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Abstract

In this paper, we first introduce the notions of m-tuple best proximity point and later establish
the new results of existence and convergence theorems of m-tuple best proximity point in metric
spaces. We provide some illustrations to support our claims. Furthermore, as a consequence, we
obtain m-tuple fixed point results for cyclic contraction mappings. As applications, we solve some
systems of delay differential equations and integral equations.

1 Introduction and preliminaries

Approximation theory is a subject with a long history and a huge importance in classical and contem-
porary research. It has many applications, such as problems obtaining a solution for split feasibility,
variational inequalities, systems of nonlinear matrix, integral and delay differential equations, etc.
Delay differential equations are used in many physical phenomena of interest in biology, medicine,
chemistry, physics, engineering, economics etc. There exist several methods for clarifying distinct
classes of delay differential equations problems (see [1], [6], [10] and the references therein).

The study of non-self mappings is fascinating because, in this case, the best approximation exists
by K. Fan [12] technique. In this case, we find an approximate solution such that the error d(a, 3'a)
is minimum, that is, the point a is in close proximity to $’a, where S’ is a non-self mapping. After
that, many authors gave the subsequent extensions and variants of Fan’s theorem in different spaces
and gave the best approximation results (see [21, 26, 28]). When a subset P of metric space (Y, d)
is mapped into another subset @ by a mapping &/, the problem extends to determining the points
that estimate the distance between these two subsets. These are referred to as best proximity points.
That is, if 3’ : P — Q is a non-self mapping then a point @ is known as the best proximity point of a
non-self mapping &/, if

d(a,S'a) = d(P, Q) = inf{d(a,b) : a € P,b e Q}.

When the intersection of P and Q is non-empty, then a best proximity point reduces to a fixed point.
The fixed point technique was extended to a coupled fixed point by Bhaskar and Lakshimikanttham
[5] in 2006. They proved some coupled fixed point results. In 2011, Berinde and Borcut [4] gave the
notion of tripled fixed point and proved new results. In the same year quadruple fixed points are
introduced by Karapinar [19]. For more details, see ([2, 7, 13, 14, 15, 25]). In 2013, Paknazar et al.
[20] generalized the quadruple fixed point to m-tuple (m > 1) fixed point and obtained some results.
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In 2006, Eldred and Veeramani [11] proved the existence of a best proximity point for cyclic
contraction mappings. There are many extensions of the Eldred and Veeramani [11] result in many
directions (see also [3, 17, 18, 22, 23, 24, 27, 30]). Later, Sintunavarat and Kumam [29] introduced
the concept of coupled best proximity point and property UC*. They also obtained some coupled best
proximity point results. In 2013, Cho et al. [8] introduced the notion of tripled best proximity point
and proved the new tripled best proximity point results for cyclic contraction mappings. Recently,
Hammad et al. [16] presented the notion of quadruple best proximity point and established the
existence and convergence theorems of quadruple best proximity point for cyclic contraction mappings
in metric space.

Motivated by these works, we first introduce the notion of m-tuple best proximity point and later
establish the new results for the existence and convergence of m-tuple best proximity point in metric
spaces. Consequently, we obtain some results on the existence and convergence of m-tuple fixed point.
We also provide some illustrations to back up our work. As applications of our obtained results, we
find the solution for a system of delay differential equations and integral equations.

Now, we need the following definitions and notations to be used in the sequel. Throughout the
paper, P and Q are two nonempty closed subsets of a metric space (), d).

Definition 1 A normed vector space Y is said to be a uniformly convexr Banach space (UCBS) [9] if
for every 0 < € < 2 there is some d > 0 such that for any two vectors with ||a|| =1 and ||b]| = 1, the
condition

lla— bl > e,
implies
a+b
CEO o s,
Definition 2 Let & : P™ — Q be a non-self mapping. A point (ay1,ds,as, .. .,ay) € P™ is a m-tuple
fized point of & [20] if
ay = d(ay,S(a1,a2, ..., am), a2 = d(ag, S(a2,a3,---,01))s .-, am = d(Gm, S(Gm, @1, -« 5 Gm—1))-

Definition 3 A pair (P, Q) satisfies the property UC [30] if there exist {an}, {a'n} C P and{b,} C Q

such that d(ay, b,) — d(P, Q) and d(a'y,b,) — d(P, Q), then d(an,a’n) — 0 as n — 0.

Definition 4 A pair (P, Q) satisfies the property UC* [29] if (P, Q) has the property UC and the
following condition holds: if {a,} and {a’,,} are sequences in P and {b,} is a sequence in Q satisfying:

(i) d(d/na Bn) —d(P,Q),
(ii) for every e > 0 there exists No € N such that for all m >n > Ny, d(@m,b,) < d(P, Q) +e¢.
Then there exists Ny such that for all m > n > N1, d(m,a',) < €.

Example 1 ([29]) Suppose that P, Q are two nonempty closed subsets of a UCBS such that P is
convex. Then the pair (P, Q) has the property UC*.

2 Main Results

We start the section by the following definition of m-tuple (m > 1) best proximity point.
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Definition 5 Let & : P™ — Q be a non-self mapping. A point (ay1,ds,as, .. .,ay) € P™ is a m-tuple
best proximity point of § if
d(dl, S(&l,dg, P ,dm) = d(dQ, %(EIQ, C~l3, ey &1)) =...= d(&m, %(szﬁh P ,Zlmfl)) == d(P, Q)

Ifm=1,2,3---, we get best proximity point, coupled best proximity point, triplet best proximity
point so on. If P = Q in the above definition, then a m-tuple best proximity point reduces to a
m-~tuple fixed point.

