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Abstract

For a point P in the interior of the unit disk and a given direction, one can compute the directional
distance from P to the boundary of the disk in the prescribed direction. We compute the average
directional distance over all points and all directions. The analogous computation is then carried out
for any n-dimensional ball. The average distance depends on the dimension n and produces a sequence
which is shown to be a scale of the Wallis integral sequence. This work was motivated by research on
solar energy collection devices.

1 Introduction

1.1 The Average Directional Distance in a Unit Disk

Consider B2 the unit disk x2+y2 ≤ 1. Let P be any point in the interior of the disk. Define d(P, φ) to be the
distance from P to the boundary of the disk in the direction of φ, where the φ is a directed angle measured
from P with φ = 0 corresponding to the ray starting at P parallel to the positive x-axis. See Figure 1 (Left).

Figure 1: d(P, φ) for a given P and φ.
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458 The Average Directional Distance to the Boundary of a Ball or Disk

The average directional distance to the boundary at P is

d̄(P ) =
1

2π

∫ 2π

0

d(P, φ) dφ.

By symmetry, the function d̄(P ) only depends upon distance from P to the origin. We then average d̄(P )
over all points P in the disk (with the uniform distribution) to obtain the average directional distance to
the boundary

¯̄d2 =
1

Area(B2)

∫∫
B2

d̄(P ) dA.

In this section, we prove the following Theorem.

Theorem 1 The average directional distance for the unit disk is ¯̄d2 = 8
3π .

Proof. We start with a point on the positive x-axis of the form Pr = (r, 0) with 0 ≤ r < 1 and create a ray
starting at Pr and directed angle φ, where φ = 0 corresponds to the positive x-axis. Let Q = (x, y) be the
intersection of this ray and the unit circle and set

D = d(Pr, φ) = dist(Pr, Q).

See Figure 1 (Right). The x-coordinate of Q is x = r+D cosφ and D =
√

(x− r)2 + y2. Since x2 + y2 = 1,
we have

D2 = 1− 2xr + r2 = 1− 2(r +D cosφ)r + r2,

which is a quadratic in D having positive solution

d(Pr, φ) = −r cosφ+
√
r2 cos2 φ− r2 + 1.

Therefore,

d̄(Pr) =

∫ 2π
0

(
−r cosφ+

√
1− r2 sin2 φ

)
dφ

2π
=

2

π

∫ π/2

0

√
1− r2 sin2 φ dφ,

which clearly depends only on r.
To obtain ¯̄d2 one needs to vary d̄(P ) over all P . But d̄(P ) = d̄(Pr), where r is the the distance from P

to the origin. So the average ¯̄d2 over all points P ∈ B2 is given by a polar integral where dA = r dr dθ:

¯̄d2 =
1

Area(B2)

∫∫
B2

d̄(P ) dA

=

∫ 2π
0

∫ 1
0
2
π

∫ π/2
0

√
1− r2 sin2 φ dφ r dr dθ∫ 2π

0

∫ 1
0
r dr dθ

=
4

π

∫ 1

0

∫ π/2

0

r

√
1− r2 sin2 φ dφ dr.

This resolves to 8
3π .

We note from the computation above that if we were to allow r = 1, d̄(P1) is not zero, but 2π . This makes
sense since, as r is near 1, it can be shown that d̄(Pr) is bounded away from zero.

2 The Average Distance in an n-Dimensional Unit Ball

Consider Bn the unit ball x21 + x22 + ...+ x2n ≤ 1. Let P be any point in the interior of the unit ball. Define
d(P,u) to be the distance from P to the boundary of the ball in the direction of u, where u is a unit vector
(which can be identified with a point on the sphere Sn−1 or x21 + x22 + ...+ x2n = 1).
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Define the average directional distance over all u to be the surface integral

d̄(P ) =
1

SurfaceArea(Sn−1)

∫
· · ·
∫
Sn−1

d(P,u) dS,

where dS is the generalized surface element from Sn−1 and SurfaceArea(Sn−1) is the n − 1 dimensional
surface area of the n− 1 dimensional sphere.

Finally, define the average distance over all points P in Bn to be

¯̄dn =
1

V olume(Bn)

∫
· · ·
∫
Bn

d̄(P ) dV.

In this section, we shall prove the following Theorem.

Theorem 2 The average directional distance for the n dimensional unit ball is

¯̄dn =
4

π

∫ π/2

0

sinn+1(t) dt.

