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Abstract

In this paper, we study the existence and uniqueness of solutions to a class of fractional boundary
value problems involving the Caputo fractional derivative. Our methodology relies on reducing the
given problem to an equivalent fixed-point problem. Then, by using the topological degree theory for
condensing maps via an a priori method, some important results are obtained. An example is also
provided to illustrate the practicality of our main results.

1 Introduction

This paper is concerned with the existence and uniqueness of solution to the following fractional boundary
value problems (FBVP for short)

cDr
0+x(t) = g(t, x(t)), t ∈ I := [0, T ], (1)

ax(0)− bx(T ) = Ψ (x) , (2)
cDr−1x(T ) = φ(x), (3)

where a, b ∈ R (a 6= b), r ∈ (1, 2), cDr is the Caputo derivative, g : I × R → R, φ : C(I) → R and
Ψ : C(I)→ R are given continuous maps.
Fractional calculus is a branch of mathematics that investigates the properties of integrals and derivatives

of non-integer order. The potential of this concept has attracted the interest of many authors. Also in this
field, there are different approaches to defining the fractional derivative and the fractional integral, including
the approach proposed by Riemann-Liouville, Caputo, ....
In several cases, boundary value problems associated with fractional differential equations have been

created to effectively model many phenomena in a variety of applications: astrophysics, acoustic control,
chaotic dynamics, chemical engineering, electro-chemistry, economics, optics, medicine, porous media, poly-
mer physics... see [1], [13], [14], [15] and [16]. Recently, the existence and uniqueness of solutions to some
classes of fractional boundary value problems were dealt with by several methodologies, including, but not
limited to, the fixed point theorems of Schaeffer, Schauder and Banach. For instance, the reader can refer
to [2], [3], [4], [5], [6], [7] and the references therein.
The topological degree theory has emerged as the most important tool in investigating many problems

encountered in nonlinear analysis. For example, Isaia applied this theory to establish the necessary conditions
for the existence of solutions to some nonlinear integral equations see [11] and [18]. A very rich existence
theory for fractional differential equations subject to various boundary conditions has been developed for
some boundary value problems over the past few years. For instance, the authors of the paper [17] considered
the following FBVP: {

cDqu (t) = f (t, u (t)) , t ∈ J = [0, T ] ,
au (0) + bu (T ) = c,
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where f : J × R → R is a continuous function, and a, b, c are real constants with a + b 6= 0. Under some
conditions upon f , they prove an existence and uniqueness result by using the degree theory and Banach
contraction principle. In [18] Wang et al. apply the topological degree theory to the following non-local
Cauchy problems of the form {

cDqu (t) = f (t, u (t)) , t ∈ J = [0, T ] ,
u (0) + g (u) = u0,

where cDq is the Caputo fractional derivative of order q ∈ (0, 1), the function f : J × R→ R is continuous
and u0 ∈ R.
R. A. Khan and K. Shah [12] provided suffi cient conditions for the existence and uniqueness of solutions

to some nonlinear multi-point boundary value problems with nonlinear boundary conditions of the form{
−cDqu (t) = f (t, u (t)) , t ∈ J = [0, T ] ,

u (0) = g (u) , u (1)−
∑m−2
i=1 λiu (ηi) ,

where 1 < q ≤ 2, λi, ηi ∈ (0, 1) with
∑m−2
i=1 λiηi < 1, g, h : C(J,R)→ R and f : J×R×R→ R is continuous.

In [10] Taghareed et al. studied the existence of solutions for the following fractional boundary value
problem {

cDqu (t) = F (t, u (t)) ,
u (0) = η (u) , u (T ) = u0,

where t ∈ J := [0, T ], q ∈ (0, 1), cDq is the Caputo derivative, F : J × X → X and η : C (J,X) → X
are given continuous maps (X is a Banach space). Also, the study is based on the application of the
topological degree approach and fixed point theory. Mainly motivated by these and other works, we will use
the coincidence degree theory approach for condensing maps (neither Brouwer degree nor Leray-Schauder
degree) to provide suffi cient conditions for the existence and uniqueness of solutions to the FBVP (1), (2)
and (3). To the best of our knowledge, the boundary conditions (2) and (3) are more general than their
counterparts in all problems of this type, and choosing an example in which all conditions are met requires
great precision. The rest of this paper is organized as follows: In Section 2, we will state some definitions and
lemmas about fractional calculus and the measure of non-compactness. Section three is devoted to recalling
the concept of topological degree for condensing perturbations of the identity. In Section 4; we establish
suffi cient conditions for the existence and uniqueness of solutions for our problem, and we give an example
to illustrate the obtained result.

