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Abstract

The current study intends to delve into the existence of positive solutions to fourth-order differential
equations dependent on all derivatives in nonlinearity under the Stieltjes integral boundary conditions

{u<4><> g(t,u(t),u' (), u" (1), u” (1)), t € [0, 1],
w(0) = aifu], v/ (1) = azfu], v”(0) + asfu] =0, v (1) + asfu] =0,

where g : [0,1] x Ry? x R_? — Ry is continuous, a;[u] = fol u(t)dAi(t) > 0 is Stieltjes integral
represented by the bounded variation function A;(¢) (¢ = 1,2, 3,4). Some growth conditions are posed
on nonlinearity g meanwhile the spectral radius of corresponding linear operators are restricted. On the
cones in C3[0, 1] we apply the theory of fixed point index, thus verifying the existence of positive solutions.
Some specific examples concerning fourth-order nonlinear differential equations are given under mixed
boundary conditions involving multi-point with sign-changing coefficients and integral with sign-changing
kernel.

1 Introduction

In this paper we investigate the existence of positive solutions for fourth-order boundary value problem
(BVP) with dependence on all derivatives in nonlinearity subject to boundary conditions of Stieltjes integral

type
{<4><> g(t,u(t)w (1), 0" (), u" (1)), t € [0,1] O
u(0) = en [ul, /(1) = asful, w(0) + aslu] = 0, w”(1) + asfu] = 0.

Based on fixed point index method and global bifurcation technique respectively, Li [1] and Ma [2] explored
the beam equations involving the bending moment with the hinged ends

Recently, the authors in [3] investigated the existence of positive solutions to the following problems:

{u(4)(t) = f(t,ult), W' (t),u" (1)), t € [0,1],
u(0) = By [u], w'(1) = Balu), u"(0) + B3[u] =0, w”(1) + Bylu] =

and
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where a;[u], B;lu] (i = 1,2,3,4) are Stieltjes integrals of signed measures. They modelled the deflection
of beam equations with the nonlinearities including the slope v’ and bending moment «”. The boundary
conditions of Stieltjes integrals indicated that the mechanism at the end points hangs on the feedback along
parts of the beam for the control of displacement.

The authors in [4] studied the existence of positive solutions to the boundary value problem

{—u"(t) = f(t,u(t),w' (@), t € (0,1),
au(0) — bu'(0) = aful], cu(l) + du'(1) = Blu] + Alu'],

where A[u'] = folu’(t) dA(t), A is a bounded variation function, a, b, ¢, d are nonnegative constants with
p=ac+ad+ bc > 0.

Lemma 1 ([5],[6]) Let Q be a bounded open subset of Banach space X with 0 € 2 and P be a cone in X.
If A: PNQ — P is a completely continuous operator and pAu # u for u € KNOQ and p € [0,1], then the
fized point index i(A, PN OQ, P) = 1.

Lemma 2 ([5],[6]) Let Q be a bounded open subset of Banach space X and P be a cone in X. If A :
PNQ — P is a completely continuous operator and there exists vg € P\ {0} such that v — Au # vy, for
u€ KNoQ and v > 0, then the fized point index i(A, P N 9N, P) = 0.

Lemma 3 ([5]) Let P be a reproducing coneji.e., X = P — P, in Banach space X and L : X — X be
a completely continuous linear operator with L(P) C P. If the spectral radius (L) > 0, then there exists
¢ € P\ {0} such that Ly = r(L)ep.

Lemma 4 ([7]) Let P be a cone in Banach space X and L : X — X be a completely continuous linear
operator with L(P) C P. If there exist vo € P\ {0} and Ao > 0 such that Lvg > Aovg in the sense of partial
ordering induced by P, then there exist ug € P\ {0} and A1 > g such that Lug = Ajugp.

