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Abstract

The purpose of this article is to study the existence, uniqueness and Ulam stability results for a class of
implicit neutral fractional differential equations involving the Caputo tempered fractional derivative with
retarded and advanced arguments. The results are based on Banach’s contraction principle, Schauder’s
and Darbo’s fixed point theorems. To illustrate our results, we will give some examples.

1 Introduction

Fractional calculus has recently become an important tool in tackling complex issues across a variety of
research fields. This approach involves extending differentiation and integration to non-integer orders, and
has generated significant interest in both its theory and applications. To gain a comprehensive understanding
of fractional calculus, we recommend consulting monographs such as [1-4, 13,20, 35, 38|, as well as papers
like [5-7,15,16]. In recent years, there has been a notable increase in research on fractional calculus, with
authors exploring diverse outcomes for different forms of fractional differential equations and inclusions, and
under varying conditions. Further information can be found in papers like [8,9, 18,2224, 33], and their
respective references.

In [11], the authors considered the following fractional impulsive neutral integro-differential systems with
infinite delay:

D (y(0) = x (0,39)) = A, ) ((60) = x (0,30)) + (00, 3 1 (0,5,9.) ds) .
0c0,b], 60,

Ay|9=0, =1, (y (9]_)) , 0=0;9=1,...,m,

y(0) +g(y) =¢, o€ By,

where 0 < ¢ < 1, D] is the Caputo fractional derivative and yg(.) denote yp(x) = y(6 + k), k € (—00,0]. The
results are obtained by a fixed point theorem.

In [27], the authors considered a class of problems for nonlinear Caputo tempered implicit fractional
differential equations with boundary conditions and delay:

§Dyy(0) =W (H,ye, (?Dg’”y(e)> . 0€0:=10,T),

y(e) = ¢(9)7 0 € [—Ii,O],
01y(0) + 62y(T) = 63,
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where 0 < 8 < 1, v > 0, ng”y is the Caputo tempered fractional derivative, ¥ : © x C([—k,0],R) x R is
a continuous function, y € C([—k,0,R), 0 < T < +00, d1, 02,05 are real constants, and x > 0 is the time
delay. Their arguments are based on Banach, Schauder and Schaefer fixed point theorems.

Tempered fractional calculus has become a noteworthy class of fractional calculus operators in recent
years, as it possesses analytic kernels and is capable of generalizing various forms of fractional calculus. This
class is seen as an extension of fractional calculus, as it can describe the transition between normal and
anomalous diffusion. Buschman’s seminal work [17] established the definitions of fractional integration with
weak singular and exponential kernels, and further elaboration on this topic can be found in [10, 26,28-32,
34, 36]. Although the Caputo tempered fractional derivative has received little attention in the literature,
it offers the potential to make a substantial contribution to this discipline. With the study of the Caputo
tempered fractional derivative, we want to get a better grasp of the properties and possible uses of this unique
mathematical notion, and in doing so, we hope to contribute to the advancement of fractional calculus.

In this paper, we investigate the existence, uniqueness and stability results of the following implicit
neutral problem:

§Dg° [y(0) — @(0,y%)] =V (0,4°, TDgey(0)), 0€6:=[0,T], (1)
y(@) = w(9)7 NS [_T7 0]7 (2)
y(0) =(0), 0€[T, T+, (3)

where ng’Q is the Caputo tempered fractional derivative of order ¢ € (0,1), ¢ > 0, 7,6 > 0 1O x
C([-rd,R) xR—-R, ®:0 x C([-r,0],R) — R are given functions, w € C([-r,0],R), and @ € C([T,T +
§],R). We denote by 3% the element of C([—r,d],R) defined by

y? =y@+k): k€[]

The paper is arranged as follows: In section 2, we give some notations, definitions and auxiliary results
that are used throughout this work. Section 3 presents some existence and uniqueness results for the problem
(1)=(3) that are based on Banach’s contraction principle and Schauder’s fixed point theorem. A similar
problem to problem (1)—(3), albeit in Banach space, is presented in section 4, the results of this problem
are based on Darbo’s fixed point theorem coupled with the technique of measure of noncompactness. In
section 5, we will establish the Ulam stability of the previous problem. In the last section, we give some
demonstrative examples to prove the validity of our results.