2 Preliminaries

For the convenience of the reader, we start with some basic notions from fractional calculus, which are used
further in this paper (see [8], [9] and [13]). We denote by C([0, T ]) the Banach space of all continuous
functions on [0;T ] with the sup-norm ‖x‖∞ = supt∈[0;T ] |x (t)| and by L1 ([0, T ]) the Banach space of all
measurable functions that are Lebesgue integrable on [0, T ] equipped by the norm

‖x‖1 =

T∫
0

|x (s)| ds.

Definition 1 ([13]) For a given function F in the closed interval [a, b], the r-th fractional order integral of
F is defined by

Ira+F (t) =
1

Γ(r)

∫ t

a

(t− s)r−1F (s)ds,

where Γ is the gamma function.
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Definition 2 ([13]) For a given function F in the closed interval [a, b], the Caputo fractional order deriv-
ative of F is defined by (

cDr
a+F

)
(t) =

1

Γ(n− r)

∫ t

a

(t− s)n−r−1F (n)(s)ds,

where n = [r] + 1.

Lemma 1 ([17]) Let n− 1 < r ≤ n. Then
cDr

a+

(
Ira+h

)
(t) = h (t) ,

Ira+ (cDr
a+h) (t) = h(t) + c0 + c1t+ c2t

2 + · · ·+ cn−1t
n−1,

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1, n = [r] + 1.

In what follows, suppose that X is a Banach space equipped with the norm ‖.‖, B is the set of all bounded
subset of X.

Definition 3 ([9]) The function α : B → R+ defined by

α(M) = inf{d > 0 : M admits a finite cover by sets of diameter ≤ d},

is the Kuratowski measure of non-compactness.

Proposition 1 ([9]) The following assertions hold:

1). α(M) = 0 if and only if M is relatively compact.

2). α is a seminorm i.e., α(λM) = |λ|α(M), λ ∈ R and α (M1 +M2) ≤ α (M1) + α (M2).

3). M1 ⊂M2 implies that α (M1) ≤ α (M2) ;α (M1 +M2) = max {α (M1) , α (M2)}.

4). α(conv (M)) = α(M).

5). α(M) = α(M).

Where conv (M) is the convex hull of M and M designates the closure of M.

In what follows α is the Kuratowski measure of non-compactness.

Definition 4 (see [9], [11]) Let Ω ⊂ X and F : Ω→ X be a continuous bounded map. One say that F is
α-Lipschitz if there exists k ≥ 0 such that α(F (M)) ≤ kα(M) for all M ⊂ Ω bounded. In the case k < 1, we
call F a strict α-contraction. One say that F is α-condensing if α(F (M)) < α(M) for all M ⊂ Ω bounded
with α(M) > 0. Also F : Ω→ X is Lipschitz if there exists k > 0 such that

‖Fx− Fy‖ ≤ k‖x− y‖ for all x, y ∈ Ω,

and if k < 1, F is a strict contraction. We denote by Cα(Ω̄) the set of all α-condensing maps on Ω, and
by SCα(Ω) the class of all strict α-contractions. Note that SCα(Ω) ⊂ Cα(Ω) and every F ∈ Cα(Ω) is
α-Lipschitz with constant k = 1.

Now, recall the following propositions (the reader can be referred to [8], [9]).

Proposition 2 If F,G : Ω→ X are α-Lipschitz maps with constants k, k′ respectively, then F +G : Ω→ X
is α-Lipschitz with constant k + k′.

Proposition 3 If F : Ω→ X is compact, then F is α-Lipschitz with zero constant.

Proposition 4 If F : Ω→ X is Lipschitz with constant k, then F is α-Lipschitz with the same constant k.
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3 Topological Degree for Condensing Perturbation of the Identity

Firstly, we give an axiomatic definition of a function degree. If Ω is a bounded open subset of X, H ∈ Cα
(
Ω
)

and x ∈ X� (I −H) (∂Ω) , the triplet (I −H,Ω, x) is called admissible. Let A be a family of admissible
triplets.