Proof. For dimension n = 1, B1 is simply the interval [−1, 1] and for any point x inside (−1, 1) the two
distances to the boundary are 1 − x and 1 + x. So, for all x, the average directional distance is 1. This
implies that ¯̄d1 = 1, which agrees with

4

π

∫ π/2

0

sin2(t) dt.

For dimension n = 2,

4

π

∫ π/2

0

sin3(t) dt =
8

3π
.

For dimension n ≥ 3 we will use hyperspherical coordinates (see [1]). Recall that for (x1, ..., xn) ∈ Rn,
the hyperspherical coordinates are (ρ, φ1, . . . , φn−1), where ρ =

√∑n
i=1 x

2
i and x1 = ρ cos(φ1), xk =

ρ cos(φk)
∏k−1
i=1 sin(φi), for 1 ≤ k ≤ n − 1 and xn = ρ

∏n−1
i=1 sin(φi) where 0 ≤ φn−1 < 2π, and 0 ≤ φj ≤ π

for 1 ≤ j ≤ n− 2. Also recall that the volume element in hyperspherical coordinates is

dV = ρn−1 sinn−2(φ1) sinn−3(φ2) · · · sin(φn−2)dρ dφ1 · · · dφn−1,

and, for integrating on Sn−1, the surface element is

dS = sinn−2(φ1) sinn−3(φ2) · · · sin(φn−2)dφ1 · · · dφn−1.

As in the planar case, the function d̄(P ) only depends upon ρ, the distance of P from the origin. So
we will compute the distance for the conveniently located point Pρ = (ρ, 0, · · · , 0). To specify a direction v
(from P ) amounts to identifying a point on the n−1 dimensional unit sphere. Such a direction then is given
in hyperspherical coordinates by

(cos(ψ1), sin(ψ1) cos(ψ2), ..., sin(ψ1) · · · sin(ψn−2) cos(ψn−1), sin(ψ1) · · · sin(ψn−2) sin(ψn−1)).

Taking ψi = 0 for all i ≥ 2, then v is in the x1-x2 plane, and the picture is completely analogous to Figure
1 (Right) where ρ is r and φ is ψ1. Therefore,

d(Pρ,v) = −ρ cos(ψ1) +

√
1− ρ2 sin2(ψ1).
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Now, by symmetry, all directions that make angle ψ1 with the positive x1-axis will have the same distance
to the boundary. That is, the distance d(Pρ,u) (for any direction u from Pρ) depends only on ψ1 and ρ. So

d̄(Pρ)

=
1

SurfaceArea(Sn−1)

∫
· · ·
∫
Sn−1

d(Pρ,u) dS

=

∫ 2π
0

∫ π
0
· · ·
∫ π
0

(
−ρ cos(ψ1) +

√
1− ρ2 sin2(ψ1)

)
sinn−2(ψ1) sinn−3(ψ2) · · · sin(ψn−2) dψ1 · · · dψn−1∫ 2π

0

∫ π
0
· · ·
∫ π
0

sinn−2(ψ1) sinn−3(ψ2) · · · sin(ψn−2) dψ1 · · · dψn−1
,

which simplifies to

d̄(Pρ) =

∫ π
0

√
1− ρ2 sin2(ψ1) sinn−2(ψ1)dψ1∫ π

0
sinn−2(ψ1) dψ1

.

This formula depends only upon ρ. Any other point P with distance ρ to the origin will also have d̄(P ) =
d̄(Pρ) by symmetry.
Next, we average d̄(P ) over all P in Bn.

¯̄dn =
1

V olume(Bn)

∫
· · ·
∫
Bn

d̄(P ) dV

=

∫ 1
0

∫ 2π
0

∫ π
0
· · ·
∫ π
0

(
d̄(P )

)
ρn−1 sinn−2(φ1) sinn−3(φ2) · · · sin(φn−2) dφ1 · · · dφn−1dρ∫ 1

0

∫ 2π
0

∫ π
0
· · ·
∫ π
0
ρn−1 sinn−2(φ1) sinn−3(φ2) · · · sin(φn−2) dφ1 · · · dφn−1 dρ

.

Noting that d̄(P ) = d̄(Pρ) and after many cancellations, this reduces to∫ 1
0

∫ π
0
ρn−1

√
1− ρ2 sin2(ψ1) sinn−2(ψ1) dψ1 dρ(∫ 1

0
ρn−1 dρ

) (∫ π
0

sinn−2(ψ1) dψ1
) =

∫ 1
0

∫ π
0
ρn−1

√
1− ρ2 sin2(ψ1) sinn−2(ψ1) dψ1 dρ

1
n

(∫ π
0

sinn−2(ψ1) dψ1
) .