2 Preliminaries

In this section, we give some notations, definitions and lemmas which are used throughout this paper. Let
(E,]l - ) be a Banach space and denote by C(0, E), where © := [0,T], the Banach space of all continuous
functions from © into F with the norm

[9lloe = sup{[ly(0)]| : 6 € O}.
Let C([—r,0], E) the Banach space with the norm
19ll{—r0) = sup{lly(O)] : 6 € [=r,0]}.
Consider C([T,T + ¢], E) the Banach space with the norm
[Ylliz, 451 = sup{lly(O)|| : 0 € [T, T + 4]},

and C([—r,0], E') the Banach space with the norm

1Yll—r.5) = sup{[ly(O)| : 6 € [—r,d]}.
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Let
T={y:[-r, T+ — E:ylor € C(O,E),yl—rq € C([-7,0], E)
and y|[T,T+5] S C([Ta T + 6]a E)}
We note that T is a Banach space with the norm

lylly = sup  |ly(0)].
oc[—r,T+4]

Definition 1 (The Riemann-Liouville tempered fractional integral [28,32,36]) Suppose that the func-
tion ¥ € C(©,F), o > 0. Then, the Riemann-Liouville tempered fractional integral of order o is defined

by

|0 emelo-0 g (x)
I7°0(0) = e oI (e2T(0)) = / 4
019 (0) € 04g (6 (9)) 1—\(0_) (9_}?)170 dﬁ:) ( )
where oI denotes the Riemann-Liouville fractional integral [25], defined by
1 [ w(k)
15 (0) = dk.
BV =575 |, T ©)

Obviously, the tempered fractional integral (4) reduces to the Riemann-Liouville fractional integral (5) if
o=0.

Definition 2 (The Riemann-Liouville tempered fractional derivative [28,32]) For f—1 <o < ;
B €N, o >0, the Riemann-Liouville tempered fractional derivative is defined by

.0 _ =00 o (.00 R A 100
0D9 \IJ(@) =€ ¢ 0D0 (@Q \11(9)) = WW mdl‘ﬂ,

where oDg (699\11(9)) denotes the Riemann-Liouville fractional derivative [25], given by

L 1 A (k)
deﬂ( 57 (e \Il(e))>_r(ﬁ_0')d9ﬁ/o et

Definition 3 (The Caputo tempered fractional derivative [28,36]) Forf—1 <o < ;€ N, 0> 0,
the Caputo tempered fractional derivative is defined as

oDg (600‘1’(9)) =

0.0 e 0 e=e? f 1 dP (2 W (x
CD V(o) = CD@ ( 0\11(0)) - g —-o) /0 (0 — K)o—B+1 ( d/@ﬁ( ))dn,

where § DU’Q (699\11(0)) denotes the Caputo fractional derivative [25], given by

1 0 1 dP (e2" T (K
ng (609\1’(9)) = T(3-0) /0 (0 — k)7 BT ( i ( ))d“'

Lemma 1 ( [28]) For a constant C,
DU’QC _ Ce—gGODgegﬁ) CDU,QC _ Ce—g@ CDUGQQ.

Obviously, oDy ¢(C) #§ Dy ¢(C). And, §Dg¢(C) is no longer equal to zero, being different from § Dg(C) =
0.

Lemma 2 ( [28,36]) Let ¥V € C%(0,E) and B —1 < o < 3; B € N. Then, the Caputo tempered fractional
derivative and the Riemann-Liouville tempered fractional integral have the composite properties

B—1 0
o, o, _ 9] dj (69 \I’(G))
oI5 [§ DFew(0)] = w(o) - ?:o: e [dw

6=0

and
E DI LI (0)] = W(B), for o € (0,1).
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2.1 Measure of Noncompactness

Definition 4 ( [14]) Let X be a Banach space and let Qx be the family of bounded subsets of X. The
Kuratowski measure of noncompactness is the map « : Qx — [0,00) defined by

a(M)=inf{e>0: M C UMj7 diam(M;) <e

Jj=1
where M € Qx.
The map « satisfies the following properties:
e a(M) =0 < M is compact (M is relatively compact);
e a(M) = a(M);
o My C My = a(My) < a(Ms);
o a(M; + Ms) < a(M) + a(Ms);
o a(cM) = |cla(M), c € R;
e a(convM) = a(M).
Lemma 3 ( [21]) Let B C Y be a bounded and equicontinuous set. Then

a) The function 8 — a(B(0)) is continuous on 0, and

ar(B)= sup «a(B(9)).
oc[—r,T+6]

b) « ({fOT y(r)dy :y € B}) < fOT a(B(k))dk, where

B(9) = {y(0) : y(#) € B, € O}.

2.2 Some Fixed Point Theorems

Theorem 1 (Banach’s fixed point theorem [37]) Let X be a Banach space and Y : X — X a con-
traction, i.e. there exists 3 € [0,1) such that

Y1) = V@)l <allyr —w2l,  for all y1,y2 € X.
Then Y has a unique fized point.