Theorem 1 [17] There exists a one-degree function D : A→ Z which satisfies the following properties:

(D1) Normalization: D(I,Ω, y) = 1 for every y ∈ Ω.

(D2) Additivity on the domain: for every disjoint open sets Ω1,Ω2 ⊂ Ω and every y /∈ (I−H)
(
Ω̄\ (Ω1 ∪ Ω2)

)
we have

D(I −H,Ω, y) = D (I −H,Ω1, y) +D (I −H,Ω2, y) .

(D3) Invariance under homotopy: D(I − P (t, ·),Ω, y(t)) is independent of t ∈ [0, 1] for every continuous,
bounded map P : [0, 1]× Ω̄→ X which satisfies

α(P ([0, 1]×M)) < α(M), ∀M ⊂ Ω̄ with α(M) > 0

and every continuous function y : [0, 1]→ X which satisfies

y(t) 6= x− P (t, x), ∀t ∈ [0, 1], ∀x ∈ ∂Ω.

(D4) Existence: D(I −H,Ω, y) 6= 0 implies that y ∈ (I −H)(Ω).

(D5) Excision: D(I −H,Ω, y) = D (I −H,Ω1, y) for every open set Ω1 ⊂ Ω and every y does not belong to
(I −H)

(
Ω̄\Ω1

)
.

Use this degree to determine the usefulness of the a priori estimation method. In the sequel, we recall
the fixed point theorem used to prove the most important existence result. See Isaia [11] for more details.

Theorem 2 Let H : X → X be α-condensing operator and

S = {x ∈ X : ∃θ ∈ [0, 1] such that x = θH(x)}.

If S is a bounded subset in X, so there exists κ > 0 such that S ⊂ Bκ(0), then

D (I − θH,Bκ(0), 0) = 1 ∀θ ∈ [0, 1].

Consequently, H has at least one fixed point, and the set of the fixed points of H lies in Bκ(0).

4 Existence and Uniqueness Result

In order to discuss the existence and uniqueness of solutions to the FBVP (1), (2), (3), we require the
following assumptions:

[H1] There exist two constants λ, λ′ > 0 such that

|φ(x)− φ(v)| ≤ λ‖x− v‖∞ and |Ψ(x)−Ψ(v)| ≤ λ′‖x− v‖∞ for all x, v ∈ C(I).

[H2] There exist two functions β′, β ∈ L1 ([0;T ] ,R+) and a constant r1 ∈ [0, 1) such that

|g(t, x)| ≤ β′ (t) |x|r1 + β (t) for any (t, x) ∈ I × R.
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[H3] There exist six real constants γ, δ, γ′, δ′ > 0, r2, r3 ∈ [0, 1) such that

|φ(x)| ≤ γ‖x‖r2∞ + δ and |Ψ(x)| ≤ γ′‖x‖r3∞ + δ′ for each x ∈ C(I).

[H4] There exists a constant λ′′ > 0 such that

|g (t, x)− g (t, v)| ≤ λ′′ |x− v| for all x, v ∈ R and t ∈ I,

Lemma 2 Let 1 < r < 2. The fractional integral equation (FIE for short)

x(t) =
1

a− b

∫ T

0

G(t, s)g(s, x(s))ds+
1

a− bΨ (x) + (
b

a− bT
r−1 + tT r−2)Γ(3− r)φ(x), (4)

where

G(t, s) =


a−b
Γ(r) (t− s)r−1 + b

Γ(r) (T − s)r−1−
((a− b) t+ bT )T r−2Γ(3− r),

0 ≤ s ≤ t ≤ T,

b
Γ(r) (T − s)r−1 − ((a− b) t+ bT )T r−2Γ(3− r), 0 ≤ t ≤ s ≤ T,

has a solution x ∈ C(I) if and only if x is a solution of the FBVP (1), (2), (3).

Proof. Suppose that x is a solution of FBVP (1), (2), (3), then we need to prove that x is also a solution
of FIE (4). By the Lemma ( 1), we have

x(t) = Ir0+g(t, x(t)) + c0 + c1t. (5)

And by introducing the Caputo derivative of order r− 1 on both sides of equation (5) and taking t = T , we
get

cDr−1
0+ x(t) =c Dr−1

0+ ( Ir0+g(t, x(t)) +c Dr−1
0+ (c0) +c Dr−1

0+ (c1t)

= I1
0+g(t, x(t)) +

c1
Γ(3− r) t

2−r,

therefore
cDr−1

0+ x(T ) =

∫ T

0

g(s, x(s))ds+
c1

Γ(3− r)T
2−r = φ(x).