2 Preliminaries

Let E = C3[0,1] be the Banach space consisting of all third-order continuously differentiable functions on
[0,1] with the norm

lulles = max {[|ullc, [v'lle; [w”llc, lu™ e}

where ||u|lc = max {|u(t)| : t € [0,1]} for u € CI0, 1].
We can calculate 81(t) = 1, 62(t) = ¢, d3(t) = t — 4t and d4(t) = £t — £t3, which are solutions to
u®(t) = 0 satisfying the following boundary conditions:

(

=1, «"(0) =0, v (1) = 0;
)
)

u(0) =0, ¥/(1) =0, «"(0)+1=0, v"(1) = 0;
uw(0) =0, v/(1) =0, «"(0) =0, (1) +1=0.
bet 142 1.3
SR R O ®

ko(t, s) is the Green’s function associated with

{u<4> t) =0, telo,1],
w(0) = /(1) = u"(0) = u"(1) = 0.
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Define an operator in C3[0,1] as
(Tu)(t) = Zai[uwz‘(t) +/O ko(t, 8)g(s, u(s), u'(s),u” (s),u"(s)) ds, (3)

where «a;[u] = fol u(t)dA;(t) >0, (1 =1,2,3,4). We set

0

4 1
(Au)(t) = Z ai[uldi(t), (Fu)(t) =: | ko(t, s)g(s, u(s),u'(s),u"(s), u"(s)) ds,

so (Tu)(t) = (Au)(t) + (Fu)(t). We impose the following hypotheses:
(C1) g:[0,1] x R;? x R_? — R, is continuous, here R = [0,00) and R_ = (—o0,0].

(Cy) For each i € {1,2,3,4}, A, is of bounded variation and
1
Ki(s) ::/ ko(t,s)dA;(t) >0, Vs € [0,1].
0

(Cs) ;]6;] >0 (¢,5 =1,2,3,4) and moreover for the 4 x 4 matrix

ai[d1] ifd2] i[d3] i[ds]
[A] _ 042[51] (%) [52] Ckz[(‘)‘g,} (%) [54]

043[(51] Qa3 [(52] 043[(53} Qa3 [54] ’

agl61]  ufda]  afds]  asd]

its spectral radius r([A]) < 1.
Writing («, §) = Z?zl ;0; for the inner product in R*, we define the operator S in C3[0,1] as
(Su)(t) = (I — [4)) " alFul,5(8)) + (Fu)(®),
where a[Fu] = (a1 [Ful, az[Ful, az[Fu], as[Fu])T is the transpose of vector.

Lemma 5 Suppose that (Cy) holds. Then BVP (1) has a solution if and only if there exists a fixed point of
T in C3[0, 1.

Lemma 6 Suppose that (Cy)-(C3) hold. Then S can be written in the form as

(Sw() = (I~ [A) " alFul,6(5) + (Fu)(t)
= / U — AL, 600) + Kot 9)g(s, u(s), (), u”(5), () ds
- / st s)g(s,uls)o ' (5), (), " (5)) s, (4)
where K(s) = (K1(s), Ka(s), Ka(s), Ka()), icc.,
Bs(t,s) = (I — [A) 7K (s), 8()) + kot 5) = ilms)éi(w T kolt,s) (5)

and K;(s) is the ith component of (I — [A])71K(s).
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Lemma 7 If (Cy) and (Cs) hold, then r; >0 (i = 1,2,3,4) and for s,t € [0,1],

co(t)Wo(s) < ks(t,s) < Wo(s),

where
Uy(s) = Z ki(s) + %8(3 — 5%, ¢o(t) = %t - ét?’,
i=1
an ok 0%k
erm(s) < 2500 < () ep(0wa(ey < - < o)
where
Wi(s) = 3 mils) + 2s(2 = 8), ex(t) = % _lp
Us(s) = Z Ki(s) + s,ca(t) =t.
i=3

Proof. For s € [0,1], x;(s) >0 (i = 1,2,3,4) are due to [8]. (6) and (7) come directly from the inequalities

2 6
=1 =1 1=1
(51— )53~ ) < 33— P)((3 — 7)) < ho(t,5) < £5(3 — 57,

we have, for s,t € [0,1],

=2 =1 1=2
(- 2Gs@ -9 <1 -n(se-) < 20D oy

imply that, for s,t € [0, 1],

and
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we obtain that

for s,t €[0,1]. m
Define two cones in C3[0, 1] and several linear operators as follows.