Theorem 2 (Schauder’s fixed point theorem [37]) Let X be a Banach space, D a bounded, closed,
convex subset of X, and Y : D — D a compact and continuous map. Then )Y has at least one fized point
m D.

Theorem 3 (Darbo’s fixed point Theorem [19]) Let D be a non-empty, closed, bounded and convex
subset of a Banach space X, and let Y be a continuous mapping of D into itself such that for any non-empty
subset B of D,

a(Y(B)) < Ta(B),

where 0 < 7 < 1, and « is the Kuratowski measure of noncompactness on X. Then Y has a fized point in
D.
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3 Existence Results

Consider the following fractional differential problem:

6 D5 [y(0) —U®B)] = @), if 0B, 0<o<1, (6)
y(0) =w(0), if € [-r0], r>0, (7)
y(0)=w(0), if 0€[T,T+9], 6>0, (8)

where 1 : © — R is a continuous function, U : © — R, w € C([-r,0],R), and @ € C([T,T + ¢, R).

Lemma 4 Let o € (0,1), and p : © — R be continuous. Then, the problem (6)—(8) has a unique solution
given by:

w(0)e™ 2 — U(0)e=2 + U(0) + ﬁ foe e 0=r)(9 — k) u(k)dr, 6 €O,
y(0) =<4 w(h), 0 e [—r0], 9)
@(6), 6e|T,T+3).

Proof. Suppose that y satisfies (6)—(8). From Lemma 2, we have

0
y(6) — U(6) — e [w(0) — U(0)] = %U) / 009 (g — k) ().
Then,
y(0) — U(6) = e=2[w(0) — U(0)] + % / 009 (0 — k) ()

Finally, we have
1 9
y(0) = w(0)e™? —U(0)e?® + U() + —— / e 209 — k)7 (k) dk.
I(o) Jo
Conversely, we can easily show by Definition 3, Lemmas 1 and 2 that if y verifies (9), then it satisfies the

problem (6)—(8). m
Let

To = {y: [-r,T+0] = R:ylp.z € C(O,R), 4l g € C([-7,0},R)
and y|[T,T+§] € C([T7T + 5]7R)}

be a Banach space with the norm

lyllve = sup  [y(0)].
oc[—r,T+6]

Definition 5 By a solution of problem (1)-(3), we mean a function y € Yg that satisfies the equation (1)
and the conditions (2)—(3).
Lemma 5 Let ¥ : © x C([-r,0],R) x R — R be a continuous function. Then, the problem (1)-(3) is

equivalent to the following integral equation:

@(0)e= — (0, w(0))e™ % + @(0,y”)
+ foe e 0= (9 — K)T1U (K, y*, h(k))dr, if 0 € ©,

0=1 "
Y w0, if 0 € [-r,0],
&(0), if0 e [T,T+ 4],

where h € C(O,R) satisfies the following functional equation
h(0) = w(0,y°, h(6)).
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Let us put the following conditions:
(A1) The functions ¥ and ® are continuous.
(A2) There exist constants A > 0 and 0 < L < 1 such that
|\Il(97 X %) - \11(9, )7(7 §)| < )‘HX - XH[*T‘,&] + L|% - §|a

for any x, ¥ € C([-r,d],R), 3,3 € R and 0 € O.

(A3) There exists constant C' > 0 such that
126, x) — (0, X)| < Cllx = Xll(-r.a];
for any x,x € C([-r,0],R), 6 € O.

We are now in a position to prove the existence result of the problem (1)—(3) based on the Banach’s
contraction principle.

Theorem 4 Assume that the hypotheses (A1)-(A3) hold. If

AT?
C+ m < ].7 (10)

then the implicit fractional problem (1)-(3) has a unique solution.
Proof. Consider the operator A : Tg — Tr defined by

@(0)e™ — (0,w(0))e* + (6, y")
+ﬁ foe e—g(G—n)(g _ fi)a_lh(lﬁ)dﬁj, ifoco,

=(6), it 0 € [r,0],
&(6), it 0 e [T,T + 4.

Ay(0) =

Obviously, the fixed points of the operator A are solutions of the problem (1)—(3). Let y, 2 € Tr. If 6 € [—r, 0]
or 0 € [T,T + ¢], then
|Ay(0) — Az(0)] = 0.