So

c1 = T r−2Γ(3− r)
[
φ(x)−

∫ T

0

g(s, x(s))ds

]
.

Then from (2) and (5), we get

ac0 − b(
1

Γ(r)

∫ T

0

(T − s)r−1g(s, x(s))ds+ c0 + c1T )

= (a− b)c0 − bc1T −
b

Γ(r)

∫ T

0

(T − s)r−1g(s, x(s))ds = Ψ (x) .

Substituting c1 by its value, we get

c0 =
1

a− b

 Ψ (x) + b 1
Γ(r)

∫ T
0

(T − s)r−1g(s, x(s))ds+

bT r−1Γ(3− r)
[
φ(x)−

∫ T
0
g(s, x(s))ds

]  .
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Consequently

x(t) =
1

Γ(r)

∫ t

0

(t− s)r−1g(s, x(s))ds

+
1

a− b

(
Ψ (x) +

b

Γ(r)

∫ T

0

(T − s)r−1g(s, x(s))ds

)

+

(
bT

a− b + t

)
T r−2Γ(3− r)

(
φ(x)−

∫ T

0

g(s, x(s))ds

)
.

By simple calculations, we get

x(t) =
1

Γ(r)

∫ t

0

(t− s)r−1g(s, x(s))ds+
b

(a− b)Γ(r)

∫ T

0

(T − s)r−1g(s, x(s))ds

−(
bT

a− b + t)T r−2Γ(3− r)
∫ T

0

g(s, x(s))ds

+
1

a− bΨ (x) + (
bT

a− b + t)T r−2Γ(3− r)φ(x). (6)

Finally, we deduce that

x(t) =
1

a− b

∫ T

0

G(t, s)g(s, x(s))ds+
1

a− bΨ (x) + (
bT

a− b + t)T r−2Γ(3− r)φ(x),

where

G(t, s) =


a−b
Γ(r) (t− s)r−1 + b

Γ(r) (T − s)r−1−
((a− b) t+ bT )T r−2Γ(3− r),

0 ≤ s ≤ t ≤ T,

b
Γ(r) (T − s)r−1 − ((a− b) t+ bT )T r−2Γ(3− r), 0 ≤ t ≤ s ≤ T.

Now, suppose that x is a solution of FIE (4). By applying cDr
0+ on both sides of equation (6) with taking

into account the definitions (1), (2) and the properties of Caputo derivatives we get

cDr
0+x(t) = g(t, x(t))

because
cDr

0+

[
1

Γ(r)

∫ t

0

(t− s)r−1g(s, x(s))ds

]
=c Dr

0+ (Ir0+g(t, x(t))) = g(t, x(t))

and
cDr

0+(c2 + c3t) =c Dr
0+(C) = 0,

where c2, c3 and C are arbitrary constants. On the other hand, we have

x(0) =
b

(a− b)Γ(r)

∫ T

0

(T − s)r−1g(s, x(s))ds− bT r−1

a− b Γ(3− r)
∫ T

0

g(s, x(s))ds

+
1

a− bΨ (x) +
bT r−1

a− b Γ(3− r)φ(x)

and

x(T ) =
a

a− b

∫ T

0

(T − s)r−1g(s, x(s))ds− a

a− bT
r−1Γ(3− r)

∫ T

0

g(s, x(s))ds

+
1

a− bΨ (x) +
a

a− bT
r−1Γ(3− r)φ(x).
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Then

ax(0)− bx(T ) =
a− b
a− bΨ (x) = Ψ (x)

and

cDr−1
0+ x (t) =

∫ t

0

g(s, x(s))ds− t2−r

Γ(3− r)T
r−2Γ(3− r)

∫ T

0

g(s, x(s))ds+
t2−r

Γ(3− r)T
r−2Γ(3− r)φ(x).

Hence,

cDr−1
0+ x (T ) =

∫ T

0

g(s, x(s))ds−
∫ T

0

g(s, x(s))ds+ φ(x) = φ(x),

which completes the proof.

