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Abstract
This study focuses on deriving suffi cient conditions for the existence of positive ω-periodic solutions in

two types of third-order neutral differential equations with distributed deviating arguments. To establish
our findings, we employ the Krasnoselskii fixed point theorem. The derived results are further supported
by an illustrative example, demonstrating the practical applicability of the obtained theoretical results.

1 Introduction

Neutral differential equations exhibit variations in various fields, including Mechanics, Biology, and Physics
[9, 10, 14]. The investigation of positive periodic solutions in first and second-order neutral differential
equations has been extensively explored by numerous authors, as evidenced by references such as [1, 3, 4, 5,
6, 7, 8, 11, 12, 13, 16] and related works.
In recent research studies, the authors in [2] and [15] focused on studying the existence of positive

periodic solutions in two distinct classes of third-order neutral differential equations. These equations take
the following forms, respectively:

[x(t)− g(t, x(t− τ(t)))]
′′′

= a(t)x(t)− f(t, x(t− τ(t)))

and
[x(t)− g(t, x(t− τ(t)))]

′′′
= −a(t)x(t) + f(t, x(t− τ(t))),

where a, τ ∈ C(R, (0,∞)), g ∈ C(R× [0,∞),R), f ∈ C(R× [0,∞), [0,∞)), and a(t), τ(t), g(t, x), f(t, x) are
ω-periodic in t, where ω is a positive constant and

[x(t)− cx(t− τ(t))]
′′′

+ a(t)x(t) = f(t, x(t− τ(t)))

and
[x(t)− cx(t− τ(t))]

′′′ − a(t)x(t) = f(t, x(t− τ(t))),

where τ ∈ C(R,R), a ∈ C(R, (0,∞)), f ∈ C(R × [0,∞), [0,∞)), and a(t), τ(t), f(t, x) are ω-periodic in t,
and ω and c are constants with |c| < 1.

Building upon the motivation and inspiration provided by these prior works, we address the problem of
establishing the existence of positive ω-periodic solutions in the following two classes of third-order neutral
differential equations:[

x(t)− p1(t)
∫ b1

a1

x(t− µ(t, ζ))dζ

]′′′
= p2(t)x(t)−

∫ b1

a1

f(t, x(t− µ(t, ζ)))dζ (1)

and [
x(t)− p1(t)

∫ b1

a1

x(t− µ(t, ζ))dζ

]′′′
= −p2(t)x(t) +

∫ b1

a1

f(t, x(t− µ(t, ζ)))dζ, (2)
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where p1 ∈ C(R,R) and p2 ∈ C(R, (0,∞)) are ω-periodic functions, µ ∈ C(R× [a1, b1],R) (b1 > a1 > 0) and
f ∈ C(R× (0,∞), (0,∞)) are ω- periodic function in t, where ω is a positive constant.
This article presents the suffi cient conditions for the existence of positive ω-periodic solutions to (1) and

(2) by utilizing the Krasnoselskii fixed point theorem. The remaining sections of this paper are structured
as follows: Section 2 introduces the necessary notations and presents relevant Lemmas from [15]. Section
3 provides the proofs for the criteria regarding the existence of positive ω-periodic solutions to (1) and (2),
accompanied by an illustrative example.

2 Preliminaries

Let
Φω = {x(t) : x(t) ∈ C(R,R), x(t+ ω) = x(t), t ∈ R}

with the supremum norm ‖x‖ = supt∈[0,ω] |x(t)|. It is clear that (Φω, ‖ · ‖) is a Banach space. Define

C+ω = {x(t) : x(t) ∈ C(R, (0,∞)), x(t+ ω) = x(t)}

and
C−ω = {x(t) : x(t) ∈ C(R, (−∞, 0)), x(t+ ω) = x(t)}.

Let
m = min{p2(t) : t ∈ [0, ω]}, M = max{p2(t) : t ∈ [0, ω]} and β =

3
√
M.

