to a subsequence, {E′2(un)} weakly converges to some h ∈ X∗. Arguing by contradiction, we assume
that there exists δ > 0 such that

‖E′2(un)− h‖X∗ > δ for all n ∈ N. (13)

In particular, for every n ∈ N, there exists {vn} ∈ X such that ‖vn‖ = 1 and

〈E′2(un)− h, vn〉 > δ.

Up to a subsequence, we may assume that {vn} weakly converges to some v ∈ X, and {vn} strongly converges
to v in L3(R3), since the embedding X ↪→ L3(R3) is compact. Therefore, we obtain

〈E′2(un)− h, vn〉 = 〈E′2(un)− h, v〉+ 〈E′2(un), vn − v〉+ 〈h, v − vn〉

≤ 〈E′2(un)− h, v〉+

∫
R3
α(x)|f(un)||vn − v|dx+ 〈h, v − vn〉,

and each term in the above expression tends to be 0. Indeed, the case of the first and last expressions is
immediate, while from (f1) and (f2), it follows in particular that for every ε > 0, there exists cε > 0 such
that

|f(s)| ≤ ε|s|+ cεs
2 for all s ∈ R. (14)

Therefore, ∫
R3
α(x)|f(un)||vn − v|dx ≤ ‖α‖∞(ε‖un‖‖vn − v‖+ cε‖un‖23‖vn − v‖3).

The arbitrariness of ε and the fact that {vn} strongly converges to v in L3(R3) imply that the right-hand
side of the above inequality tends to 0. Combining these facts, we arrive at a contradiction with (13), which
concludes the proof.

Lemma 3 lim sup‖u‖→∞
E2(u)
E1(u)

≤ 0.

Proof. According to (f1) and (f2), for every ε > 0, there exists δε ∈ (0, 1) such that

|f(s)| < ε

2(1 + ‖α‖∞)
|s| for all |s| ≤ δε and |s| ≥ δ−1ε .

Since f ∈ C(R,R), there also exists a number Mε > 0 such that

|f(s)|
|s|q ≤Mε for all |s| ∈ [δε, δ

−1
ε ],

where q ∈ (0, 1) is from the hypothesis for α ∈ L6/(5−q)(R3). Combining the above two relations, we obtain
that

|f(s)| ≤ ε

2(1 + ‖α‖∞)
|s|+Mε|s|q for all s ∈ R.
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Therefore,

E2(u) ≤
∫
R3
α(x)|F (u)|dx

≤
∫
R3
α(x)

[
ε

4(1 + ‖α(x)‖∞)
u2 +

Mε

q + 1
|u|q+1

]
≤ ε

4
‖u‖2 +

Mε

q + 1
‖α‖6/(5−q)sq+16 ‖u‖q+1.

For every u 6= 0, we have that

E2(u)

E1(u)
≤

ε
4‖u‖

2 + Mε

q+1‖α‖6/(5−q)s
q+1
6 ‖u‖q+1

1
2‖u‖2 + 1

4‖u‖4

≤ ε

2
+ 2

Mε

q + 1
‖α‖6/(5−q)sq+16 ‖u‖q−1.

Taking the "lim sup" the above estimation when ‖u‖ → ∞, the arbitrariness of ε > 0 gives the required
inequality.

Lemma 4 lim supu→0
E2(u)
E1(u)

≤ 0.

Proof. A similar argument as in (14) shows that for every ε > 0 there exists cε > 0 such that

|F (s)| ≤ ε

4(1 + ‖α‖∞)
s2 + cε|s|3 for all s ∈ R.

This inequality implies that for every u ∈ X, we have

E2(u) ≤
∫
R3
α(x)|F (u)|dx

≤
∫
R3
α(x)

[
ε

4(1 + ‖α(x)‖∞)
u2 + cε|u|3

]
dx

≤ ε

4
‖u‖2 + cεs

3
3‖α‖∞‖u‖3.

Thus, for every u 6= 0.

E2(u)

E1(u)
≤

ε
4‖u‖

2 + cεs
3
3‖α‖∞‖u‖3

1
2‖u‖2 + 1

4‖u‖4
≤ ε

2
+ 2cεs

3
3‖α‖∞‖u‖,

and the argument is similar to the previous lemma.
For any 0 ≤ r1 ≤ r2, let A[r1, r2] = {x ∈ R3 : r1 ≤ |x| ≤ r2} be the closed annulus (perhaps degenerate)

with radials r1 and r2.
By assumption, since α ∈ L∞(R3) is a radially symmetric function with α ≥ 0 and α 6≡ 0, there are real

numbers R > r ≥ 0 and α0 > 0 such that

essinfx∈A[r,R]α(x) ≥ α0. (15)