If 6 € ©, we have
1 6
Ay(0) =~ A=(0)] < 9(0.4") ~ 9(0.2")| + / e (9 — )7 h(x) — k(i) ds,

where h and k are two functions verifying
h(0) = ¥ (0,y°, h(0)),

and

k(0) = U(0, 2% k(6)).
By condition (A2), we find that
|1(8) — k(0)] = [%(8,y°, h(6)) — W (B, 2, k(6))]
< Ay = 2% j—r.g) + LIR©) — k(©O),

which implies that
A
|h(0) — k(0)] < ﬁ”ya — 2%\l =r)-
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Then, for each 6 € ©, we have

|Ay(0) — Az(0)] < Clly® — 2°ll=r.s)

A 9 — —HK o— K K
" (1—L)F(o)/o e 00 = 1) ly" = 2 e
VA
< B — .
= C+ (1—L)F(O’—|—1) ”y Z”TR
Thus,
PV

Ay — A < —_— — .
4y = Aslhv, < |C+ T=Frg I = =l

Consequently, by the Banach’s contraction principle, the operator A has a unique fixed point which is solution
of the fractional problem (1)—(3). m

Remark 1 Let us put

Then, the condition (A2) implies that
W (0,x, )| < q1(0) + aalIxll—r. + a31S31,
for 6 € ©, x € C([-r,0],R) and S € R with ¢ € C(©,R,), such that

q; = sup q1(0).
0cO

Our second existence result for the problem (1)—(3) is based on Schauder’s fixed point theorem.
Theorem 5 Assume that in addition of (A1)-(A2), the following hypotheses hold:
(A4) For each 6 € © and bounded set B € C([—r,0],R), the set

{6 — ®(0,y°),y € B} is equicontinuous.

(A5) There exist two functions p1,p2 € C(O,R,), such that
126, )] < p1(O)|xl{-r.e) + p2(6),
for each x € C([—7,0],R), where p} = supgeg pi(0);i=1,2.

If

*

q*TU
Y41 + ( 2

— <1,
1-¢i)T(c+1)

then the implicit fractional problem (1)—(3) has at least one solution.

Proof. The proof will be given in several steps.

Step 1: The operator A : Tg — Tg is continuous.
Let {ys}sen be a sequence such that y3 — y in Tr. If 6 € [-r,0] or 0 € [T, T + ¢], then

|Ays(0) — Ay(0)| = 0.
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If 6 € ©, we have
0 0 1 ’ 0
405(6) = Ay(0)] < [9(0.85) = 8(6.5")] + s [ 00— 07 (o) = B

where hg and h are two functions satisfying the following functional equations:

hﬁ(@) = \P(evyg’ h/g(e)),

and

h(8) = (6,4, h(6))-

By (A2), we have
[hs(0) = h(O)] = [ (8,5, hs(0)) — ¥ (0,4, h(6))]

< Myg = lli—r0) + LIbs(0) = h(O)].

Then,
A
ho(8) = h(6)] < T2l — ¥l

Thus,

|Ays(60) — Ay(6)] < [2(8,y5) — @ (6. y")]

>\ 0 — —K o— K K
+(1—LWA e=e(® )(0_“) 1||y[3_y H[—né]dm

By applying the Lebesgue dominated convergence theorem, we get
|Ayp(0) — Ay(0)] — 0 as f — oo,

which implies that
lAys — Ayllyx, — 0 as f — oo.

Hence, the operator A is continuous. Let R > 0 such that

[ (0)] + 205 + =birrer _
1 « ;Te ) ||w||[—r,0]> ||w||[T,T+5]
Pl T a=g)T(e+D)

R > max

Define the ball
Dr={y€Tr: |ylr, <R}

It is clear that Dpg is a bounded, closed and convex subset of Tg.
Step 2: A(Dg) C Dp.

Let y € Dg. If € [—7,0]. Then
[Ay(0)] < |[@ll{-r0) < R,

and if 0 € [T, T + §], then
l[Ay(0)] < @7 1r+6 < R

For each 6 € ©, we have

0
| Ay(0)] < [w(0)]e™ + |@(0, w(0))][e™ 2" + |@(0,y”)| + %/O e 2070 — k)7 h(k)|d.
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From hypothesis (A2), we have
h(0)] = [ (6,y°, h(6))]
< q1(0) + 311y’ I -r.5) + a3 |1 (6)]

<@ + @yl + 3| (0)]
< qi + @R+ gz|h(0)].

Then,

(o) < LBl
1—q3

Finally, we get
@ +aRT7

Ay(9)] < |@(0)] + 2p% + pi R+ B 2T <

Thus, for each 6 € [—r, T + 4],
[Ay(0)] < R,

which implies that
[Ayllr, < R

Consequently, A(Dg) C Dg.