P={ueC?0,1]:u(t) >0,u'(t) > 0,u"(t) <0,u"(t) <0,Vt € [0,1]},

K ={u€ P:u(t) > cot)|ullc,u'(t) > cr(®)llv' e,
_u/,(t) 2 CQ(t)||u"||Cy vt € [07 1]; O‘z[u} > O(Z = 1’2a374)}7

(Liu)(t) = /0 ks(t, s)(au(s) + biu'(s) — c;u”(s) — diu'" (s)) ds(i = 1, 2),

(Lsu)(t) = al/o ks(t, s)u(s)ds,

where a;, b;, ¢;, d;(i = 1,2) are nonnegative constants.
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It is clear from the analysis that P and K are cones, more specifically, P is a solid cone. Denote the cone

ordering induced by P, u < v equivalently v > u if and only if v —u € P.

Lemma 8 Suppose that (C1)-(Cs) hold. Then S : P — K and L; : C3[0,1] — C3[0,1] are completely

continuous operator with L;(P) C K (i =1,2,3).

Proof. For u € P and t € [0,1], it is easy to see that Su € C®[0,1], (Su)(t) > 0, (Su)'(t) > 0 and

(Su)’(t) <0, by Lemma 7,

(Su)(t) = / s (t, $)9(s, u(s), o' (s),u" (s), u" (5)) ds
> alt) / Wo(5)g(s, u(s), w'(5), " (5), u"(s)) ds,

S0/ = [ FE gl ule) (). ) ) ds

> o) / Wy (5)g(s, u(s), ' (5), " (5), u(s)) ds,

and

0 = [ s ) (9.9 () s

Y

er(t) / Uy (s)g(s, uls), o (s), " (5), " (s)) ds,

hence we have

—~
n
S

~—

=
~
I

/0 ks(t,s)g(s,u(s),u'(s),u”(s),u” (s))ds

IN

/0 Wo(s)g(s, u(s), u'(s), u” (s), u"" (s)) ds,
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/ Gkg t,s) g(s,u(s),u'(s),u"(s))ds

0

/ Uy (s u(s),u'(s),u” (s),u"(s)) ds,
0

(Su)'(t)

IN

and

2 S
e = - [ a’“gtj (5,uls), (), ' (5)) s

< / u(s), w/(s), 0" (), " (s)) ds.
Therefore, (Su)(t) > co(t)||Sullc, (Sw)'(t) > c1()]|(Su)||c and —(Su)”(t) > c2(t)||(Su)”||c for t € [0,1].
Moreover, it follows from (C3) that
1 1
alsu) = / ( / st )g(s, u(s), o (s), u”(5),u" (5)) ds) dAs(2)
_ / ( / ks (t, 8) dA; () g (s, u(s), u' (), u” (), u” (5)) ds
0 0

= /0 Ki(s)g(s,u(s),u'(s),u" (s),u" (s)) ds,

that is, Su € K. As for the complete continuity of .S, it is obvious.
Drawing upon the same method, we can verify that L; : C3[0,1] — C3[0,1] is completely continuous
linear operator with L;(P) C K (i =1,2,3). m

Lemma 9 Suppose that (Cy)-(Cs) hold. Then S and T have the same fized points in K. As a result, BVP
(1) has a positive solution if and only if S has a fized point in K.