Let s0 ∈ R from (f3). For a fixed element σ ∈ (0, 1), define the function uσ ∈ X such that

(a) suppuσ ⊆ A[(r − (1− σ)(R− r)+, R)];

(b) uσ = s0 for every x ∈ A[r, r + σ(R− r)];

(c) ‖uσ‖∞ ≤ |s0|.
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where we use the notation t+ = max(0, t) for t ∈ R. A simple calculation shows that

E1(uσ) ≥ 1

2
‖uσ‖2 ≥

2πs20
3

[(r + σ(R− r))3 − r3], (16)

and

E2(uσ) ≥4π

3
[α0F (s0)(r + σ(R− r))3 − r3 − ‖α‖∞ max

|t|≤|s0|
|F (t)| (17)

×
(
r3 − (r − (1− σ)(R− r))3+ +R3 − (r + σ(R− r))3

)
]

We observe that for σ close enough to 1, the right-hand sides of both inequalities become strictly positive;
therefore, we can define the number

λ∗ = inf
E2(u)>0

E1(u)

E2(u)
. (18)

Proof of Theorem 1. We apply Theorem 3, by choosing X = H1
r (R3), as well as E1, E2 and E3 from (12).

On account of Lemmas 1 and 2, the functionals E1 and E2 fulfill the hypotheses of Theorem 3. Moreover,
E1 has a strict global minimum u0 = 0, and E1(0) = E2(0) = 0. The definition of the number τ in Theorem
3, see (10), and Lemmas 3 and 4 give that τ = 0. Therefore, we may apply Theorem 3: for every compact
interval [a, b] ⊂ (λ∗,∞) there exists κ > 0 such that for each λ ∈ [a, b] there exists δ > 0 with the property
that for every θ ∈ [0, δ], the equation I(u) = E′1(u) − λE′2(u) − θE′3(u) = 0 admits at least three solutions
ui ∈ X, i ∈ {1, 2, 3}, having X-norms less than κ. Note that we may repeat the above argument with −E3
instead of the function E3, by obtaining an interval of the form [−δ, δ] for the parameter θ.
On account of (f2) and (g1), one has f(0) = g(0) = 0, thus 0 is a solution to (4); consequently, there exist

at least two nontrivial solutions ui ∈ X to problem (4), ( i ∈ {1, 2}) with the required properties, which
concludes the proof.

Remark 4 Since the expression of λ∗ is involved (see (18)), we give in the sequel an upper estimate of it
which can be easily calculated. This fact can be done in terms of α0, s0, σ0, R and r, see (15), where σ0 ∈
(0, 1) is such a number for which the right hand side of (17) becomes positive, i.e., M(α0, s0, σ0, R, r) > 0.
In order to avoid technicalities, we assume that r = 0 which slightly restricts our arguments, imposing that
α does not vanish near the origin; see (15). The truncation function uσ0 ∈ H1

r (R3) defined by

uσ0 =


0 if |x| > R,

s0 if |x| < σ0R,
s0

R(1−σ0) (R− |x|) if σ0R ≤ |x| ≤ R,

verifies the properties (a)—(c) from above. Moreover, we have

E1(uσ0) ≤
2π

3
Rs20

[
R2 +

1 + σ0 + σ20
1− σ0

]
+

4bπ2

9
R2s40

[
R2 +

1 + σ0 + σ20
1− σ0

]2
.

Combining the above estimation with relation (17), we obtain

λ∗ ≤ N

M
= λ0.

Now, the conclusions of Theorem 1 are valid for every λ ≥ λ0.
The proof of Theorem 2 is based on a direct calculation.

Proof of Theorem 2. Assume that u ∈ H1(R3) is a solution of (3). Multiplying (3) by the test function
u ∈ H1(R3), we obtain

‖u‖2 + ‖u‖4 = λ

∫
RN

α(x)f(u)udx

≤ λ
∫
RN
|α(x)||f(u)||u|dx

≤ λ‖α‖L∞cf‖u‖2.
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Now, fix 0 ≤ λ < c−1f ‖α‖L∞ arbitrarily and note that b > 0, the above estimate implies u = 0, which
concludes the proof.

4 Final Remarks

The reader can observe that we considered only symmetric-based compactness arguments together with
the principle of symmetric criticality result. The compactness result can be replaced by a Bartsch-type
(coercivity-based) compactness (see reference [30, 25, 9, 32, 6, 22, 14, 19, 10, 23, 31] for a closely related
approach). In this situation, the proof of the result is almost the same as Theorem 1, so we omit the details.

Acknowledgment. The authors would like to thank the referee for valuable suggestions.
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