Definition 6 We say that S : P™ — Q and o : Q™ — P are cyclic contractions if there exists
k € [0,1) such that

d(S(ay, dg, ...y am), 0 (b1, ba,s - .. b)) < —(d(ay, by)+d(az, ba)+. . .+ d(dm, bm)+(1—k)d(P, Q), (1)

3=

for all (a1,as2,...,4,) € P™ and bi,bo, ... by € Q™.
Note that if the pair (3, 0) is a cyclic contraction, then the pair (o, <) is a cyclic contraction, too.
Example 2 Consider Y = R™ endowed with
d((@1, @2, ... am), (b1, b2, ... b)) = a1 — by| + |ag — ba| + ... + |Gm — b,
for (ay,dg, ... am), (b1, ba,...,by) €Y and suppose that
P={(@0,...0e¥:0<a <1}, @={(b,0,...,00€Y:0<h <2}

Clearly d(P,Q) = 0. Define S:P™ — Q and o : Q™ — P by

3((ar1,0,...,0), (@2,0,...,0), ..., (@n,0,...,0)) = <a1+a2+"'+a’”,o,o,...,o>

2m

and

- - - bi+by+ ...+ bm
a((bl,O,...,O),(bg,O,...,0),...,(bm,0,...,0))—<1+2+ + ,0,0,...,0).

Then we obtain

(%((al,o,...,0),(5@,0,...,0),...,@n,o,...,O)),)
((b1,0,...,0), (b2,0,...,0),..., (by,0,...,0))

g
g (atbet.tdm g o) (tbet.Hbn
2m 2m

Gy +ag 4 ...+ am by +by+...+ by

a1 — by| + |Gz — ba| + ... + |am — by
2m

IN

< %(d(&l,él)+d(az,62)+...+d(am,6m)>+(1—k)d(P,Q); k:%.

The pair (3, 0) is a cyclic contraction with k = 3.
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The lemmas below are very important in the sequel.

Lemma 1 Suppose that S : P™ — Q and o :

If

Q™ — P are two cyclic contraction mappings.

(@%,a3,...,ad,) € P™ and the sequences {a}}, {ay},..., {a%} are defined by
&%n—i_l = S(a%n &§n> ’dgnr,l)a (~ﬁn+2 = U(&%7L+17d§n+1" 7&$r?+1)7
as"tt = g(adn, adn,. . an), as"t? =o(ay" a3t ath,
and (2)
aztt = (a2, ain,ast, ..., an ), aznt? =@t ai ek,
for allm >0, then
d(at",a;"*) — d(P, Q), d(@y"™,a;"*?) — d(P, Q),
d(as",a3"*') — d(P, Q), d(a;",a3"t?) — d(P, Q)
and
d(apy,amtt) — d(P, Q), d(azytt, apyt?) — d(P, Q).
Proof. Consider
d@m, a2ty = d@m, s@ma, ..., am))
. ol )
fr %(o_(afn—l)agn—l)“'7&i:1 1)70_((1271. 17&§n 1 ~2n7 )’ ’a_(a2'n. 17&271 17 ~aa$,:L:ll)
k
S E [d(a%n 1’ O'(CNL%"_l,CNLg"_l, ...a ~2n 1)) + d( 2n—1 O,(agn—l’ dgn—l’ o ~%n—1))
+.oo+d@ et ar Tt L an )] + (1 - k)d(P, Q)
k S 2 a2, ak?)
= m|:d U(%(a?n—27&371—27...75(%11—2)7%((—13717727(—15717277.“,&?;77;‘) . c\(a2n 27~2n 2 '1‘3‘3::12))
p \s(agn 2 dg" 2, d%"_Q)
+ O—(%( 2n 27(2%7; 2,...7(3?"72)70((1,3"727(3,421"72,...,5.3”72),...,%(&?"72,ﬁ§n727...,~,g;zL72))
, Sz, a)
T (@ A S A S At )|
Using (1), we get
o ~ k |k N . - -
d(a%n’a%rﬂrl) S ml:m(d(a%n 2 (x( %n 2 gn 27.“, 2n— 2))+d( 2n—2 (\( gn 2 gn 27 a?n 2
o dan S e, an ) + (1 - k)d(P, Q)
k
+E<d<a§"-2, (@R @ ) (a6 )
d@in? %(af"”a&%”*z,~~a@?,7_2))) + (1= k)d(P, Q)

)
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k
+g<d<di?‘2 Sazr2,a7" 2, l) +day T Say eyt an )
A d(an T S(an Tl an T am ) + (L= k)d(P, Q)] + (1 — k)d(P, Q)

k2
=A@ 8@ 6" an ) +d(@3 T, (a3 ag 6l )

+ohd@n T @ e ) + (1 k2)d(P, Q).
By mathematical induction, we get

k.2n ~ ~ o
—(d(a,3(a, a3, ay,)) + d(az, S(a3, a, .-, a1))

+oot d(ln, (A, ad, - ayy))) + (1= K2)d(P, Q).

@@ <

Taking n — oo, we have
d(ai",ai"*') — d(P, Q).

Again, for each n € N, by induction one can write

k2 _ .
m(d(alv (al’a2""7a'1ln))+d(a2v (a2’a3""’a%))

+oot Al (A, 1, lyy))) + (1= K2)A(P, Q).

d(ay™*t,ai"t?) <

After taking n — oo, we have
d(a"*",a""?) — d(P, Q).

Similarly, we can show that
d(a3",a3" ™) — d(P, Q),d(a3" ", a3" ) — d(P, Q),.. .,
d(&%v 672'7;1+1) - d(Pv Q)a d(d%?-i_l’ a‘%r?-ﬂ) - d(Pv Q)
]

Lemma 2 Let P, Q be two nonempty closed subsets of a metric space (Y, d) such that (P, Q), (Q,P)
satisfy the peoperty UC and & : P™ — Q, o : Q™ — P be two cyclic contraction mappings. If
(@}, a9, ...,a2) € P™ and the sequence {ay}, {as},..., {a™} are defined by (2), for all n € NU {0},
then for each € > 0, there is Ng > 0 so that

1

(d(afp @2y 4 d@®, a2t 4 d(aif,aif“)) <d(P, Q)+, (3)
for allp >n > Ny.
Proof. By Lemma 1, we get
d(ai",ai" ™) — d(P, Q). d(ai" ™, ai"*?) — d(P, Q). d(a3",a3" ") — d(P, Q),
d(az"tt a2t = d(P, Q),...,d(a2", a2t — d(P, Q),d(a2"t, a2 t?) — d(P, Q).

m ' m

Because the pair (P, Q) fulfills the property UC, then we have

@™, ai"*?) — 0, d(ay",a3""*) —0,..., d@ay,axt?) — 0.