3 Main Results

Theorem 1 Under hypotheses (C1)-(C3), suppose that
(Fy) there exist constants ag,ba, co,ds > 0 and r > 0 such that
g(t,z1, 2,23, 74) < a2x1 + baTy — cox3 — day, (12)

for all (t,m1,22,23,74) € [0,1] x [0,7]? x [=7,0]2; moreover, the spectral radius r(Ls) < 1, where Ly is
defined by (10);

(Fs) there exist positive constants a1,by,c1,Co satisfying
ay [ by [ 1
min{g/ co(s)Tp(s)ds, 5/ c1(s)¥1(s)ds, cl/ c2(8)¥a(s) ds} >1 (13)
0 0 0

g(t,x1, 22,23, 24) > ar1x1 + bizra — cyw3 — C, (14)
for all (t,x1,x9,x3,24) € [0,1] x Rp2 x R_?;

such that

(F3) for any M > 0, there exists a positive continuous function Hp(p) on Ry which satisfies

R
o Hu(p)+1

such that V(t,z1, T2, 23,24) € [0,1] x [0, M]?> x [-M,0] x R_,

g(t,$1,$2,$3,$4) SHM(|-T4|) (16)

dp = +o00 (15)
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Then BVP (1) has one positive solution in K.

Proof. (i) Define Q, = {u € C?0,1] : |lulcs <r}. First we prove that uSu # u for v € K N 9Q, and
w € [0,1]. In fact, if there exist u; € K NIQ, and py € [0, 1] such that u; = ppSuq, then we can deduce
from
0 < ul(t)a u/l(t) < Ty 0 < _ull/(t)7 _ull//(t) < T, vt € [07 1]
and (12) that, for ¢ € [0, 1],
ui(t) < (Lau)(t), uy (t) < (Loua)'(2),
uf(t) = (Lour)"(t),u’ (1) > (Lawr)" (1),
thus (I — Lg)u; = 0. Due to the fact that the spectral radius 7(Lz) < 1, we know that I — L has a bounded
inverse operator (I — Lo)™!: P — P and u; =< (I — L2)~'0 = 0 which contradicts u; € K N 99,.. Therefore,
i(S,KNQ,,K) =1 follows from Lemma 1.

(ii) Let

M = max { 300 fol \I/()(S) ds 20() fol \111(8) ds C(J fol \:[12(8) ds } . (17)

ar [y co(s)Wo(s)ds — 3 by [y er(s)Wi(s)ds — 2 ¢1 [ ca(s)Wa(s)ds — 1
From formula (13), M > 0. By (15) it can easily be seen that

+o0 )

P dp= oo,
v Hu(p)+Co g

and so there exists My > M such that

M,y

p

———dp > M. 18
v Hu(p) +Co r (18)

(iii) In this step we construct a homotopy and find a subset Qg in order to compute the fixed point index
later, where Qz = {u € C?[0,1] : |Julcs < R}.
For u € K define the homotopy H (A, u) = Su + Av, where

v(t) =Cy /01 ks(t,s)ds.
Then v € K and H : [0,1] x K — K is completely continuous. Let R > {r, M;} and we will show that
H(\u) #u, YVue KNOQg, Xe0,1]. (19)
If it does not hold, there exist uz € K N 9Nk and Ao € [0, 1] such that
H(Xo,u2) = uz, (20)
thus
luzlle = u2(1)