Lemma 1 ([15]) The equation
y′′′(t)−My(t) = h(t), h ∈ C−ω

has a unique ω-periodic solution

y(t) =

∫ ω

0

G1(t, s)(−h(s))ds,

where

G1(t, s) =



2 exp
(
β(s−t)

2

)[
sin
(√

3β(t−s)
2 +π

6

)
−exp

(
− βω2

)
sin
(√

3β(t−s−ω)
2 +π

6

)]
3β2
[
1+exp(−βω)−2 exp

(
− βω2

)
cos
(√

3βω
2

)] +
exp
(
β(t−s)

)
3β2(exp(βω)−1) ,

for 0 6 s 6 t 6 ω

2 exp
(
β(s−t−ω)

2

)[
sin
(√

3β(t−s+ω)
2 +π

6

)
−exp

(
− βω2

)
sin
(√

3β(t−s)
2 +π

6

)]
3β2
[
1+exp(−βω)−2 exp

(
− βω2

)
cos
(√

3βω
2

)] +
exp
(
β(t+ω−s)

)
3β2(exp(βω)−1) ,

for 0 6 t 6 s 6 ω.

Lemma 2 ([15])
∫ ω
0
G1(t, s)ds = 1

M and if
√

3βω < 4π/3 holds, then 0 < A < G1(t, s) ≤ B for all t ∈ [0, ω]
and s ∈ [0, ω].

Lemma 3 ([15]) The equation

y′′′(t)− p2(t)y(t) = h(t), h ∈ C−ω

has a unique positive ω-periodic solution

y(t) = (I − S1B1)−1(S1h)(t),

where S1, B1 : Φω → Φω defined such that

(S1h)(t) =

∫ ω

0

G1(t, s)(−h(s))ds, (B1y)(t) = [−M + p2(t)]y(t).
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Define T1 : Φω → Φω by
(T1h)(t) = (I − S1B1)−1(S1h)(t).

If
√

3βω < 4π/3, then S1 and B1 are completely continuous and therefore T1 is completely continuous and
satisfies

0 < (S1h)(t) 6 (T1h)(t) 6 M

m
‖S1h‖, h ∈ C−ω .

Lemma 4 ([15]) The equation
y′′′(t) +My(t) = h(t), h ∈ C+ω

has a unique ω-periodic solution

y(t) =

∫ ω

0

G2(t, s)h(s)ds,

where

G2(t, s) =



2 exp
(
β(t−s)

2

)[
sin
(√

3β(t−s)
2 −π6

)
−exp

(
βω
2

)
sin
(√

3β(t−s−ω)
2 −π6

)]
3β2
[
1+exp(βω)−2 exp

(
βω
2

)
cos
(√

3βω
2

)] +
exp
(
β(s−t)

)
3β2(1−exp(−βω)) ,

for 0 6 s 6 t 6 ω

2 exp
(
β(t+ω−s)

2

)[
sin
(√

3β(t+ω−s)
2 −π6

)
−exp

(
βω
2

)
sin
(√

3β(t−s)
2 −π6

)]
3β2
[
1+exp(βω)−2 exp

(
βω
2

)
cos
(√

3βω
2

)] +
exp
(
β(s−t−ω)

)
3β2(1−exp(−βω)) ,

for 0 6 t 6 s 6 ω.

Lemma 5 ([15])
∫ ω
0
G2(t, s)ds = 1

M and if
√

3βω < 4π/3 holds, then 0 < A < G2(t, s) ≤ B for all t ∈ [0, ω]
and s ∈ [0, ω].

Lemma 6 ([15]) The equation

y′′′(t) + p2(t)y(t) = h(t), h ∈ C+ω

has a unique positive ω-periodic solution

y(t) = (I − S2B2)−1(S2h)(t),

where S2, B2 : Φω → Φω are defined such that

(S2h)(t) =

∫ ω

0

G2(t, s)h(s)ds, (B2y)(t) = [M − p2(t)]y(t).

Define T2 : Φω → Φω by
(T2h)(t) = (I − S2B2)−1(S2h)(t).

If
√

3βω < 4π/3, then S2 and B2 are completely continuous and therefore T2 is completely continuous and
satisfies

0 < (S2h)(t) 6 (T2h)(t) 6 M

m
‖S2h‖, h ∈ C+ω .