We now compute the numerator, which by symmetry is:

2

∫ 1

0

∫ π
2

0

ρn−1
√

1− ρ2 sin2(ψ1) sinn−2(ψ1) dψ1 dρ.

First, set ρ sin(ψ1) = sin(t), then ρ cos(ψ1) dψ1 = cos(t) dt. This results in

2

∫ 1

0

∫ t=arcsin(ρ)

t=0

ρn−1 cos(t)

(
sin(t)

ρ

)n−2
cos(t)√

ρ2 − sin2(t)
dt dρ

= 2

∫ 1

0

∫ t=arcsin(ρ)

t=0

ρ sinn−2(t)
cos2(t)√
ρ2 − sin2(t)

dt dρ

= 2

∫ π
2

0

∫ 1

sin(t)

ρ cos(t) sinn−2(t)
cos(t)√

ρ2 − sin2(t)
dρ dt (Switching the order of integration)

= 2

∫ π
2

0

sinn−2(t) cos2(t)

√
ρ2 − sin2(t)

∣∣∣∣1
sin(t)

dt (resolves)

= 2

∫ π
2

0

sinn−2(t) cos3(t) dt =
4

n2 − 1
.
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Figure 2: (Left) An LSC with exaggerated thickness. (Right) Flourescence translated to the solar cells at
the boundary.

Therefore, it can be shown that
¯̄dn = 2

n

(n+ 1)(n− 1)Wn−2
,

where Wn−2 is the Wallis integral
∫ π

2

0
sinn−2(ψ1) dψ1 for n ≥ 3.

It is well known that the Wallis integrals have the property Wn =
(
n−1
n

)
Wn−2 for n ≥ 2, therefore

Wn+3 =
(
n+2
n+3

)
Wn+1 for n ≥ 0. So for n ≥ 2,

¯̄dn+2 = 2
n+ 2

(n+ 3)(n+ 1)Wn
= 2

n+ 2

(n+ 3)(n+ 1) (n−1)n Wn−2
=

(n+ 2)

(n+ 3)
¯̄dn.

This implies that the sequences Wn+1 and ¯̄dn have the same recursive relation. Since ¯̄d1 = 1 = 4
πW2 and

¯̄d2 = 8
3π = 4

πW3. We must have ¯̄dn = 4
πWn+1 for all n ≥ 1, which proves the theorem.

Below is a table showing the values of ¯̄dn for n = 1, . . . , 5.

n ¯̄dn Decimal/Approximation
1 1 1
2 8/(3π) 0.8488263632
3 3/4 0.75
4 32/(15π) 0.6790610905
5 5/8 0.625

Note that as the dimension n increases, ¯̄dn decreases. In fact,

lim
n→∞

¯̄dn = 0.

These results can be generalized to any n-ball of radius R, in particular, the average directional distance
to the boundary of an n-dimensional ball with radius R is

¯̄
dRn = R · ¯̄dn.

3 Motivation, Application, and Open Problems

This article arose from an undergraduate physics research project that involved modeling luminescent solar
concentrators (LSCs) used in solar panels.
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An LSC is a solar energy device, often in the shape of a disk (see Figure 2), that absorbs sunlight and
channels the resulting fluorescence to its edge where it is then converted into electricity by photovoltaic solar
cells [2]. The effi ciency of the LSC depends on the average distance the fluorescence must travel from any
point inside the LSC to any point on its edge. Thus, measuring the average distance from any point inside the
panel to any point on the panel’s edge is critical in the effort to understand energy loss. An approximated
average distance for a disk appears in [4] using a Monte Carlo method, which closely approximates our
exact result. We also generated Monte Carlo simulations which well-approximated the theoretical findings
for dimensions n = 2 through n = 5. Finally, we anticipate that these results may play a role in wave
propogation, acoustics, or resonance in disks or spheres.
The authors have solved the problem below, which is relevant to LSCs of differing shapes.

Problem 1 Compute the average directional distance to the boundary for the following regular polygons: an
equilateral triangle, a square, and a regular hexagon.

However, the following problems remain open:

Problem 2 Calculate the average directional distance to the boundary for any triangle and other non-regular
planar figures.

Problem 3 Calculate the average directional distance to the boundary for a cube or for the other Platonic
solids.
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