From expression (4), we can define the following operators:

F1 : C(I)→C(I)

(F1x)(t) =
1

a− b

∫ T

0

G(t, s)g(s, x(s))ds, t ∈ I,

F2 : C(I)→ C(I)

(F2x)(t) =
1

a− bΨ (x) + (
b

a− bT
r−1 + tT r−2)Γ(3− r)φ(x), t ∈ I,

P : C(I)→ C(I), Px = F1x+ F2x.

By definition of operators φ,Ψ and the continuity of g, the operator P is well defined and the fractional
integral equation (FIE for short ) (4) can be written as the following operator equation:

x = Px = F1x+ F2x. (7)

Therefore, each solution of the fractional FBVP (1), (2), (3) is a fixed point of the operator P.

Remark 1 For all (t, s) ∈ I × I;

|G (t, s)| ≤ (|a− b|+ |b|)
(

1

Γ (r)
+ Γ (3− r)

)
T r−1 := R1. (8)

Lemma 3 Under the assumption [H2], the operator F1 is completely continuous and satisfies the following
growth condition

‖F1x‖∞ ≤
R1

|a− b|
∥∥β′∥∥

1
‖x‖r1∞ +

R1

|a− b| ‖β‖1 . (9)

Proof. Let {xn} be a sequence of the bounded set B (κ) = {u ∈ C (I) ; ‖u‖∞ ≤ κ} such that ||xn−x||∞ → 0
as n→∞. we have to show that ||F1xn − F1x||∞ → 0 as n→∞. Due to the continuity of g, it is obvious
that ||g(s, xn(s)) − g(s, x(s))|| → 0 as n → ∞ . Using the triangular inequality and condition [H2], we get
for each t ∈ I,

|g(t, xn(t))− g(t, x(t))| ≤ |g(t, xn(t)|) + |g(t, x(t))|
≤ β′ (t) [|xn (t)|r1 + |x (t)|r1 ] + 2β (t)

≤ 2
(
κr1β′ (t) + β (t)

)
.

Then
|G (t, s)| |g(s, xn(s))− g(s, x(s))| ≤ 2R1

(
κr1β′ (s) + β (s)

)
.



290 Existence and Uniqueness Result of Solutions of a Fractional Differential BVP

As t→ 2R1

(
κr1β′ (t) + β (t)

)
is Lebesgue integrable function on [0, T ] . by means of the Lebesgue-dominated

convergence theorem ∫ T

0

|G (t, s)| |g(s, xn(s))− g(s, x(s))| ds tends to 0 as n→∞,

then,

||F1xn − F1x||∞ ≤
1

|a− b|

∫ T

0

|G (t, s)| |g(s, xn(s))− g(s, x(s))| tends to 0 as n→∞.

Which means that F1 is continuous.
Let B be a bounded subset of C (I) , i.e., there exists κ > 0 such that B ⊆ Bκ (0). As function g is

continuous function, then there exists M > 0 such that for all (t, x) ∈ [0, T ]×B

|g(s, x(s))| ≤M,

because in this case (s, x(s)) ∈ [0, T ]× [−κ, κ] . Therefore, for every x ∈ B and 0 ≤ t ≤ T , we have

|(F1x) (t)| =

∣∣∣∣∣ 1

a− b

∫ T

0

G(t, s)g(s, x(s))ds

∣∣∣∣∣
≤ R1

|a− b|

∫ T

0

|g(s, x(s))| ds

≤ R1

|a− b|

∫ T

0

Mds =
R1MT

|a− b| .

Consequently, F1(B) is uniformly bounded in C (I). For 0 ≤ t1 ≤ t2 ≤ T , we have

|(F1x)(t2)− (F1x)(t1)| =
∣∣∣∣∣ 1

Γ(r)

(∫ t2
0

(t2 − s)r−1g(s, x(s))ds−
∫ t1

0
(t1 − s)r−1g(s, x(s))ds

)
−T r−2Γ(3− r) (t2 − t1)

∫ T
0
g(s, x(s))ds

∣∣∣∣∣
=

∣∣∣∣∣ 1
Γ(r)

∫ t1
0

(
(t2 − s)r−1 − (t1 − s)r−1

)
g(s, x(s))ds+

1
Γ(r)

∫ t2
t1

(t2 − s)r−1g(s, x(s))ds− T r−2Γ(3− r) (t2 − t1)
∫ T

0
g(s, x(s))ds

∣∣∣∣∣
≤ M

Γ(r)

[ ∫ t1
0

(
(t2 − s)r−1 − (t1 − s)r−1

)
ds+

∫ t2
t1

(t2 − s)r−1ds

+T r−1Γ(r)Γ(3− r) (t2 − t1)

]
=

M

Γ(r + 1)
[(tr2 − tr1)] + T r−1MΓ(3− r) (t2 − t1)→ 0 uniformly as t1 → t2.