1 s Ay m 1 Am
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Also the pair (Q,P) fulfills the property UC, and then we have

d(&%n—&-l,d%n+3) N 0 d( 2n+1 d2n+3) O7 . d(a2n+1 a2n+3) 0.

m ? m
Suppose (3) is not true. Then for each k' € N with pgr > ngs > K/, there is ¢ > 0 so that

]' ~ ’ ~ !’ ~ i ~ i ~ 7 ~ 7
— (a@ @) + (@ @y ) + L+ d(@pe @) > d(P,Q) + ¢
This p) can be chosen such that it is the least integer greater than ny to satisfy the above inequality.

Now
1

» (d(afpk/727a?nk/+l)+d(~2pk1 2 N;"’“’H)+...+d(df,fk"2,df,fk’+l)) <d(P,Q)+¢

Thus, we obtained

]' Ny’ ~ 1 o~ Mgt ~ ~
AP, Q) +¢ < — (d@™ &™) +d@ @ )+ d(ae a2 )
1 M ’ o~ = ~ = ~ 2N/
<A@ a™ T @ T a6 ) @ T a™ )
+ . d@keazv =)+ d(ake 2 aze )
1 _ '
< E(d(dfpk/,&%pk/ 2)+d( ~2ppr ~§P;¢/ 2)+...+d(d%€k/,digk/_2)) +d(P,Q>+6/

As k' — oo, in above inequality we can write
]' ~ ’ ~ ’ ~ ’ ~ ’ ~ ~
~ (d( ?Pk an +1) —l—d( 2py, ’ gnk +1) T+ d(a%fk',a%’“'Jrl)) _ d(P, Q) +é

Using triangle inequality, we get

1
— (@ @) + (@™ 6y L d(@e aze )
1
S %[d(a?pk/7~2pk/+2)+d(~2pk/+2 ~2nk/+3)+d(~2nk/+3 ~?nk/+1)
+d(d§pk/ d2pk/+2)+d( 2pgr+2 ELan/+3)—|—d( 27Lk/+3’&;nk/+1)+.“
+d(a721€7k/762pk/+2) +d( 2pk/+27d2nk/+3) +d( 727’:7,k/+37&727’;7,k/+1):|
1
= —[d@ @™ ) (o (@™ T a L ae ), S@ T am L ae )
1
(™ @ ] d(@™ @)+ dle(@ ), 8@ am )
(@™ a4+ i[d(a%' a2y fod(o(aee L ate ), s@me 2L ekt
m

+d(azm 3 aze .

Applying (1), we have

(d(@P @) + @ @™ ) o d@ie ae)

~2pr ~2ppr+2 k
(@™, a,"""7) + m

<

3|l=3-

(d(dipk/+1,&?nk/+2) +d( ~2ppr+1 &gnk/+2) +...+d(&zsk,+l,d%’?k,+2))
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Mgt ~ Mgt ~ o~ ’ k ~ ’ ~2aM gt
H(1 = B)A(P, Q)+ d@™ @ ) + a(@n @) + (e )

—|—d( 2p,r+1 dgnk/—&-Z)_"_ +d( 2pk/+1’&%nk/+2)) +( ) (,P Q)+d( 27Lk/+3,d§nk/+1)—|—...

—|—d( 2pys ~2pk/+2)+%

+(1 = k)d(P, Q) + dlap 2, apw +1)]

o E[d(afpk, dzpk/+2)+d( 2nk/+17d§nk/+3)+d( ~2p1 ~2pk/+2)+d( 2nk/+17a§nk/+3)+”.

(d(dm”“/"'l, d2nm+2) + d(dipk/-'rl,a%"k/"ﬂ) o+ d(dQPk""‘l d2”k’+2))

m—1 »¥m—1

(@GR (@t ane ] b (da™ T a ) +d(an @ )+

+d(a2pk/+1’ d%?k’+2)) + (1 — k)d(Pv Q)
It follows that

1 My &Mt ~ ~
— (@ @) + (@™ 6y L d@@e et

m
1
S EI:d(aiz)lc/’d?pk/-‘rQ)_|_d(~2’r‘bk/-‘r1 aj?nk/+3)+d(~2pk/ ~§pk/+2)+d(d§nk/+1’&§nk/+3)+.“
k
+d(d2pk, ) &2pk/+2) + d(a%lkl+1a d%kl+3)] + E [d(%(dfpk/7 T d?)fk/ )7 U(d?nk/+17 T 7d127?k/+1>)
~2 ~2 ~2 +1 ~2 +1 ~2 ~ , ~2n,,+1
+d( ( pk/v"walpk/)vo'(aﬂnk/ 7"'7a1nkl )) + +d( ( ?r{)klr'"aw{)gl)va(afr?k +1""7a’7:—k,1 ))]
+(1 = k)d(P, Q)
1
< 7[d(a§pk/ a2pk/+2)_1_d( 2n,r+1 &?nk,+3)—|—d(a;pk/ d2pk/+2)—|—d( ~2n,+1 &gnk/+3)—|—...
- - k? - .
(g ) + dagt ane ] + (@™, ) + d(@™ " ) +

+d(@py an ) + k(1 - k)d(P, Q) + (1 — k)d(P, Q).
Take n — oo, we obtain that
K (d(P,Q) +¢€) + (1 - k) d(P,Q) = d(P, Q) + k*¢,
which is a contradiction since k < 1. This implies equation (3) holds. m

Lemma 3 Let P, Q be two nonempty closed subsets of a metric space (Y, d) such that (P, Q), (Q,P)
satisfy the peoperty UC and S : P™ — Q, o : Q™ — P be two cyclic contraction mappings. If
(@3, ..,a%,) € P™ and the sequence {@t}, {ag},..., {a} are defined by (2), for all n € NU {0}
then {al } {aQ"} {a } are Cauchy sequences.