Step 3: A(Dg) is equicontinuous.
Let 61,05 € ©, where 61 < 05 and y € Dg. Then,

[Ay(02) — Ay(01)] = ‘W(O)e_g% — ®(0,w(0))e” " + ®(6:,y")

1 %
—0(02—kK) _ o—1
+ —F(U)/O e (02 — k)" h(k)dK
—@(0)e” " + &0, (0))e 2" — D(0a,5™)
L A 1
_ —o(01—~ _ \o—
(o) /0 e (01 — k)" h(r)dk
< |w(0)] |67902 — 67901| +|2(0,2w(0))| |67902 — 67901|
+ |q)(023 y@g) - (I)(elayel”

1 [0
—0(02—k) . o—1 _ _—0(01—k) 7 o—1
+ (o) /0 [e (02 — k) e (01 — k) ] |h(k)|dr

1 [
- 79(92*5) 9 _ o—1 h d
G AR ORI UL
< |@(0)] [e=% — e~ | +]2(0,w(0))] [e "% — e~
(¢i + G R)(63 - 07)

(1=g5)I'(o+1)

+ |¢(02ay02> - q)(917y91)| +

(i + 3 R)(02 — 01)°
(1-¢)(e+1)

+

As 61 — 05, the right-hand side of the aforementioned inequality approaches zero, implying that the
operator A is equicontinuous. Equicontinuity in other intervals is easily demonstrated and therefore not
discussed here. By virtue of Schauder’s fixed point theorem, we can conclude that the problem (1)—-(3) has

at least one solution. m
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4 An Example

Consider the following implicit problem:

§DF" [y(6) — 0(6,4%)) = @ (H,y", §D§’1y(9)) , 0€0,1], (11)
y(0) = w(0), 6¢c[-1,0], (12)
y(0)=w(0), 6€]l,2], (13)

where w € C([—-1,0],R) and @w € C([1,2],R). Set
3.1
m(®) + 203l rs) + 2 |§ D5 y(6)

(15+ ) (14 1]l + [§ D3 "5(0)))

)

v (&ye, 3D§’1y(9)) =

0 ” H -
0 Y ll[—r,0]

(0 =

(’y) 00

Clearly, the functions ¥ and & are continuous, then the hypothesis (A1) is satisfied. For any x,Xx €
C([-r,d],R), ¥,< € R and 6 € [0, 1], we have

_ s 1 _ 2 _
|W(97X7%) - \Il(eaX7%)‘ < B 2||X - XH[*T,(S] + §|C‘} - %‘

Then, the hypothesis (A2) is satisfied with A = 12—5 and L = %. Also we have

Ix = Xlli=r.6-

1
B, y) — B0, ¥)| < —
|20, x) (,x)l_100

So, the condition (A3) is satisfied with C' = ﬁ. Furthermore, we have

C + L = i + L
(1-L)D(o+1) 100 43T ()
~ 0.166257654193793

<1

Since the condition of Theorem 4 is verified, the problem (11)—(13) has a unique solution.

5 Implicit Neutral Problem with Retarded and Advanced Argu-
ments in Banach Spaces

This section is devoted to the study of existence and stability of a problem similar to problem (1)—(3) in a
Banach space. This problem is given by

§ D7 [y(0) — @(0,y%)] =V (0,4°, §Dg°y(0)), 6€6:=[0,T], (14)
y(0) = w(0), 6¢€[-r0], (15)
y(@) = 7%(9)3 o€ [TvT + 5}’ (16)

where §Dj¢ is the Caputo tempered fractional derivative of order o € (0,1), o > 0, r
C([-rd,E)x E — E, & : © x C(]-r,d],E) — E are given functions, w € C([-r,0], E), and
C([T,T + 6], E). We denote by y? the element of C([—r,d], E) defined by

v =y0+k):ke[-r0d]
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Definition 6 By a solution of problem (14)-(16), we mean a functiony € Y that satisfies the equation (1)
and the conditions (15)-(16).

Lemma 6 Let U : © x C([-r,6], F) x E — E be a continuous function. Then, the problem (14)-(16) is
equivalent to the following integral equation:

@(0)e=2" — &(0,w(0))e=2 + (0, y°)
try Jy €200 — 1) Uk, y" h(R))dr,  if 0 €O
y(0) =

w(0), if 6 €[-r0],
@ (), if €T, T+ 4],
where h € C(O, E) satisfies the following functional equation
h(0) = ¥(9,5”, h(0)).
Let us put the following conditions:
(A6) The functions ¥ and & are continuous.
(A7) There exist constants A>0and 0 < L < 1 such that
190 % 9) = (0 % )| < Mlx = Klliray + LIS = Sl

for any x,x € C([-r,0],E), 3,3 € E and 6 € ©.

(A8) There exists constant C > 0 such that
19(6, %) = (8. )l < Cllx ~ Xlli—r.s):

for any x,x € C([-r,0],E), 6 € O©.

