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Abstract

For a point P in the interior of the unit disk and a given direction, one can compute the directional
distance from P to the boundary of the disk in the prescribed direction. We compute the average
directional distance over all points and all directions. The analogous computation is then carried out
for any n-dimensional ball. The average distance depends on the dimension n and produces a sequence
which is shown to be a scale of the Wallis integral sequence. This work was motivated by research on
solar energy collection devices.

1 Introduction

1.1 The Average Directional Distance in a Unit Disk

Consider B? the unit disk 22 +%? < 1. Let P be any point in the interior of the disk. Define d(P, ¢) to be the
distance from P to the boundary of the disk in the direction of ¢, where the ¢ is a directed angle measured
from P with ¢ = 0 corresponding to the ray starting at P parallel to the positive z-axis. See Figure 1 (Left).
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Figure 1: d(P, ¢) for a given P and ¢.
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458 The Average Directional Distance to the Boundary of a Ball or Disk

The average directional distance to the boundary at P is

d(P) = % /O ﬂd(P, ¢) dg.

By symmetry, the function d(P) only depends upon distance from P to the origin. We then average d(P)
over all points P in the disk (with the uniform distribution) to obtain the average directional distance to
the boundary

- Area(BQ)/ B2 d(P) dA.

In this section, we prove the following Theorem.
Theorem 1 The average directional distance for the unit disk is dy = %.

Proof. We start with a point on the positive z-axis of the form P, = (r,0) with 0 < r < 1 and create a ray
starting at P, and directed angle ¢, where ¢ = 0 corresponds to the positive x-axis. Let @ = (x,y) be the
intersection of this ray and the unit circle and set

D =d(P,,¢) = dist(P,, Q).

See Figure 1 (Right). The z-coordinate of Q is z = r + Dcos¢ and D = \/(x — 1)2 + y2. Since 22 +y? = 1,
we have
D? =1-2xr+7r*=1-2(r + Dcos@)r +r?,

which is a quadratic in D having positive solution

d(P,,¢) = —rcos¢ + \/r2cos2¢f7’2 + 1.

Therefore,

+v1—1r2 d
P = f < rcos¢ + /1 — r2sin® ¢ / ,77"2 o do.

2T

which clearly depends only on 7. - ~
To obtain dy one needs to vary d(P) over all P. But d(P) = d(P,), where r is the the distance from P

to the origin. So the average dy over all points P € B? is given by a polar integral where dA = r dr d@:

1 _
@ = W/B d(p)da
f ﬂ/Q V1—1r2sin®¢ do r dr df

J27 [ dr de

4 1 7T/2
f/ / r/1—r2sin? ¢ do dr.
™Jo Jo

This resolves to %. [ ]

We note from the computation above that if we were to allow r =1, d(P,) is not zero, but % This makes
sense since, as r is near 1, it can be shown that d(P,) is bounded away from zero.

2 The Average Distance in an n-Dimensional Unit Ball

Consider B™ the unit ball 2% + 23 + ... + 22 < 1. Let P be any point in the interior of the unit ball. Define
d(P,u) to be the distance from P to the boundary of the ball in the direction of u, where u is a unit vector
(which can be identified with a point on the sphere S"~! or % + x3 + ... + 22 = 1).
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Define the average directional distance over all u to be the surface integral

- 1
d(P) = Sur faceArea(S™—1) /'“/an d(P,u) dS,

where dS is the generalized surface element from S™~! and SurfaceArea(S™~1) is the n — 1 dimensional
surface area of the n — 1 dimensional sphere.

Finally, define the average distance over all points P in B™ to be

1 _
& = otma 5 / /B () av.

In this section, we shall prove the following Theorem.

Theorem 2 The average directional distance for the n dimensional unit ball is

_ 4 7T/2
d, = 7/ sin™*(t) dt.
T Jo

Proof. For dimension n = 1, B! is simply the interval [—1,1] and for any point z inside (—1,1) the two
distances to the boundary are 1 —z and 1 + x. So, for all z, the average directional distance is 1. This
implies that d; = 1, which agrees with

For dimension n = 2,

For dimension n > 3 we will use hyperspherical coordinates (see [1]). Recall that for (z1,...,x,) € R",
the hyperspherical coordinates are (p,¢,...,¢,_1), where p = />." ,z? and 1 = pcos(¢,), zp =

pcos(gy) Hi.:ll sin(¢;), for 1 <k <n-—1and z, = pl—[?;ll sin(¢;) where 0 < ¢, _; <27, and 0 < ¢; <
for 1 < j <n — 2. Also recall that the volume element in hyperspherical coordinates is

4V = " sin"2(¢y) sin" 3 (6p) -+ -sin(, 5)dpdy - db, .

and, for integrating on S™~!, the surface element is

dS = sin""2(¢) sin" " (¢5) - - sin(¢,, _5)doy -+ ddy,_ .

As in the planar case, the function d(P) only depends upon p, the distance of P from the origin. So
we will compute the distance for the conveniently located point P, = (p,0,---,0). To specify a direction v
(from P) amounts to identifying a point on the n — 1 dimensional unit sphere. Such a direction then is given
in hyperspherical coordinates by

(cos(¥y), sin(thy) cos(thy), ..., sin(ehy) -« -sin(v,,_o) cos(v,_1), sin(yy) - --sin(,_o) sin(¢,,_4)).