3 Main Results

Theorem 1 Suppose that
√

3βω < 4π/3, 0 < p1(t)(b1 − a1) 6 q1 < 1. Furthermore, assume that there exist
two constants k1 and k2 with 0 < k1 < k2 such that

k1M

(b1 − a1)
6 f(t, x)− p2(t)p1(t)x 6

mk2(1− q1)
(b1 − a1)

, ∀(t, x) ∈ [0, ω]× [k1, k2]. (3)

Then (1) has at least one positive ω-periodic solution x(t) such that k1 6 x(t) 6 k2.
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Proof. Consider the set Ωω = {x ∈ Φω : k1 6 x(t) 6 k2, : t ∈ [0, ω]}. It is evident that Ωω is a bounded,
closed and convex subset of Φω. We show that

x(t) = p1(t)

∫ b1

a1

x(t− µ(t, ζ))dζ + T1

(
p2(t)p1(t)

∫ b1

a1

x(t− µ(t, ζ))dζ −
∫ b1

a1

f(t, x(t− µ(t, ζ)))dζ

)

is a solution of (1). It is clear that the equation[
x(t)− p1(t)

∫ b1

a1

x(t− µ(t, ζ))dζ

]′′′
− p2(t)

[
x(t)− p1(t)

∫ b1

a1

x(t− µ(t, ζ))dζ

]

= p2(t)p1(t)

∫ b1

a1

x(t− µ(t, ζ))dζ −
∫ b1

a1

f(t, x(t− µ(t, ζ)))dζ (4)

is equivalent to (1). Let y(t) = x(t)− p1(t)
∫ b1
a1
x(t− µ(t, ζ))dζ in the equation (4), then we have

y′′′(t)− p2(t)y(t) = p2(t)p1(t)

∫ b1

a1

x(t− µ(t, ζ))dζ −
∫ b1

a1

f(t, x(t− µ(t, ζ)))dζ.

Applying Lemma 3, we have

y(t) = T1

(
p2(t)p1(t)

∫ b1

a1

x(t− µ(t, ζ))dζ −
∫ b1

a1

f(t, x(t− µ(t, ζ)))dζ

)
,

which verifies the desired claim.
Define the operators U1 and U2 on Ωω as follows:

(U1x)(t) = p1(t)

∫ b1

a1

x(t− µ(t, ζ))dζ and

(U2x)(t) = T1

(
p2(t)p1(t)

∫ b1

a1

x(t− µ(t, ζ))dζ −
∫ b1

a1

f(t, x(t− µ(t, ζ)))dζ

)
.

Clearly, U1x and U2x are continuous and ω-periodic, i.e we have U1(Ωω) ⊂ Φω and U2(Ωω) ⊂ Φω. For all
x1, x2 ∈ Ωω and t ∈ R, from Lemma 2, Lemma 3 and (3), we obtain

(U1x1)(t) + (U2x2)(t) = p1(t)

∫ b1

a1

x1(t− µ(t, ζ))dζ

+T1

(
p2(t)p1(t)

∫ b1

a1

x2(t− µ(t, ζ))dζ −
∫ b1

a1

f(t, x2(t− µ(t, ζ)))dζ

)

6 q1k2 +
M

m

∥∥∥∥∥S1
(
p2(t)p1(t)

∫ b1

a1

x2(t− µ(t, ζ))dζ −
∫ b1

a1

f(t, x2(t− µ(t, ζ)))dζ

)∥∥∥∥∥
= q1k2 +

M

m

sup
t∈[0,ω]

∣∣∣∣∣
∫ ω

0

G1(t, s)

∫ b1

a1

[
f(s, x2(s− µ(s, ζ)))− p2(s)p1(s)x2(s− µ(s, ζ))

]
dζds

∣∣∣∣∣
6 q1k2 +

M

m

∫ ω

0

G1(t, s)mk2(1− q1)ds = k2
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and similarly, we have

(U1x1)(t) + (U2x2)(t) = p1(t)

∫ b1

a1

x1(t− µ(t, ζ))dζ

+T1

(
p2(t)p1(t)