(A9) For each 0 € © and bounded set B € C([—r,d], E), the set

{0 — ®(0,y”),y € B} is equicontinuous.

(A10) For each 6 € © and bounded sets By C C([—r, 9], E), By C E, we have

a(¥(0,B1,Bs)) < h) sup «a(Bi(k)) + Ea(Bg).
KE[—1,d]

(A11) For each 0 € © and bounded set B; C C([—r,¢], E), we have

a(®(0,B1)) <C sup a(Bi(k)).
KE[—T1,0]

Remark 2 ( [12]) It is worth noting that the hypotheses (A7) and (A10) are equivalent as well as the
hypotheses (A8) and (Al1).

Remark 3 Let us put
@) = 90,00, A=&", L=a". C=5", 5:(6) = [2(6.0)||
Then, the condition (AT) implies that

1200, x: I < @1 (0) + & [Ixlli—rey + 3" IS,
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for0 € ©, x € C([-r,0], E) and I € R with ¢1 € C(O,R), such that

@ =supq(0).
6eo

And from hypothesis (A8), we have
120,51 < 51" [|xIl[-r.8) + P2(0),
for each x € C([—r,d], E) with py € C(©,R,) such that

p2" = sup pa(6).
)

Theorem 6 Assume that the conditions (A6)—(A9) are verified. If
@17

/\*+ ==
LT AT e+ 1)

<1,

then the implicit problem (14)-(16) has at least one solution.

To prove the existence of solution of the problem (14)-(16), we will use the concept of measures of
noncompactness and Darbo’s fixed point theorem.

Proof. Transform problem (14)—(16) into a fixed point problem by considering the operator S : T — T by
@(0)e~’ — ®(0,(0)e¢’ + (6, 3°)
tr Jy €200 — k)7 h(k)dr,  if 0 €O,
w<9)’ ’Lf 0 € [—7"7 O]a
&),  if0e[1,T+9).

Sy(0) =

The proof will be given in several steps.

Step 1: The operator S : Y — Y is continuous.
Let {ysg}gen be a sequence such that y3 — y in Y. If 6 € [—r,0] or 0 € [T, T + 4], then

[1Sys(6) — Sy(6)[l = 0.
If 6 € ©, we have
15y5(0) = Sy(0)| < (196, y5) — ©(6,5")]|

1 /9 o _
+ | e80T = R)7 s (k) — h(k)||dx,
I(0) Jo ’
where hg and h are two functions satisfying the following functional equations:

hs(0) = (0,95, hs(0)),

and
h(0) = (0,4, h(0)).

From hypothesis (A7), we have

1hs(8) — R(O)]| = | (8, 5. hs(8)) — T(8,4°, h(8))]
< AYG = 90l sy + Ll () — R(O)]].
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Then,
hs(0) — h(6)| < ~lv% — °|l—rs.
[hs(0) — h(O)]| < 1_L||Z/5 Y ll=r6
Thus,
15y5(8) — Sy(B)Il < Cliys — vl =)
/): ‘ (0—k) 1
+ — /e_g TG - )T lyg — Y | —r01dk.
Do) o (0 = #)7lys = y"ll—re)

By applying the Lebesgue dominated convergence theorem, we get
15ys(0) = Sy(O)l| — 0 as f — oo,

which implies that
I1Sys — Syllr — 0 as B — .

Consequently, the operator S is continuous.
Let R > 0 such that

1w (0)]| + 255" + = ey _
Ranx{ g Il 1Bl
Pt T T=&9rern

Define the ball
Dr={yeT:|yllr < R}.

It is clear that Dpg is a bounded, closed and convex subset of T.
Step 2: S(Dg) C Dp.

Let y € Dg. If 6 € [—r,0], then
1Sy@) < l[@llj-r0 < R,

and if 0 € [T, T + §], then
1Sy < @llirr4s < B.

For each 6 € ©, we have
1Sy@) < lw(0)]le=2’ + [|@(0,w(0))lle~’ + | @(6, )l
0
+ F(la)/o e~ 0" (9 — k)71 |h(k)||dk.
From hypothesis (A7), we have
1RO = 1%(8,y°, hO) | < @ + &R+ @ [[h(O)]-
Then,

O +@R

h(9)| < ——
In®) < £

Finally, we get
(@1 :L*(D R)T <R
(1=g")(o+1)

1Sy@)I < [l==(0)] + 22" + p1” R +

Thus, for each 6 € [—r, T + §], we have
1Sy(@)] < R,



Rahou et al. 173

which implies that
[Syllx < R.

Consequently, S(Dg) C Dg.