= /k:s(l,s)g(s,uz(s),u;(s),ug(s),u’z”(s))ds+)\OC’0/ ks(1,s)ds
0 0

1

> / ks(1,s)(aruz(s) + bruy(s) — cruy(s) — Co + AoCo) ds
0

1

> / kis(1,5)(arua(s) — Co) ds
a(i 1 1
> §||uQ||c/ co(8)¥o(s)ds — Co/ Uy (s)ds,
0 0
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uslle = u5(0)
Lok ' Ok
| (s ua(s) o). 5) i (9) s+ 2G| R
0 ot 0 ot
1
> / %(alw(s) + bruh(s) + crus (s) — Co + AoCo) ds
0
1
> /M(blué(s)f&))ds
AT
b 1 1
> %HU;HC/O cl(s)\Ill(s)ds—C’o/o Uy (s) ds,
[usllc = —u5(1)
1 92 1 92
0 ks(l,s) 0 ks(Ls)
[ EEC (o) s s) o) ds o [ I g
' 9ks(1
> —/0 %(alug(s)—|—blu’2(s)—|—clu’2’(s)—Co—|—/\000)ds
! 82/{35 1,8
> —/O %(clug(s)—aﬂds
1 1
> ¢:1||u2||c/0 cz(s)lfg(s)dsfco/o Us(s)ds.
These imply by (17) that
ese ply by (17) the <M ! <M MNe < M 21
luzllo < M, [lugllc < M, |luzfle < M. (21)

From (16), (20) and (21), it follows that

uSP () = f(tua(t), (), uf (1), ul' (1)) + AoCo
< f(tua(t), ub(8), u (b),uy (1)) + Co < Har(uh'()]) + Co (22)

for ¢ € [0, 1], multiplying both sides of (22) by —u4’(¢) > 0, we have that

—ug (t)uy (1)
HM( ///( )) +Co < —Ug (t)

At this point, for ¢ € [0, 1], —ub’(t) < M. Otherwise, there is to € [0, 1] which makes —u}’(tg) > M7, and so
by the mean value theorem, there is & € (0,1) which satisfies —u}’ () = u5(0) — uy (1) < M < M;. So there
are t1,ts € [0, 1] that make —uy’(¢1) = My, —uf’(t2) = M. Because ugl)(t) >0, 50 t < ty. Let p = —uy (£),
integral (23) over [t1, 2]

(23)

My —uy (t1)
g, / P g,
v Hu(p) + Co —u(ta) Hum(p) +Co

_ /u/z//(tz) —ul (t)u (4)( t) o
—uy(t) Hu(=us'(t)) + Co

ta
< [ Cup)de< ) - ) < ufllo < M

t1

Hence by (18) we also have that ||[u}’||c < My and ||us]cs < M1, a contradiction to |lug|lcs = R > M.
From (19) it follows that

(S, K N Qp, K) = i(H(0,"), K NQp, K) = i(H(1,-), K NQp, K) (24)
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by the homotopy invariance property of fixed point index.

(iv) For the function ¢y(t), we have from (11) that

1 1
(L3co)(t) = a1/0 ks(t,s)co(s)ds > (al/o co(8)Po(s) ds)co(t).

From (13) it follows that
1
Ao =: al/ co(8)Pp(s)ds > 3.
0

Since L3 is a completely continuous linear operator in C|0, 1], we consider the nonnegative cone C*[0,1] =
{u e C[0,1] : u(t) >0,V € [0,1]} in Lemma 4.

There exist A\; > Ao and ¢, € CT[0,1]\ {0} such that ¢, = A *Lzp,. Obviously ¢, € P can be directly
verified, and thus ¢, € K by Lemma 8.
(v) Now we prove that u — H(1,u) # vy, for u € KNONg and v > 0, where ¢, is as in step (iii), and hence

i(H(1,-),KNQp,K)=0 (25)

by Lemma 2.
If there exist ug € K N9k and vg > 0 such that ug — H(1,ug) = voy,, then it is clear that vy > 0 by
(19) and thus

ug(t) = (H(1,u0))(t) + vopo(t) = vowo(t)

for ¢t € [0, 1]. Set
v* =sup{v > 0:up(t) > vey(t),V €[0,1]}.