∫ b1

a1

x2(t− µ(t, ζ))dζ −
∫ b1

a1

f(t, x2(t− µ(t, ζ)))dζ

)

> S1

(
p2(t)p1(t)

∫ b1

a1

x2(t− µ(t, ζ))dζ −
∫ b1

a1

f(t, x2(t− µ(t, ζ)))dζ

)

=

∫ ω

0

G1(t, s)

∫ b1

a1

[
f(s, x2(s− µ(s, ζ)))− p2(s)p1(s)x2(s− µ(s, ζ))

]
dζds

>
∫ ω

0

G1(t, s)Mk1ds = k1

from this, we can conclude that k1 6 (U1x1)(t) + (U2x2)(t) 6 k2 for all x1, x2 ∈ Ωω and t ∈ R, i.e. we have
U1x1 + U2x2 ∈ Ωω. Furthermore, for x1, x2 ∈ Ωω, we have

|(U1x1)(t)− (U1x2)(t))| =

∣∣∣∣p1(t)∫ b1

a1

x1(t− µ(t, ζ))dζ − p1(t)
∫ b1

a1

x2(t− µ(t, ζ))dζ

∣∣∣∣
6 p1(t)

∫ b1

a1

|x1(t− µ(t, ζ))− x2(t− µ(t, ζ))|dζ.

It follows that
‖U1x1 − U1x2‖ 6 q1‖x1 − x2‖.

Noting that q1 < 1, it is clear that U1 is a contraction mapping.
From Lemma 3, we know that T1 is completely continuous, so is U2. By applying Krasnoselskii’s Fixed

Point Theorem, we can conclude that there exists x ∈ Ωω such that U1x + U2x = x, which is a positive
ω-periodic solution of (1).

Theorem 2 Suppose that
√

3βω < 4π/3, −1 < q0 6 p1(t)(b1−a1) < 0, −q0M < m. Moreover, assume that
there exist two constants k1 and k2 with 0 < k1 < k2 such that

(k1 − q0k2)M
(b1 − a1)

6 f(t, x)− p2(t)p1(t)x 6
mk2

(b1 − a1)
, ∀(t, x) ∈ [0, ω]× [k1, k2]. (5)

Then (1) has at least one positive ω-periodic solution x(t) such that k1 6 x(t) 6 k2.

Proof. Let Ωω = {x ∈ Φω : k1 6 x(t) 6 k2, : t ∈ [0, ω]} and define U1 and U2 as in the proof of Theorem 1.
It is clear that Ωω is a bounded, closed and convex subset of Φω and U1(Ωω) ⊂ Φω and U2(Ωω) ⊂ Φω. We
show that U1x1 + U2x2 ∈ Ωω for all x1, x2 ∈ Ωω. For x1, x2 ∈ Ωω and t ∈ R, we have from (5), Lemma 2
and Lemma 3 that

(U1x1)(t) + (U2x2)(t) = p1(t)

∫ b1

a1

x1(t− µ(t, ζ))dζ

+T1

(
p2(t)p1(t)

∫ b1

a1

x2(t− µ(t, ζ))dζ −
∫ b1

a1

f(t, x2(t− µ(t, ζ)))dζ

)

6 M

m

∥∥∥∥∥S1
(
p2(t)p1(t)

∫ b1

a1

x2(t− µ(t, ζ))dζ −
∫ b1

a1

f(t, x2(t− µ(t, ζ)))dζ

)∥∥∥∥∥
=

M

m
sup
t∈[0,ω]

∣∣∣∣∣
∫ ω

0

G1(t, s)

∫ b1

a1

[
f(s, x2(s− µ(s, ζ)))− p2(s)p1(s)x2(s− µ(s, ζ))

]
dζds

∣∣∣∣∣
6 M

m

∫ ω

0

G1(t, s)mk2ds = k2
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and

(U1x1)(t) + (U2x2)(t) = p1(t)

∫ b1

a1

x1(t− µ(t, ζ))dζ

+T1

(
p2(t)p1(t)