Step 3: S(Dg) is equicontinuous.
Let 61,05 € ©, where 61 < 65 and y € Dg. Then,

1Sy (02) — Sy(61)]| = HW(O)e_"ez — ®(0,w(0))e” "% + ®(62,y")

1 [
—0(02—k) _ o—1
+ —F(U)/O e (02 — k)7 h(k)dk
—@(0)e " + ®(0,w(0))e " — ®(62,y™)

I
_— —0(01—r) _ o—1
r(a>/0 ‘ (0 = ©)" h(k)dr
< @ (Ol 7% = e[| + |2 (0, w(0)]l le=#% — e
+ (02, y7) — 2(61,5™)|
1

01
" T(o) /0 |70 (6 — )7 = e (6 — )7 () |

1 /92 e _
+ — e 202=5) (9, — I h(k)||dr
o) J,. (02 — )7 [[R(s)]

< [[w(0)] [le™#%= — e ¢ || +[|12(0, @ (0))]| [Je~#%= — e ¢ |
(@ + R R)(03 — 67)
(1-@")T(o+1)

+ || @(02, %) — (01,4 +
(1" + @©"R)(02 — 01)°
= &) 1)

As 0, — 05, the right-hand side of the inequality above tend to zero. Thus, the operator S is equicontinuous.
The equicontinuity in the other intervals is trivial. Thus we omit it.

+

Step 4: S is a contraction.
Let B be a subset of Dg. If § € [—r,0], then

a(S(B(9))) = a{Sy(0), y <€ B}
= a{w(ﬁ), y € B}
=0,

and if 0 € [T, T + §], then
a(S(B(0))) = a{Sy(6), ye B}

=ao{@0), y<c B}
=0.

For each 6 € [0,T], we have
a(S(B(9))) = a{Sy(0), y< B}

= a{w(0)6_99 + ®(0,w(0))e " + ®(0,4?)
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0
+ L/ e 209 — k)" h(k)dk, ye B
I'(o) Jo

1 0

<a{®(0,y"), ye B} +a —/ e 20" (9 — k) h(k)dk, y e B}.
L'(o) Jo

By condition (A10), we have

a(h(0)) =
<

(2(0,5”, n(6))

sup a(y’) + La(h(0))
oc[—r,d]

>) 9

<X sup  a(y(®)) + La(h(®)).
0c[—r,T+46]

Thus, R
A
a(h(f)) < ——= sup  a(y(f)),
1— L oe[—r,T+4]

and

~ 2 4
a(S(B(9) <C sup ay’)+ A/ (0 —r)7 ' sup a(y(k))ds, ye B}
0e[—r,6) 1—-LJo KE[—7,T+3]

A AT
S COCT(B) + ma’r(B)

Therefore,

. AT
C+ —

or(SB) < | O+ TE T

OLT(B),

and by Remark 3 , we have

@'T”

n+

OzT(B).

Thus, by Theorem (6), the operator S is a contraction. As a consequence of Darbo’s fixed point theorem,
we deduce that the operator S has a fixed point that is a solution of the problem (14)—(16). m

5.1 Ulam-Hyers-Rassias Stability
In this part, we will establish the Ulam stability for the problem (14)—(16). Let w € C(0,R4).

Definition 7 ( [1]) The problem (14)-(16) is Ulam-Hyers-Rassias stable with respect to w if there exists
Cy,, > 0 such that for each € > 0 and for each solution y € Y of the inequality

1505 [u(6) — 2(6.4)] =¥ (6.5, §DFu(0))]| < ew(d), b€, (17)
there exists a solution § € YT of the problem (14)-(16) with
[y(0) = g(O)|| < eCy0 w(B), 0€O.

Remark 4 A function y € Y is a solution of the inequality (17) if and only if there exists a function
¢ € C(O,E) (which depend on y) such that

1. |1€(9)]] < ew(B), for each 6 € ©.
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2. §D7y(0) =T (G,y(’, §Dg?y(0)) + (), for each 6 € ©.
Lemma 7 The solution of the following perturbed problem
6Dy [y(0) —2(0,y")] =¥ (8,9, §DF°y(0)) +4(6), 6€©:=[0T],
y(0) =w(0), 0€[-r0]
y(0)=w(0), 0O€l[l, T+,
is given by

@(0)e ¢ + &(0,(0))e= + &(0,1°) + 55 fy €200 — k)7 h(k)dr

g Jy €070 — k)T () ds  if 0 €O,
0), if 0€[-r0],
)

0), if 0 €[T,T+9).

_|_

y(0) =

g

(
(

Moreover, the solution satisfies the following inequality

&

y(0) - lW(O)e_Qg +®(0,(0))e % + 2(0,y") + ﬁ /O e 07 f@)"_lh(m)d%]

Theorem 7 Assume that the conditions (A6)—(A9) hold and that the condition (10) is verified. If

<edow(B), for each 6 € O.