Taking 1, = 0 for all ¢ > 2, then v is in the x;-z2 plane, and the picture is completely analogous to Figure
1 (Right) where p is r and ¢ is ;. Therefore,

d(Pp,v) = —pcos(iy) +1/1 — p?sin®(¢y).
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Now, by symmetry, all directions that make angle 1; with the positive z;-axis will have the same distance
to the boundary. That is, the distance d(P,,u) (for any direction u from P,) depends only on ¢, and p. So
d(Fp)
B SurfaceAlrea(Snfl)/”./Snfl d(Fp; ) dS
027T fo fo ( pcos(thy) +4/1 — p? Sin2(¢1)> Sinnd(qﬂl) Sinn73(¢2) T Sin(¢n—2) dpy - dip,,
fo% foﬂ T fow sin"’2(1/11) Sinn73(7/’2) cesin(y,, o) dipy - -dip,

)

which simplifies to

foﬁ 1—p? sin2(1/)1) sin"_2(1/;1)d¢1
Jo s (1y) dipy '
This formula depends only upon p. Any other point P with distance p to the origin will also have d(P) =

d(P,) by symmetry.
Next, we average d(P) over all P in B".

d, = W/---/Bnd(zj)dv

Jo Jo S S5 (d(P)) pr sin® 2 (6) sin () - sin(6, o) ddy -+ dy, dp.
fol 027T foﬂ e fo7r Pn_l Sinn72(¢1) sin"*3(¢2) e 'Sin(¢n—2) d¢1 s d¢n—1 dp

Noting that d(P) = d(P,) and after many cancellations, this reduces to

Jo Iy 1= g2 sin® () sin™ 2 (py) diby dp fy f o1 = pRsin® () sin 2 () dopy dp

(fol pn—1 dp) (fy sin" 2 (1) depy) - = ([ sin" 2 (¢y) diy)

We now compute the numerator, which by symmetry is:

13
2 [ [Tt i i s wy) dv dp,
0 0

First, set psin(v¢;) = sin(t), then pcos(¢;) diy; = cos(t) dt. This results in

t= arcmn(p) . n—2
/ / L cos(t) (sm(t)) _ooslt) dt dp
t P p? — sin®(t)

1 pt=arcsin(p) 2(¢
= 2/ / psin™ () _ o) dt dp
0 Jt=0 p? —sin?(t)

T o1

T cos(t) L ) .

= 2 pcos(t)sin”™*(t) ————==—==dp dt (Switching the order of integration)
sin p? — sin’(t)

1

dt (resolves)

B
= 2/ sin"2(t) cos®(t)/p? — sin?(t)
0 sin(t)
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Photovoltaic Solar Cells
-

Figure 2: (Left) An LSC with exaggerated thickness. (Right) Flourescence translated to the solar cells at
the boundary.

Therefore, it can be shown that
= n

dn =2 ;
(n + 1)(77‘ - 1)Wn72

where W,,_5 is the Wallis integral fog sin" "2 (1, ) dyp; for n > 3.
It is well known that the Wallis integrals have the property W,, = (%) Wy—o for n > 2, therefore

Wiys = (%) W41 for n > 0. So for n > 2,

Jon = n+2 B n+2 _ (n+2) =
T+ D)W, (it 3) (4 )0, ,  (n+3)

n

This implies that the sequences W, 1 and c?n have the same recursive relation. Since 671 =1= %Wg and
dy = % = %Wg,. We must have d,, = 2 W41 for all n > 1, which proves the theorem. m

™

Below is a table showing the values of d,, forn =1,...,5.
n d, Decimal/Approximation
1 1 1
2| 8/(3m) 0.8488263632
3 3/4 0.75
4 | 32/(157) 0.6790610905
5 5/8 0.625

Note that as the dimension n increases, d:n decreases. In fact,

lim d,, = 0.

n—oo

These results can be generalized to any n-ball of radius R, in particular, the average directional distance
to the boundary of an n-dimensional ball with radius R is

d*=R-d,.

3 Motivation, Application, and Open Problems

This article arose from an undergraduate physics research project that involved modeling luminescent solar
concentrators (LSCs) used in solar panels.
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An LSC is a solar energy device, often in the shape of a disk (see Figure 2), that absorbs sunlight and
channels the resulting fluorescence to its edge where it is then converted into electricity by photovoltaic solar
cells [2]. The efficiency of the LSC depends on the average distance the fluorescence must travel from any
point inside the LSC to any point on its edge. Thus, measuring the average distance from any point inside the
panel to any point on the panel’s edge is critical in the effort to understand energy loss. An approximated
average distance for a disk appears in [4] using a Monte Carlo method, which closely approximates our
exact result. We also generated Monte Carlo simulations which well-approximated the theoretical findings
for dimensions n = 2 through n = 5. Finally, we anticipate that these results may play a role in wave
propogation, acoustics, or resonance in disks or spheres.

The authors have solved the problem below, which is relevant to LSCs of differing shapes.

Problem 1 Compute the average directional distance to the boundary for the following regular polygons: an
equilateral triangle, a square, and a reqular hexagon.

However, the following problems remain open:

Problem 2 Calculate the average directional distance to the boundary for any triangle and other non-reqular
planar figures.

Problem 3 Calculate the average directional distance to the boundary for a cube or for the other Platonic
solids.
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