Proof. Based on Lemma 1, one can get
d(af",a;"*') — d(P,Q) and d(ai"™,ai"*?) — d(P, Q).

P, Q) satisfies the property UC, then d(a? ,~2”+2 — 0. Similarly, since (Q,P) verifies the
1
property UC, then d(a 2”“, ~2"+3) — 0. Now we show that for every € > 0, there exists N € N so
that
d@r ,a;"™ ™ < d(P,Q) +¢ forall p>n > N. (4)

Suppose (4) is not true. Then for each k' € N there exists pys > ng > k' and € > 0 such that

d@™ a2 ™ > d(P, Q) +e.
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This pj, can be chosen such that it is the least integer greater than nys to satisfy the above inequality.
Now

(7) Q)+€<d( 2Pk/’~?nk/+1) d( 2py ~?pk/ 2)+d( ~2pgr — 2,&?”’“4_1)
<d@® @™ ™y £ d(P, Q) +e.
Taking k' — oo, we have
d(d?Pk/’a%nk/-‘rl) R d(P, Q) +e

By Lemma 2, we can write
1
— (@, @) + d@r, eyt + .+ @ akt) ) < d(P,Q) +
m

for all pgr > nyp > Ny. Then

AdP,Q)+¢ < d@r,a"™

< d( ?pk/ d2pk/+2)+d( 2pk/+2 d2nk,+3)+d( 2nk1+3 &?nk/Jrl)

d(a%pk/ d2pkl+2) +d(o(a ~2ps +1 dgpk""'l o ,&35’“/""1)’ %((ﬁ"k/-‘r?’ agnk/-‘r?’ o &727;%/+2))
~2n,,+3 ~2’I’L r+1
+d( " » 4y g )

< d@r @ty 4 %(d(a?k'“ a2y pd@sre T adme Y L
(a2l ~2nk/+2)) +( d(P, Q) + d(a? ~2n,0+3 &?nk,ﬂ)

= %[d(%(afpk’,aﬁpk’,...,afgk'),o( ol gt g2ty
Fd(S@Pam L ar ) e(adm t asme T ety
+d(@me @t éifk’l) a(ame Tt aym L an )]
+(1 = k)d(P, Q) + d(@* ,a"* %) + d(@ ™ *°,a>m

< % %(d(af”k',afnk'“)+d(~2pk' " Y L d(ae L a2 +2y)

k 1 ~LN 1 ~aNgpr ~ 1 ~ZNg
—‘r(]_—k)d('P7 Q)‘f‘%(d(agpk ’ag k +1)+d( ~2py, g kJrl) —l—d( 2py, ? chrl))

k ’ ~ 2N/
(1= R)d(P, Q) o (d(@n a1 o d(@ @)

+(1 = k)d(P, Q)] + (1 - k)d(P, Q) +d(a 2pk',~2”k’+2)+d< Tt Gyt

k2 ’ N ; ~2M ~
= E(d(a?ﬁg d2 k +1)+d( ~2py, 3 k +1)+ —|—d( ka/ an/-‘rl))

+(1 = E)d(P, Q) + d(@ a2y + d@ ™ 3 aim
< 2( (P Q)+€> (1_k2> (P Q)+d( ~2pp1 ~2pk/+2)+d( ~2n,,+3 ~2nk/+1)
— k2€+d(7) Q)+d(~2pk,,~2pk/+2)+d(~2nk/+3 ~2nk/+1)

Letting n — oo, we have

d(P,Q) + e < d(P, Q) + ke,

which is a contradiction. By inequality (4) d(a3”,a" ) — d(P, Q) and from the property of UC*,
we get {EL%"} is a Cauchy sequence. In a similar way, we can prove that {d%”}, {EL%”}, {a } are

Cauchy sequences. m
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We shall discuss the existence and convergence of m-tuple best proximity point for cyclic contrac-
tion pairs on nonempty subsets of metric spaces satisfying the property UC*.

Theorem 1 Let P, Q be two nonempty closed subsets of a metric space (Y,d) such that (P, Q),
(Q,P) satisfy the peoperty UC* and I : P™ — Q, o : Q™ — P be two cyclic contraction mappings. If

(@}, a9, ...,a2) € P™ and the sequence {at}, {as},..., {a%} are defined by (2), for all n € NU{0}.
Then S has a m-tuple best proxzimity point (I'1, T, ... ,I‘m) € P™ and o has a m-tuple best prorimity
point (T, T%,...,T7.) € Q™. Moreover, we have
a" — Ty, a3" —Ta,..., @2 - T, and a3 — T, aa" ™ —T%,..., a2t -1 .
In addition, if To =T3...=Ty, and Ty =T% ... =T7,, then
d(T1,T)) +d(T2,T%) + ... +d(Tm,[,) =md(P, Q). (5)

Proof. Based on Lemma 1, we conclude that d(a3",a;"*") — d(P,Q). From Lemma 2, we have
{a%”} {a%”} {am } are Cauchy sequences. Thus there are I'1,I's,...,T,, € P™, so that a?" —
Iy, a3® — Iy,..., a?" —T,,. Hence, we have

d(P,Q) < d(Ty,a;""") < d(T'y,a3") +d(at",at" ). (6)
Taking n — oo in equation (6), we find that
d(Ty,a:" ") — d(P, Q).
By similar way, we have

d(T2,a3"" ") = d(P,Q), d(I'3,a3" ") = d(P,Q),..., d(Tp, ") — d(P, Q).

Now consider

d(@3™, (T, Ty, ..., Tp)) =d(o(@i™ tas" . ..,a2 1), (T, Ty, ..., Tm))
<%(d( LT 4 4 d@2 ) + (1 - k)d(P, Q).

Taking n — oo, we obtain

d(T1,3(T,Te,...,Ty)) =d(P, Q).