Therefore, F1(B) is equicontinuous. Hence, as a result of Arzela Ascoli theorem, the operator F1 is
completely continuous.
On the other hand, in view of the remark (1) and the condition [H1], we have for each x ∈ C (I) and all

t ∈ I

|F1x (t)| =

∣∣∣∣∣ 1

a− b

∫ T

0

G(t, s)g(s, x(s))ds

∣∣∣∣∣
≤ 1

|a− b|

∫ T

0

|G(t, s)| |g(s, x(s))| ds

≤ R1

|a− b|

∫ T

0

(
β′ (t) |x (s)|r1 + β (t)

)
ds

≤ R1

|a− b|
(∥∥β′∥∥

1
‖x‖r1∞ + ‖β‖1

)
=

R1

|a− b|
∥∥β′∥∥

1
‖x‖r1∞ +

R1

|a− b| ‖β‖1 .
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Then,

‖F1x‖∞ ≤
R1

|a− b|
∥∥β′∥∥

1
‖x‖r1∞ +

R1

|a− b| ‖β‖1 ,

which completes the proof.

Lemma 4 Under the assumption [H1] and [H3] , the operator F2 satisfies the Lipschitz condition with
constant

l =
λ′

|a− b| +

(
|b|
|a− b| + 1

)
T r−1Γ(3− r)λ,

consequently F2 is α-lipschitz with the same constant and fulfills the following growth condition:

‖F2x‖∞ ≤ γ′

|a− b| ‖x‖
r3
∞ +

(
|b|
|a− b| + 1

)
T r−1Γ(3− r)γ‖x‖r2∞ (10)

+

(
|b|
|a− b| + 1

)
T r−1Γ(3− r)δ +

δ′

|a− b| .

Proof. By the triangular inequality and the assumption [H1], we have for all u, v ∈ C(I),

|F2u (t)− F2v (t)| =

∣∣∣∣ 1

a− b (Ψ (u)−Ψ (v)) + (
b

a− bT
r−1 + tT r−2)Γ(3− r) (φ(u)− φ(v))

∣∣∣∣
≤ 1

|a− b| |Ψ (u)−Ψ (v)|+
(
|b|
|a− b| + 1

)
T r−1Γ(3− r) |φ(u)− φ(v)|

≤ λ′

|a− b| ‖u− v‖∞ +

(
|b|
|a− b| + 1

)
T r−1Γ(3− r)λ ‖u− v‖∞

=

[
λ′

|a− b| +

(
|b|
|a− b| + 1

)
T r−1Γ(3− r)λ

]
‖u− v‖∞ .

In view of proposition (4), we conclude that F2 is α-lipschitz with constant l.
Further, using condition [H3] , we get for all x ∈ C(I), t ∈ I,

|F2x (t)| =

∣∣∣∣ 1

a− bΨ (x) + (
b

a− bT
r−1 + tT r−2)Γ(3− r)φ(x)

∣∣∣∣
≤ 1

|a− b| |Ψ (x)|+
∣∣∣∣( b

a− bT
r−1 + tT r−2)Γ(3− r)

∣∣∣∣ |φ(x)|

≤ 1

|a− b|
(
γ′‖x‖r3∞ + δ′

)
+

∣∣∣∣( b

a− bT
r−1 + tT r−2)Γ(3− r)

∣∣∣∣ (γ‖x‖r2∞ + δ) .

Then

‖F2x‖∞ ≤ γ′

|a− b| ‖x‖
r3
∞ +

(
|b|
|a− b| + 1

)
T r−1Γ(3− r)γ‖x‖r2∞

+

(
|b|
|a− b| + 1

)
T r−1Γ(3− r)δ +

δ′

|a− b| ,

which completes the proof.