(A12) there exists a nondecreasing function w € C(©,R,), and A, > 0 such that, for any 6 € ©

ol w(0) < Ayw(h),

hold, then the problem (14)-(16) is Ulam-Hyers-Rassias stable.

Proof. Let y € T be a solution of the inequality (17) and § € Y the solution of the problem (14)—(16).
Then

ly(6) = G(O)II < Awew(9) + (|28, y") — 2(8,5°)l|

4
n %@ / e~ (9 — k)7 [1(x) — B(x) |dr,

where h and h are two functions satisfying the following functional equations:
h(0) = W(0,y", h(0)),

and

From hypothesis (A7), we have

1h(6) = h(0)]| = [|%(0, 4%, h(0)) — W(0,5°, h(0))]
< My? = 7llj=rs) + LIR(O) = R(0)],

which implies that

~

A

Ih(6) ~ h(O)] <

0 —0
||y -y H[—r,é]'
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Then,
A A ‘ (6—r) 1
0) — 50| < Aoew(@) +Clly — g Jr%/ e TR0 — )Ty — 57— s1dK-
ly(@) — ()| (9) ly — 7llr 1270 b ( )| U [l=r.0]

Thus,

ly = dlhe < Awcw(®) + Clly — gl + ——r |y — g]

- (JJ - - = - .

y—llr < o vilet el

Finally, we get
Awew(0)

Iyl < —===200
(1—D)T(o+1)
Then, for each 6 € ©, we have

ly = gllr < Cww ew(0),

where
Aw
_O_ 21
1-C (1—L)I'(o+1)

C‘I/,w =

Consequently, the problem (14)—(16) is Ulam-Hyers-Rassias stable with respect to w. m

6 An Example
Set

o
E:llz y:(yl,yQ,,yﬁ,),Z|yﬁ|<OO )
pB=1

where FE is a Banach space with the norm |[jy|| = 22021 lys|. Consider the following implicit problem:

§D3° [5(0) — 8(0.°)] = ¥ (0.4°, §D;°y(0)), 0 € 0.1, (18)
y(6) = =(0), 0¢€[-1,0] (19)
y(0) =w(9), 6ell,2], (20)

where @w € C([—1,0], F) and @ € C([1,2], E). Set

11
967+ cos |1y ) + cos (|5 D5 '45(0)))

11
1006711 (14 7y + [§05 ' 5(0)))

s (0,58, §DE ) =

)

and
V2710l + (e +6)

Ds(0,y5) =
,8( 7?}5) 77 )

for 0 € [0,1], y € C([-r, 6], E), where
Yy = (ylay%"'ayﬁw")»
U= (¥,Tg,...,¥g,...),
O = (P, Py,...,P5,...),

and Cpz3 Cpz3 Cr3zd Cpz3
29 — 29 20 29
o Dg y—(0D9 yi, 0Dg Y2 5., 0 Dg y57...).
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Clearly, ¥ and @ are continuous functions, then the hypothesis (A6) is satisfied.
For any x, ¥ € C([-r,8], F), $,S € E and 0 € [0, 1], we have

_ A 1 _ =
106 .9) ~ WO < o Tl Ko+ 13 - S,
and
_ 27 _
2630~ 20,91 < 27 x - Xl
Then, the assumptions (A7), (A8) are satisfied with N=1= ﬁ and C = g Also we have
1
190691 < oy 1967 + [l + 1311,
and
2m In(e +0)
d(0 < — _ —_—.
190,01 < L Il +
So ¢1(0) = 103:%, B =G =g n = ‘/7%7 and p3(0) = w. Moreover, we have

lim (®(ha,4%2) — ®(01,4")) — 0 as 6, — 05.

91 —>92

Thus, the hypothesis (A9) is verified, and since the condition of Theorem 6

A~ @*T(T vV 277 2
b1 + % - +
(1—@(o+1) 77 ' (100er — 1)/

~ 0.0325538024147905
<1,

is satisfied, then the problem (18)—(20) has at least one solution.
For any 6 € [0,1], we take w(f) = V5, then

1 0
I7%w(0) = —/ e 2077 (9 — k)7 w(k)dk.
0
% ( ) F(O’) 0 ( ) )
So s 2 2 2
2.3 V8 VEY _ V8 .
olg " (e¥") < (V%) = —=(e¥7") := —=w(0).
o r(3) NG N
Hence, the condition (A12) is satisfied with A, = % It follows from Theorem 7 that the problem (18)—(20)

is Ulam-Hyers-Rassias stable with respect to w.
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