Then vy < v* < 400 and ug(t) > v*py(t) for t € [0,1]. From (14) we have that, for t € [0,1],

ug(t) = (H(L,u0))(t) +vopy(t) = (Lauo)(t) + vopy(t)
> v (Lapg)(t) +vopo(t) = Av™ e (t) + vowy(t)-

Since A1 > 1, we have A\1v* 4+ vy > v*, which contradicts the definition of v*.
(vi) From (24) and (25), it follows that (S, K N 0Qg, K) = 0 and

i(S, KN (Qr\Q,),K) =i(S,KNQr,K)—i(S,KNQ,, K)=—1.
Hence S has one fixed point, i.e., BVP (1) has one positive solution in K. ®
Theorem 2 Under hypotheses (C1)-(Cs), suppose that
(Fy) there exist constants aq,by,cy1,dy,Co > 0 such that
g(t,z1, 22, 23,24) < @121 + b1z — 123 — dizg + C, (26)
for all (t,x1,x9,x3,24) € [0,1] x R,? x R_?, moreover the spectral radius r(L1) < 1;
(F5) there exist constants ag, by, ca,da > 0 and r > 0 such that
g(t, 1, T2, x3,24) > asxy + baxe — cows — doxy, (27)

for all (t,z1,22,23,74) € [0,1] x [0,7]? x [-7,0]%, moreover the spectral radius (L) > 1; where
L; : C30,1] — C3[0,1] (i = 1,2) are defined by (10)

Then BVP (1) has one positive solution in K.
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Proof. Let W = {u € K : u = pSu, u € [0,1]}, where S and K are respectively defined in (4) and (9).
We first assert that W is a bounded set. In fact, if uw € W, then v = puSu for some p € [0, 1]. From (10)
and (26) we have that

u(t) = u(SU)(t):u/O ks(t,s)g(s, u(s),u'(s),u"(s),u"(s)) ds

< / ks(t, s)(a1u(s) + byu'(s) — cyu” (s) — dyu' (s) + Cp) ds
0

1
@mw+%4kmM®

and
(= Lou)(t) < co/o ks(t, s)ds = v(t), ¢ € [0,1].

Obviously v € P and it is easy to see from (26) that, for ¢ € [0, 1],
W(t) < (Law)'(t) +0'(8), u"(t) = (Law)"(t) +0"(8), "' (t) = (Liw)"(t) + 0" (D),

thus (I — L1)u < v. Because of the spectral radius r(L;) < 1, we know that I — Ly has a bounded inverse
operator (I — L;)~1, which can be written as

(I-L) '=T+L +L2+ - +L%+---.

Since Li(P) C K C P by Lemma 8, we have (I — L;)~'(P) C P, which implies the inequality u <
(I — Ly)~'v, Therefore, for t € [0,1],

0<u(t) < (- L) ")), 0<u'(t) < (- L) "w)(2),

02 u'(t) = (T = L)) (), 0= w"(t) = (T — La) ~10)" (1),

which imply that ||ulcs < ||(I — L1)"v||¢s, i.e., W is bounded.

Now select R > max {r,sup W}, then uSu # u for u € KNOQg and p € [0,1], and i(S, KNINg, K) =1
follows from Lemma 1.

Since Ly : P — K C P and r(Lz2) > 1, it follows from Lemma 3 that there exists ¢, € P\ {0} such that
Loy = r(L2)¢y. Furthermore, o, = 7(La) ' Lo, € K.

Suppose that S has no fixed points in K N 9S2,., and we will show that u — Su # vy, for u € K N0OQ,
and v > 0.

Otherwise, there exist ugp € K N9, and vy > 0 such that ug — Sup = vy, and it is clear that vy > 0.
Since ug € K N 0K, we have

0 <w(t),u(t) <r, —r<ugy(t), uy(t) <0, Vtel0,1].
It follows from (5), (10),and (27) that V¢ € [0, 1],
(Suo)(t) = (Lauo)(t), (Suo)'(t) = (Lauo)'(¢)

and
(Suo)"(t) < (Laug)"(t), (Suo)"(t) < (Laug)”(t),

which imply that
ug = voipy + Sug = vy + Latg = vopy- (28)

Set v* =sup{v > 0:ug = vyy}. Then vy < v* < 0o and ug = v*¢,. Hence from (28) it follows that

ug = vy + Laug = vopy + v Lawg = vopy + v r(La2)wy.