Analogously, we can obtain

d(Fz,%(Fg,Fg,, )) —d(P Q) (Fm,\s(Fm,Fl,,Fm_l)) :d(P, Q)
Therefore, (I'1,Ts,...,T),) is a m-tuple best proximity point of . Similarly, we can prove that there
are T, T%,...,T' € Q™ so that a2"*" — T4, a2" ™ = T%,..., a>**t' — I . Moreover we get
AT, 0T}, Ty, ... 17,)) =d(P, Q),..., d(I,, oI, T,.... T, ) =d(P, Q).
Hence (I'},T%,...,T ) is a m-tuple best proximity point of o. Ultimately, let Ty =T3 = ... =T,
and ', =T% = ... =T, then we claim that equation (5) holds. For each n € N, one can write
d(ai",ai" ) =d(o(ai" "t a3" L an ), (@t 83", - any))

k
<—(d(a"ai") +d(@3" st + 4 d(an T ag) + (1= k)d(P, Q).
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Taking n — oo, we get

k

d(T,T)) < m(d(l“l, ) +d(T,T5) + ... +d(Tp,T0.)) + (1 = k)d(P, Q). (7)

Also for each n € N, one can write

d(ad, a3 ™) =d(o(a3" ' a3" .., am Y, @3, adn, . .., ait))

IN

k ~2n—1 ~2n ~2n—1 32n ~2n—1 ~2n
—(d(@3" ™ a3") +d(ag" 35" + -+ d(@m T ar") + (1 - k)d(P, Q).

Letting n — oo, we get

k
d(2, ) < —(d(L'2, ) +d(s, ) + ... +d(1,T7)) + (1 = k)d(P, Q). (8)
Similarly we obtain
AT, D) < (@00, 1) A0 T 4 (T, D)) + (1= BAP, Q). (9)

By equations (7), (8) and (9), we get

d(T1,T)) +d(T2,T5) + ... +d(Tp, T0,) <k(d(T1,T}) +d(T2,T%) + ... +d(Tm,T0)))
+m(1 = k)d(P, Q)
this implies
d(l'1,T7) +d(T2,T%) + ...+ d(T, Iy,) < md(P, Q). (10)
Since d(P, Q) < d(I'1,TY), d(P, Q) < d(T'2,T%),..., d(P,Q) < d(T,,I7,), we have

d(T1,T7) +d(T2,T%) + ... +d(Tpy, Th,) > md(P, Q). (11)
By equations (10) and (11), we have

d(T1,TY) +d(T2,T%) + ...+ d(Tm,I,) = md(P, Q).

Note that every pair of nonempty closed subsets P, Q of a uniformly convex Banach space ), such
that P, is convex satisfies the property UC*. Therefore, we obtain the following result.

Corollary 1 Let Y be a UCBS, P, Q be two nonempty closed convex subsets of Y and § : P™ — Q
and o : Q™ — P be two cyclic contraction mappings. If (a9,a9,...,al,) € P™ and the sequence {at},
{ag},..., {an} are defined by (2), for alln € NU{0}. Then & has a m-tuple best prozimity point
(T1,Ta,...,Ty) € P™ and o has a m-tuple best prozimity point (I'},T%,..., T ) € Q™. Moreover,

we have

~ ~ ~ ~2n+1 /o ~2n+1 / ~ 4
" — Ty, a3" —Ta,..., @2 =Ty and a;"t — T, a3t —Th,..., a2t -1
" . _ Y _ 1

In addition, if I'o =T3... =1y, and 'y =T15... =17, then

d(T', 1) +d(T2,T5) + ... +d(Tp, I7,) = md(P, Q).
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Theorem 2 Let P, Q two nonempty compact subsets of a metric space (¥,d) and S : P™ — Q,
o: Q™ — P be two cyclic contraction mappings. If (a,a3,...,ad,) € P™ and the sequence {a}},
{a5},..., {ay} are defined in Lemma 1, for alln € NU{0}. Then ¥ has a m-tuple best prozimity point
(T1,Ta,...,T) € P™ and o has a m-tuple best prozimity point (I'},Th,...,T" ) € Q™. Moreover,
we have

ai" =Ty, a3" —>Ta,..., a = Dy and @™ — T4, a3"™ =15, ar™ -1,
In addition, if T =T3... =Ty, and L =T% ... =T" then
d(T1,T)) +d(T2,T%) + ...+ d(Ty, I%,) = md(P, Q).
Proof. Since (a{,a3,...,a,) € P and (2) holds for each n € NU {0}, we get
(at",a3",...,a2") € P and (a7"*' a3, Azt € Q.

The compactness of P implies that sequence (3", a3", ..., a>") have convergent sequence (a? Mo G ),
respectively, so that a ~2"’“’ — Iy, a 2"" — Tg,..n, dg,?k' — I';, By same approach used in proof of
Theorem 1, we have

d(T,3(T1,Ta,...,Tw)) =d(P,Q),. d(Tp, ST, T, ..o, Tine1)) = d(P, Q).
Since Q is compact, we can also show that

AT, o(T], T, ..., T ) =d(P,Q),. AT o, T, ....,T.. 1) =d(P, Q).

Hence (I'1,Ts,...,T'y,) is a m-tuple best proximity point of & in P™, (I'},T%,...,T7,) is a m-tuple
best proximity point of ¢ in @™ and

d(T1,T}) +d(T9,T%) + ... +d(T),T),) = md(P, Q).

3 Consequences
In this section, we give some consequences of our main results.

Theorem 3 Let P, Q be two nonempty closed subsets of a complete metric space (V,d) and S
Pm — Q,0: Q"™ — P be two cyclic contraction mappings. If (a9,a3,...,al,) € P™ and the sequence
{at}, {a5},..., {ap,} are defined by (2), for alln € NU{0}. If d(P,Q) =0, then I has a m-tuple
fized point (I'1, T, ..., T'y) € P™ and o has a m-tuple fived point (I'},T%,..., T ) € Q™. Moreover,
we have

at — Ty, a3" —Ta,..., a2* — T, and a2”+1 — I, ~§"+1 — T ..., a2t 1.
In addition, ifTo =T3... =Ty, and T, =T% ... =T, then S and o has common m-tuple fized point
in (PN Q)™.