∫ b1

a1

x2(t− µ(t, ζ))dζ −
∫ b1

a1

f(t, x2(t− µ(t, ζ)))dζ

)
> p1(t)(b1 − a1)k2

+S1

(
p2(t)p1(t)

∫ b1

a1

x2(t− µ(t, ζ))dζ −
∫ b1

a1

f(t, x2(t− µ(t, ζ)))dζ

)

> q0k2 +

∫ ω

0

G1(t, s)

∫ b1

a1

[
f(s, x2(s− µ(s, ζ)))− p2(s)p1(s)x2(s− µ(s, ζ))

]
dζds

> q0k2 +

∫ ω

0

G1(t, s)(k1 − q0k2)Mds = k1.

Thus, we have U1x1 + U2x2 ∈ Ωω for all x1, x2 ∈ Ωω. Now we show U1 is a contraction operator on Ωω. In
fact, for x1, x2 ∈ Ωω, we have

|(U1x1)(t)− (U1x2)(t))| =

∣∣∣∣p1(t)∫ b1

a1

x1(t− µ(t, ζ))dζ − p1(t)
∫ b1

a1

x2(t− µ(t, ζ))dζ

∣∣∣∣
6 −p1(t)

∫ b1

a1

|x1(t− µ(t, ζ))− x2(t− µ(t, ζ))|dζ.

By using the sup norm, we see that

‖U1x1 − U1x2‖ 6 −q0‖x1 − x2‖.

Because of −q0 < 1, U1 is a contraction mapping.
From Lemma 3, we know that T1 is completely continuous, so is U2. There is an x ∈ Ωω such that

U1x + U2x = x because of Krasnoselskii’s Fixed Point Theorem and therefore x(t) is a positive ω-periodic
solution of (1).

Theorem 3 Suppose that
√

3βω < 4π/3, 0 < p1(t)(b1 − a1) 6 q1 < 1. Furthermore, assume that there exist
two constants k1 and k2 with 0 < k1 < k2 such that

k1M

(b1 − a1)
6 f(t, x)− p2(t)p1(t)x 6

mk2(1− q1)
(b1 − a1)

, ∀(t, x) ∈ [0, ω]× [k1, k2].

Then (2) has at least one positive ω-periodic solution x(t) such that k1 6 x(t) 6 k2.

Theorem 4 Suppose that
√

3βω < 4π/3, −1 < q0 6 p1(t)(b1 − a1) < 0, −q0M < m. In addition, assume
that there exist two constants k1 and k2 with 0 < k1 < k2 such that

(k1 − q0k2)M
(b1 − a1)

6 f(t, x)− p2(t)p1(t)x 6
mk2

(b1 − a1)
, ∀(t, x) ∈ [0, ω]× [k1, k2].

Then (2) has at least one positive ω-periodic solution x(t) such that k1 6 x(t) 6 k2.

Since the proofs for Theorem 3 and Theorem 4, respectively, are similar to those for Theorem 1 and
Theorem 2, we omitted them to avoid unnecessary repetition.
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Example 1 Consider the equation[
x(t)− exp(sin(2t))

100

∫ π/2

π/3

x(t− 10ζ − cos(2t))dζ

]′′′

=

(
1

4
+

sin(2t)

100

)
x(t)−

∫ π/2

π/3

(3.2 + exp(sin(2t)) + sin(x3(t− 10ζ − cos(2t))))dζ. (6)

It should be noted that (6) is of the form (1) with ω = π, p1(t) = exp(sin(2t))
100 , p2(t) =

(
1
4 + sin(2t)

100

)
, f(t, x) =

3.2 + exp(sin(2t)) + sin(x3), µ(t, ζ) = 10ζ + cos(2t), a1 = π/3 and b1 = π/2. Furthermore, M = 0.26,
β = 3

√
M = 3

√
0.26. Since

√
3βπ = 3.4730 < π/3 = 4.1818 and

p1(t)(b1 − a1) =
exp(sin(2t))

100
(
π

2
− π

3
) 6 q1 = 0.0142 < 1.

All conditions of Theorem 1 are met with k1 = 4 and k2 = 16. As a result, (6) has at least one positive
π-periodic solution.
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