H. L. Zha and G. W. Zhang 453

However, r(La) > 1, so ug = (vg + v*)py, which is a contradiction to the definition of v*. Therefore

u— Su # vy, for u e K NON, and v > 0.
Therefore it follows from Lemma 2 that (S, K N 9Q,, K) = 0.
Making use of the properties of fixed point index, we have that

(S, KN (Qr\ ), K) =i(S, K NdQg, K) —i(S, K NI, K) = 1,

and hence S has one fixed point in K. Therefore, BVP (1) has one positive solution in K. m

4 Examples

In order to illustrate clearly with examples, we take the fourth-order boundary problem into account by
undertaking mixed multi-point and integral boundary conditions with sign-changing coefficients:

{u(4)(t) = g(t, u(t), u'(t),u"(t), u"(t)), t €[0,1], (29)
u(0) = aqfu], v'(1) = aslu], v”(0) + as[u] =0, v (1) + ayfu] = 0.
that is, «q[u] = %u(i) — %u(f , fo ) dt, asfu] = u(%) — %u(%), and ayfu] = %u(%) —

1u(3).We estimate some coeﬁimenta and do some calculatlons

1
0 < Ki(s)= /0 Fo(t, 5) dAs (1) =

1. 1.3
325~ 185

and hence 0 < Iy (s) < 0.0105;

1
I RPN 1,
= S s> <s<
Ka(s) /0 ko(t,s)(t — )dt 3% 21° + 1205 96° 0 (0<s<1),
and hence 0 < Ka(s) < 0.0813;
1 1 11
0 < Ks(s)= [ ko(t,s)dAs(t) = k0(175) - §ko(§a3)
0
1 1.3

325~ 125 0
_ 1.3 1.2 11
= 125 §S°+ 163 3840 4
1 1
28" 2

and hence 0 < K3(s) < 0.0079;

1
11 1.1
0 < Ky(s)= k;o(t,s)dA4(t)=fk0(1,s)—§ko(2,s)
0
1 1 .3 1
65~ 165 0<s<y,
_ 1 .3 1 1 1 1
= §5 165 TeiS 7w 15573
1 1 1 1
165~ 325" T+ 76s0 3 <s<1,

and hence 0 < K4(s) < 0.0248. The 4 x 4 matrix

a1[61]  a1[d2] ai[ds] au[d4] % 0 35 ?*1@

4] = az(01] 2[02] o[ds] aslda] | _ 1 2 % 10
as[1]  aslda] as[ds] as[dd] 7 0 5 B ’

044[51] [02]  ca[ds] ca[d4] 2 % i5 ==
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and its spectral radius r([A]) = 0.3961 < 1. These mean that (Cs) and (C3) are satisfied.
Now we take into account the constants in Theorem 1 and Theorem 2.

1.5487 0.0014 0.0513 0.0173
0.6877 1.2724 0.1939 0.1159
0.8050 0.0014 1.0596 0.0174
0.6967 0.0829 0.1009 1.0490

(- [4) " <

and
0.0172
. 0.1151
0.0409

thus

1 1 1.
Fs(f, 5) < 0.0172 + 0.1151¢ + 0.0074 x (£ — 5t) + 0.0409 x (Gt — £t%) + ko(t, 5) < 0.4880.

So, for u € C3[0,1] and ¢ € [0, 1],

[(Liw)(t)] < 0.4880/0 (ailu(s)] + bilu'(8)] + ci|u” (s)| + dilu™ (s)]) ds

< 0.4880(a; + b; + ¢; + d;)|Jullcs (i =1,2),

where L; (i = 1,2) are defined in (10). Since all the terms are nonnegative in the first derivative of kg(t, s)
with respect to ¢, we also have