Theorem 3 If the conditions [H1]—[H3] hold, the fractional integral equation (4) and then the FBVP (1),
(2), (3) admits at least one solution in C (I) provided that

l =
λ′

|a− b| +

(
|b|
|a− b| + 1

)
T r−1Γ(3− r)λ < 1.

Moreover, in this case, the set of solutions of this problem is bounded.
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Proof. In view of propositions (2), (3) the operator F1 is α-Lipschitz with constant 0 and F2 is α-Lipschitz
with constant

l =
λ′

|a− b| +

(
|b|
|a− b| + 1

)
T r−1Γ(3− r)λ.

Then P = F1+F2 is α-Lipschitz with constant 0+l = l < 1. Therefore, the operator P is a strict α-contraction
i.e P is α-condensing operator.
Now, by using the theorem (2), we will prove that S = {x ∈ C (I) ;∃θ ∈ [0, 1] such that x = θP (x)} is a

bounded set in C (I) .

Consider x ∈ S ( arbitrary), in view of results (9) and (10), we get

‖x‖∞ = ‖θP (x)‖∞ = θ ‖Px‖∞ = θ ‖F1x+ F2x‖∞
≤ ‖F1x‖∞ + ‖F2x‖∞

≤ R1

|a− b|
∥∥β′∥∥

1
‖x‖r1∞ +

γ′

|a− b| ‖x‖
r3
∞ +

(
|b|
|a− b| + 1

)
T r−1Γ(3− r)γ‖x‖r2∞

+
R1

|a− b| ‖β‖1 +

(
|b|
|a− b| + 1

)
T r−1Γ(3− r)δ +

δ′

|a− b| .

Then,
‖x‖∞ ≤ A1 ‖x‖r1∞ +A2‖x‖r2∞ +A3 ‖x‖r3∞ +A, (11)

where

A1 :=
R1

|a− b|
∥∥β′∥∥

1
,

A2 :=

(
|b|
|a− b| + 1

)
T r−1Γ(3− r)γ,

A3 :=
γ′

|a− b| ,

A :=
R1

|a− b| ‖β‖1 +

(
|b|
|a− b| + 1

)
T r−1Γ(3− r)δ +

δ′

|a− b| .

The inequality (11), together with 0 < ri < 1 and Ai > 0 for i = 1, 2, 3 implies that there is a constant
C > 0 such that ‖x‖∞ ≤ C i.e. S is bounded in C (I) . If it is not the case, assume by contradiction that
‖x‖∞ → +∞ and dividing both sides of inequality ( 11) by ‖x‖∞, we find

1 ≤ A1

‖x‖1−r1∞
+

A2

‖x‖1−r2∞
+

A3

‖x‖1−r3∞
+

A

‖x‖∞
→ 0.

Thus, the operator P has at least a solution in C (I), and the set of fixed points of P is bounded.

Remark 2 In the conditions [H2], [H3], if there exists i ∈ {1, 2, 3} such that ri = 1, the above result remains
true provided that Ai < 1. As example (partcular case), for Ψ (x) =

∫ T
0
x (s) ds with 0 < T < 1, we have

|Ψ (x)−Ψ (v)| ≤ T ‖x− v‖∞ and |Ψ (x)| ≤ T ‖x‖1∞ + δ′ for all x, v ∈ C (I) and arbitrary δ′ > 0.

Theorem 4 In addition of condtions of theorem (3), if the conditions [H4] hold, the BVP (1), (2), (3)
admits a unique solution in C (I) provided that

λ′′R1T

|a− b| + l < 1.
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Proof. For u, v ∈ C (I) , by [H1] we have |(F2u) (t)− (F2v) (t)| ≤ l ‖u− v‖∞ and by [H4] ,

|(F1u) (t)− (F1v) (t)| =
1

a− b

∫ T

0

G(t, s) (g(s, u(s))− g(s, v(s))) ds

≤ λ′′ ‖x− v‖∞
|a− b|

∫ T

0

|G(t, s)| ds ≤ λ′′R1T

|a− b| ‖x− v‖∞ .

Consequently,

|(Pu) (t)− (Pv) (t)| ≤ |(F1u) (t)− (F1v) (t)|+ (F2u) (t)− (F2v) (t)

≤
[
λ′′R1T

|a− b| + l

]
‖x− v‖∞ .