Proof. Because d(P,Q) = 0, we find that the pairs (P, Q) and (Q,P) satisfy the property UC*.
Using Theorem 1, we see that

d(T1,3(T1,Tay. .., 1)) =d(P, Q). ..y d(T, ST, Ty .o, Tim1)) = d(P, Q).
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and
d(Ty,o(T],15,...,T,) =d(P,Q),..., d(I,, o, T,....I7, 1)) =d(P, Q).

Since d(P, Q) = 0, we get
Fl = %(FMF% ey Fm); FQ = %(FQa FSa cee Fl))? ey 1_\Tn = %(rmarla s 7Fm—1)a
this means that (I';,T's,...,T,) is a m-tuple fixed point of & in P™. Similarly

T, =o)L, ....T.), T =0Ty, Th ..., T))),..., T = o(T T, ..., T ),

m—1

!/ !/

this means that (I'},T%,...,T",) is a m-tuple fixed point of o in Q™. Let 'y = I's... = T, and
I, =T%...=T", then by Theorem 1, we can write

d(T1,T)) +d(T2,T5) + ... +d(T,Th,) = md(P, Q).
Since (P, Q) = 0, we have
d(T'y,T)) +d(T2,TY) + ... +d(T,,T0,) =0,
it follows that Ty =T, 'y =T%,..., '), = T/ . Hence & and o has common m-tuple fixed point
(Fl,rg, . ,Fm) S (,P N Q)m |
If P = Q in Theorem 3, we have the result below:

Corollary 2 Let P be a nonempty closed subsets of a complete metric space (¥,d) and S : P™ —
P, o : P™ — P be two cyclic contraction mappings. If (a9,a3,...,ad) € P™ and the sequence

' m

{at}, {a%},..., {al} are defined by (2), for allm € NU{0}. Then S has a m-tuple fived point
(T'1,Ta,...,T) € P™ and o has a m-tuple fized point (T}, T%,..., " ) € P™. Moreover, we have

" — Ty, ad" —Ta,..., @2" - T, and @™ —T9, a3" ™ —T%,..., a2t -1 .
In addition, ifTe =T5...=Ty, and Ty =T% ... =T}, then S and o has common m-tuple fized point

in P™.

Corollary 3 Let P be a nonempty closed subsets of a complete metric space (¥,d) and & : P™ — P
be a mapping

A(S(a1, dg, -y am), S(by, bay ... b)) <

(d(ay,by) + d(ag, by) + ... + d(@m, bm),

3=

for all (ay,az,...,am), bi,boy...,by € P™ and k € (0,1). Then & has a m-tuple fized point
(T'1,Ty,...,T,) € P™.
4 Examples
In this section, we provide some illustrations to support our claims.
Example 3 Consider Y = R endowed with
d(ay,az) = |a1 — as.

Suppose that
P=1[1,7 and Q = [-7,-1].
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Then d(P, Q) = 2. Define S:P™ — Q and o : Q™ — P by

S((@r, a2, ... am)) = <_a1_a2—...—am_3m>

4m

and

- - - b —5—...—5m+3m
J((bl,bg,...,bm):< LI g )

for all (@y,as, ... am) € P™, (b1,bg,...,by) € Q™ and k = L. Then we obtain

d(S(ay, g, -, am), o((b1, b, ... b))

p a1+a2+...+am’0’0,m’0 ’ 81+62+...+Bm’0’0,m’0
2m 2m

‘—al—aQ—...—am—:sm —131—'62—...—'6m+3m|

4m 4m

_la = b+ Jag = bo| + .+ | — b| | 3
4m 2
k ~ - -
<E(d((~117b1) + d(ag, b2) + ... + d(@m, b)) + (1 — k)d(P, Q).

This is a cyclic contraction with k = i. Since P and Q are convexr and closed subsets of a UCBS, the
pairs (P, Q) and (Q,P) fulfils the property UC*. Therefore, all hypotheses of Corollary 1 are true.
Hence, & and o have a m-tuple best proximity point say (1,1,...,1) € P™ and (-1,-1,...,—-1) € Q™
respectively.

Example 4 Consider Y = R™ endowed with

A1, a2,y am), (BB, o b)) = max { iy = bal, a2 = bl am — bl }
(G1,dz, ... dm), (b1, ba, ..., bm) €V and suppose that

P={(@2....2)€¥:0<a <2}, @={(b1,0,...,00 € ¥:0<h <2},

Clearly d(P,Q) = 2. Define S:P™ — Q and o : Q™ — P by

S((@1,2, . ,2), (@220 01 2)s ey (s 2, .., 2)) = <a1+a2;'”+am,o,o,...,o>

and

5 N . bi+bo+ ...+ bm
a((bl,O,...,O),(bg,O,...,0),...,(bm,0,...,0))—<1+2+ i ,2,2,...,2).

Then we obtain

(S}((al,Q,...,2),(&2,2,...,2),...,(c:z,,L,Z,...,Z)),)
o((b1,0,...,0),(b2,0,...,0),...,(bm,0,...,0))

_d< a1+a2+ +“’”,0,0,...,0>,(bl+b2+"'+b’”,2,2,...,2>)
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:max{ 72|,...,|2|}:2.

%(d((dl,Q,...,2),(51,0,...,0))+d((&2,2,...,2),(52,0,...,0))+...+
A((@m,2,-.+,2), (b, 0,...,0))) + (1 — k)d(P, Q)

k . )
:m(max{|&1 —b1|,|2\,...,|2|} +max{\a2 _b2|,|2|,...,|2|} ot

max{|dm —Bm|,|2,...,|2})

k
= x2m+(1-k)2=2,
m

&1+d2+...+dm_51+Z32+...+Bm
2m 2m

Also

for any k < 1. This show that

A(S(ay, g, - .-, am), 0 (b1, bz, ... b)) < —(d(a@1,b1) + -.. + d(G@m, b)) + (1 — k)d(P, Q).