Oks(t, s) 1 1,5 Okolt,s)
—_— 1151+ 0.0174(1 — ¢ .0409(= — =t —_—
T < 0.1151 + 0.0174( )+0009(2 > )+ BN
and ) )
%kg(t, s) 9%kol(t, s)
— .0174 + 0.04 —
’ o2 < 0.0174 + 0.0409¢ + BIe

for u € C3[0,1] and t € [0, 1],

1
[(Liuw) (t)] < 1.1151/ (ailu(s)| + bi|u' (5)| + ciu” (s)| + dilu” (s)]) ds
0
< L1151(aq + bi + i+ dy)||ulles (= 1,2),
1
[(Liw)"(t)] < 1-0583/ (a;u(s)] + bslu'(s)] + ci|u” ()] + diu’(s)]) ds
0
< 1.0583(a; + b; + ¢; + di)”’u”cB (Z =1,2),

1
(O] < [ @)+ b6 + e ()] i (6)) s
< (ai—f—bi—l-ci—i—di)HuHCs (i:1,2).

A

Therefore the radius r(L;) < ||L;|| < 1.1151(a; + b; + ¢; +d;) < 1 if

ai+b; +ei+dp < 1115171 (i =1,2). (30)
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On the other hand, we have from Lemmas 7 and 8 that, for v € K\ {0} and ¢ € [0, 1],

(Low)(t) > /0 ks (£, s)asu(s) ds > asco(t) /0 o (s)u(s) ds
> agco(t)/o \Ilo(s)co(s)||u||cds:agco(t)||u||c/0 co(5)Wo(s) ds
and )
(L)l = (E)(1) 2 Jaallull | cals)wo(s) ds
hence
(Lau)(t) > as ; ks(t,s)(Lau)(s)ds
> aseo(t) /O o (s)(Lou)(s) ds > aco(t) /0 o (s)eo (5| (Law) | ds
> a2 ' 0()Wo(s) ds)?
> geda®lule([ (s Wo(s)ds)
and

I(Z3w)lle = (L3u)(1) = a%lluHc(/O co(s)Wo(s) ds)?.

O =

By induction,
a2

1
I(Lzu)llo = (Lyu)(1) = (g)"IIU\\c(/O co(s)Wo(s)ds)".

As a result, it follows that, for v € K\ {0},

1
1Lz [llulles 2 Lz ulles 2 lILzulle = () ||’u||c(/0 co(s)Wo(s)ds)
and according to Gelfand’s formula, the spectral radius
r(Le) = lim |L5|"
n—0oo

az

1
Z ?(/O Po(s)co(s)ds) lim ( [ulle )%

oo [lulgs

az

= / o(s)Wo(s) ds)

which implies that r(Ls2) > 1 when

o > 945 3 S 3
9> —— = > .
17 fol (%s — %83) X %3(3 —s2)ds fol co(s)Wo(s)ds

Example 1 If
13+ tad + Lad + Lo}
1+ 2?4+ 23 4+ 23 + 23

g(t,$1,$2,$3,$4) = 5

then BVP (29) has a positive solution.
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Proof. Take ay = 3, by = ¢3 = §, doy = &, 7 < 1, it is easy to check that (12) and (30) for i = 2 are satisfied.
Now take a; = 56, by = 22, ¢; = 4, it is clear that

1 1
L1 11,1
5 G g > G [ Ge Gehpee - a1,

by (11 1, by (111,01
A C o) (s)ds > 2 [ (5 — =sH)=s(2—s)ds > 1
5 A (2 25 VUq(s)ds > 5 A (2 23 )23( s)ds > 1,

1 1
cl/ sUs(s)ds > cl/ s?ds > 1.
0 0

so (13) is valid. It can be seen that (14) is satisfied for Cy large enough. Let Hy(p) = M? + p? for (F3).
Then BVP (29) has a positive solution by Theorem 1. ®

Example 2 If g(t,z1,x2, x3, 1) = Yz, — x4, then BVP (29) has a positive solution.

Proof. Take a; = é, c1 = %, by =d =0,Cho=2and ay =56,co =1,by =dy =0, 7 = ﬁ. Obviously,

(30) and (31) are satisfied, meanwhile conditions (26) and (27) are fulfilled. Then BVP (29) has a positive
solution by Theorem 2. m
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