As λ′′R1T
|a−b| + l < 1, the operator P : C (I)→ C (I) is a contraction, then by Banach contraction principle it

admits a unique fixed point in C (I) .

5 Example

Consider the boundary value problem
cD

3
2

0+x(t) = 1
90

(
2 + t+ 3

(
t2 + 1

)
sin2 x (t)

)
,

2x(0)− x(π2 ) = 1
π2

∫ π
4

0
x (s) ds,

cD
1
2

0+x(π2 ) = 1
8 cos2 x (0) .

(12)

In this example, r = 3
2 , T = π

4 , a = 2, b = 1, g (t, x) = 1
90

(
2 + t+ 3

(
t2 + 1

)
sin2 x

)
, φ (x) = 1

8 cos2 x (0) ,

Ψ (x) = 1
π2

∫ π
4

0
x (s) ds. Then

R1 = 2

(
1

Γ
(

3
2

) + Γ

(
3

2

))√
π

4
= 2 +

π

2
' 3.57.

Also, we have for all x, v ∈ C
([

0, π4
])

;

|φ (x)− φ (v)| =
1

8

∣∣cos2 (x (0))− cos2 (v (0))
∣∣

=
1

8
|cos (x (0)) + cos (v (0))| |cos (x (0))− cos (v (0))|

≤ 2

8
.

∣∣∣∣2 sin

(
x (0) + v (0)

2

)∣∣∣∣ ∣∣∣∣sin x (0)− v (0)

2

∣∣∣∣
≤ 2

8
.2.1

∣∣∣∣x (0)− v (0)

2

∣∣∣∣
≤ 1

4
|x (0)− v (0)| ≤ 1

4
‖x− v‖∞ ,

and

|φ (x)| =
1

8

∣∣1− sin2 x (0)
∣∣ ≤ 1 + sin2 x (0)

8
≤ 1 +

√
|sinx (0)|
8

≤
√
|x (0)|+ 1

8
≤ 1

8
‖x‖

1
2
∞ +

1

8
.
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For each t ∈
[
0, π4

]
and all x, v ∈ R, we have

|g (t, x)− g (t, v)| =

∣∣∣∣ 1

30

(
t2 + 1

)∣∣∣∣ ∣∣sin2 x− sin2 v
∣∣

=

∣∣∣∣ 1

30

(
t2 + 1

)∣∣∣∣ |sinx+ sin v| |sinx− sin v|

≤
(
t2 + 1

)
15

∣∣∣∣2 cos

(
x+ v

2

)∣∣∣∣ ∣∣∣∣sin(x− v2

)∣∣∣∣
≤ 2

15
|x− v| .

It′s easy to see that

|Ψ (x)−Ψ (v)| ≤ 1

4π
‖x− v‖∞ , |Ψ (x)| ≤ 1

4π
‖x‖∞

with
1

4π
' 7.957 7× 10−2 < 1 and g (t, x) ≤

(
t2 + 1

)
30

|x|
1
2 +

2 + t

90
.

Then , we conclude that λ = 1
4 , λ

′ = 1
4π , γ = 1

8 = δ, r2 = 1
2 , γ

′ = 1
4π , δ

′(arbitrary) r3 = 1, β′ (t) =
(t2+1)

30 ,
β (t) = 2+t

90 , r1 = 1
2 , λ

′′ = 2
15 ,

l =
λ′

|a− b| +

(
|b|
|a− b| + 1

)
T r−1Γ(3− r)λ =

1

4π
+ 2

√
π

4
Γ(

3

2
)
1

4
' 0.392 70 < 1,

λ′′R1T

|a− b| + l ' 0.373 85 + 0.392 70 = 0.766 55 < 1.

Consequently, all conditions of theorem (4) hold, which prove that the problem (12) has a unique solution
in C

([
0, π4

])
.

6 Conclusion

Throughout this paper, suffi cient conditions for the existence and uniqueness of solutions to FBVP (1), (2),
(3) have been determined, at first by transforming it into a fixed-point problem involving two operators, one
of which is compact, then using topological degree theory and Banach’s contraction principle. Moreover, a
particular case has been studied. Finally, a good example is provided to illustrate the applicability of our
results. In the future, we look forward to solving problems of this kind, but with weaker assumptions.
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