L
m
Since P and Q are convexr and closed subsets of a UCBS, the pairs (P,Q) and (Q,P) fulfils the

property UC*. Therefore, all hypotheses of Corollary 1 are true. Hence, S and o have a m-tuple best
proximity point say (2,2,...,2) € P™ and (0,0,...,0) € Q™ respectively.

5 Applications

In this section, we obtain the solution for systems of delay differential and integral equations.

5.1 Application to Delay Differential Equations

In this paper, we consider the following system of delay differential equations:
Pi(t) = (&, 51 (2), (1), - ..

l2 715;71@)715/1(15_T)7ﬁé(t_7'),~..,]5;n(t—T)), t e [t07b]7
Pa(t) = f(t,D5(t), B5(¢), - .-

D1(8), Dot = 7), Pyt = 7)., Pi(E = 7)), T € [to, b,

(DFE)

ﬁ;w(t) = f(t’ﬁ;n(t)7ﬁ/1(t)7 s aﬁ;nfl(t%ﬁ;n(t - T)vﬁll(t - T)) ce - 7pvin71(t - T))v te [t07 b}’
with initial condition pi(t) = ¥4 (¢), P2(t) = ¥y(t), -, Pm(t) = ¥,,(t), to € [to — 7,t0]. It is well
known that Y = (C([a, b)), ||-||s) is @ Banach space where C([a, b]) denotes the space of all continuous

real valued functions on a closed interval [a, b] and ||.||s is a Chebyshev norm.

— | = ) — y(t).
[z —yl| tren[gfg]lx() y(t)]

Theorem 4 Assume that the following conditions are satisfied:
(M) to,beR, 7> 0.
(Ms) f € C([ty,b] x (R™)™ x (R™)™, R"™).
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(M3) wla ¢27 e 7wm € O([to =T, b]aRn)
(My) There exists Ly > 0 such that

2

|f(tur,u) — f(t,v1,v2)] < sz |u; — vs|, for all u;,v; € R, t € [to,b].
i=1

(M5) 2L¢(b—t9) <

L
Then the problem (DFE) has a unique solution on C([to — 7,b],R™) N CL([to, b], R™).

Proof. Define the mapping B : Y™ — ) by

1/)1(15), te [to 77’,150]

B@“””@w@):{%@w+J;ﬂ&ﬂ@%~qﬂﬁﬁﬁﬂs—ﬂwuﬁgw—T»%»teﬁmw

Assume that p}, By, ..., Phy @15 Gy - - -5 Gy € R™, we get

d(B(p1s -+ D) (8): B(@1 - - 4) (1))

= max |B(ﬁllvvﬁ;n)(t)_B(cﬁvv(Zn)(t”
te[to—T,b]
t

= max |¢1(t0)+ f(saﬁ/1<5>7715:71(8)715/1(5_7)’aﬁ;n(S_T))ds

te[to—T,b] to
t
_¢1(t0) - f(sa (ﬁ(S), s aq':n(s)aqll(s - T)7 N aq':n(s - T))d8|
to
t
< max |f(8,ﬁ/1(8),...,ﬁ;n(s),ﬁll(eS*T),...,ﬁ;n(S77‘))d8

tE[to—T,b} to

—f(5,q1(8)s - @ (8), @1 (s = 7)s oo G (s — 7))|ds
t
< max /Lf(\ﬁ’lf(i’l\+~~+|ﬁinfczi,,,|+|ﬁ’1(sw)qui(sz)Hm
tE[to*T,b] to
+ |y (8 = 7) = @ (s — 7)) |ds

t
< | L ax |py — ax |p., — a W(s—7)—qi(s—
< [ L e 57 ik a7 = Tl (75— ) = (s )l +
~/ _ 7~/ _ d
x| [P (s = 7) = G (s 7)|)ds
t
< [ Ly (1 = @l 4+ 1~ Gl + 155~ Tl + -
to

+ ||Bh, —q~:n||oo)ds
< 2Ly (b —to)(||B} — @illoo + -+ Bl — dnlloo)

1 o k . .
< — (d(p}, q1) + - +d(pm,qm))—m(d(p'l,q’l)+~--+d(pin,q;1)~

Hence Corollary 3 holds with k = L. Then the problem (DFE) has a unique solution on C([ty —
7,0, R") N CY([to,b],R"). m



S. Sharma and S. Chandok 311

Example 5 Consider the system of 3 first order delay differential equation:

with initial conditions
P1(t) = pa(t) = ¥y (t) = ¥y(t) = t, Pa(t) = vs(t) =€, t € [-2,0]. (12)
Neat we prove that all the conditions (M; — Mg ) are verified:
(My) to=0,b=3,7=2.
(M) f:C([0,3] x (R)? x (R)*, R).
(M3) v € C[-2,3] — R is continuous.

(My) Define f: C([0,3] x (R)? x (R)3 — R3?)

FERLE), - 05) (8, pr(E —2), -+ P5(t —2) = i(113'1(75) =it —2)+ - +p5(t) — Pa(t — 2))

81
P, BB = 2), o B —2) = - (h(0) — Pt —2) + -+ 51(0) — Bl (¢ — 2)
FUE), -+ PO = 2), o B —2) = G (h(0) = Bh(E = 2) + -+ (1) — phe — 2))

Then fO’f‘ any ﬁll(t)v ,ﬁg(t)v (jll(t)a a(j/B(t) €eRandte [0’3], we have

1

SgplPi(®) = GO+ 1p1(t = 2) = @1t = 2)[+ -+ [P (t) = G (O)] + [P (= 2) = G (2 = 2)]-

(Ms) 2Ls(b—t9) =2.4:.(3—0) < 5.
All the hypotheses of Theorem 4 are satisfied with m = 3, then the problem (DFE) has a solution

on C([to — 7,b],R™) N C([to,b],R™). The problem (E) and (12) can be reformulated in the following
integral equation:

1 (1) = t, te[-2,0]
" ¥1(0) + [o gr(B5(t) = DLt = 2) + -+ p5(t) — a(t — 2))ds, t € [0,5].

The exact solution of the problem (E) and (12) is the function

- ta te [_2?0]
pt) =14, , 2t t—2 2
L2+ (t—22+e—et"24e243), tel0,5).
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5.2 Application to integral equations

Consider the following problem
9
:/ h(ka §)a(k7§,dl(§),d2(§), s 7&m(§))d<
0

9
as (k) :/0 h(k, <)ok, s, as(s), as(s),...,a1(s))ds

9
() = / (K, §)D (K, 6, (<), @1(6), - s (6))ds, (13)

where k,¢ € [0,9] with ¢ > 0. Suppose that I' = C([0, 9], R"™) is endowed with

la1|| = sup |ai(k)|, for all @ € I'.
ke[0,9]

Moreover, define a distance on I" in the form of

o(u,v) = sup |u(k) —v(k)]
ke[0,9]

for all @, o € I'. Hence (I, o) is a complete metric space.

Theorem 5 Suppose that the following hypotheses hold:
(71) the function O : [0,9] x [0,9] x (R*)™ — R"™ and & : [0,9] x [0,9] — R™ are continuous so that

v U
/ h(k,<) g<—, for allk,s € [0,9];
0

(T2) for all ay,as, .. < Gm, b1, boy ... b € R™, we get
‘D(k,(,dl(§),d2(§), cee 7am(§)) - a(k,§,1~)1(§),l~)2(§), .. ~al~)m(§))|
1 . . -
<3 (|a1 ~bu| + |dg — Dol 4+ 4 |G — bm|) , for allk,< € [0,9].

Then the problem (13) has a unique solution on C([0,9],R™).
Proof. Define the mapping B : I'™ — I by
9
Blan,a, s on) ) = [ h(k 6020k 6,01(6),82(5) - ()
0

The existence solution of (13) is corresponding to find a m-tuple fixed point of B. Assume that

dl,dg,...7(~J,m751,l~727...,bmER”,WG get
o(B(ay,ag, . .. dm), B(b1,ba, ..., bm))
= sup |B(ay,az,...,dam)K) — B(by,ba, ..., by)(K)|

ke[0,9]
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9
/’ﬁkg k¢, @1 (c),. k»k—/‘Mkdmks&k%~w%kD@
0

< sup ﬁ(kx)la(kx,&l(@’ o im())ds — O(k, 6, b1(S), - ., bin(<))|ds
ke[0,9] Jo

v 1 - . 3
< swp / h(k,g)ck(ﬂ(al—b1|+|a2—b2|+...+|am—bm|)>
1J0

1 . . R .
<—5 sup (\al—b1|—|—|a2—bg|+...—|—|am—bm|>
m= kelo,9]

k - o ~
= (o1, by) + (az.b2) + .- .+ 0(@m b))

Hence Corollary 3 holds with k& = -L. Then the problem (13) has a unique solution on C([0,9],R").
[

Example 6 Consider a system of 5 integral equations below:

a1 (k) = f025 (k§_2 + % llflld(f()gl)l + % 3J|f|31(;()<|)| + 35 1i?:so‘:@§()‘)\ + 35 1+S(1:r‘1a\2$()<‘)\) + %|d5(§)|> ds,
Ga(k) = Ji7 (ks™? + oGl + A0l 4 LBl | L Ol + (o)) ds,
as(k) = [ <k<_2 + 25 1f|%(;—()§|)| + %gﬁﬁ!n + 35 1?5()?\3?()‘)\ + 35 1+s(1§n‘1a\2(f()<‘)\) + %|@2(<)|> ds,
aa(k) = o7 (ko2 + 5 Toaly + el 4 Lol Ol o L sla Ol 1 Las(0)]) ds,
as(k) = J;° (ke + g gl + & SO 4 el Ol o L selBsll s+ Kl (o)) ds,

for allk € [0,25] and

o(k,s,a1(s), az(), - .., as(s))
25 ~ ~ ~ . ~
-—/ @ 2 1 a1 Jax9)l 1 coslas(e)] 1 sinfas(s),
0

251+ |ai(s)| '~ 753+ |aa(s)] | 251+ cos|as(s)| | 251+ (sin|as(s)])

1,
+gpls(o)] ).

For the hypothesis 15, we can write

1O(k, s, a1(s),a O(k, 5, b1(s), ba(s), - ., b5(s))]
_ 1| Ja) |b1 a2 b2(s)]
= 25 1+ a(s)] 1+|b1 \ 75 |3+ [a2(<)] 3+ [ba()|
+7 cos |as(<)] _cos |b3(§)| 1 sin |a4 (<) ~_sin \54(g)|
25 |1+ coslas(s)] 14 cos|bs(c)]| 25 |1+ (sinlaa(s)]) 1+ (sin|by(s)])
452 (1350 - ()]
< g5 (@06 = 10660+ [18200)] = (0| + [13a6) - e + [ aa(6) = bx(5|
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+ sl - )] )

1
<
- 25

All the hypotheses of Theorem &5 is satisfied with 9 = 25, m =5 and h(k,<) = k¢=2. Therefore, given
problem has a unique solution.

(|5L1 —bu| + |d@s — bo| + |dg — bs| + |Ga — ba| + |d@5 — 55|) .

6 Conclusion

The best proximity point has many applications such as finding the solution of integral equations,
split feasibility and fixed point problems etc. The fixed point approach, is considered one of the
different method for finding these solutions under the contraction mappings, due to its smoothness
and clarity. So, in this paper, we introduce the notions of m-tuple best proximity point and establish
the existence and convergence theorems of m-tuple best proximity point in metric spaces. Moreover,
we apply these results in uniformly convex Banach space. We also provide some illustrations to back
up our work. We also study some results on the existence and convergence of m-tuple fixed point.
As an application of our obtained results, we find solutions for systems of delay differential equations
and integral equations.
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