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Abstract

We construct an operator of summation integral type and investigate its approximation properties.
For smooth functions, we prove a convergence formula and find the rate of approximation in both a
normed space and a weighted normed space. Relevant examples are used to support the findings.

1 Introduction

Let B[0,1] and H,[0,1] denote the space of bounded functions and the space of all polynomials of degree
at most n, respectively on [0,1]. Here, N is the set of positive integers and n € N. The Bernstein operator
B, f: B[0,1] — H,[0,1] is defined by

Bo(f;z) = zn: (Z)xk(l — )k (S) . zeo,1].

k=0

The Bernstein operators offer intriguing characteristics, such as the preservation of linearity, convexity,
Lipschitz continuity, monotone, etc. (see [6]). The operators B, f(x), however, are not appropriate for
approximating integrable functions. In order to approximate bounded and integrable functions on [0, 1],
Durrmeyer [11] and Lupag [25] introduced their integral modification of B, (f;z) by using the following
equation:

Do(f;a) = épnw) (<n+ 1) / s f(u) du) ,

where p, ;(z) := (})2*(1 — 2)"~* for 0 < k < n. The operator D,,(f;x) has been the subject of extensive
research(see [1, 3, 7, 9, 10, 11, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32]). Derrienic [8] extensively
studied the operator D,,(f;z) for direct theorems and a number of approximation properties. For further
work in this direction, we refer to [14, 15, 16, 17, 29]. It is noted that whenever f € C]0, 1], the convergence
of operators D, (f;x) to f(x) is uniform. It turns out that no matter how smooth the function is, the order
of approximation by the operators D, (f;z) is at best O(n~1).

Baskakov [5] proposed the following set of operators for approximation on the positive axis:

k=0
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326 Summation Integral Type Operator

For weighted simultaneous approximation, Moreno introduced a generalised form of the operator V,,(f; )
in [24]. In [4], the g-variant of the operator V,,(f;z) based on quantum calculus was presented and examined
for approximation properties. In [33], Wang and Xu investigated the weighted approximation properties
of V,(f;x) using Jacobi weights. L.S. Xie provided the following intriguing direct estimate of the local
approximation in [34].

Valfs2) = @) = 0 (w3 (fin e @), 0<A<L

For A = 1, we get the ordinary rate of local approximation, and for A = 0, we get the estimates of the
Ditzian type (see [10]). The following Durrmeyer type modification of the Baskakov operator was defined
by Gupta [19] in 1994 using the basis functions of the operator V,,(f;z).

“ /n+k-1 xk o
Bt =3 (" i [ e, 2 e 0.50) 1)

— 1+x)

where by, (1) = B(k-il-l ) (1+t)t:+k+1 and the Eiiler beta function is B(k+ 1, n). We modify the Baskakov beta
operator’s Durrmeyer variant (1) in an effort to achieve higher rates of convergence. Let W,[0,00) be the
class of functions defined by

. i @)
W,[0,00) = {f € C[0,00) : mhlgo T <00y
Let C*°[0,00) denote the class of all analytic functions on [0,00). Then, for each n € N the operator
Lyf:W,[0,00) — C*[0,00)
~ b o0
Lnf(@) = (0 D)3 Pus(e) [ Gur @) dys 0= [t 1), @)
k=0 0

Here [z] is the integer part of z,
B () n+k okt
n,k\L) = T At ki1’
Pn i k—1) (1 + o)kt

k) = 157 (200Pa 141 0) + (L= 1) Prcanly) = (0= DyPasca(v)

and P, ;(z) = (”'Hlj_l) ﬁ The purpose of this study is to investigate error estimates in terms of mod-
ulus of continuity, approximation in the Lipschitz type space, weighted space, and degree of approximation.
Although less exact, the notation L, (f;x), is frequently used in the approximation theory for the value of

the function L, f at x.

2 Preliminaries

Some preliminary lemmas are supplied in order to establish the main results of this work. Let e; be the
function e;(y) = y*,i € NU {0}, y € [0,00).

Lemma 1 For the sequence Zn(f;a:), we have

1.
~ 12
L =14+ — .
n(€0ax) +(2_n)(n_3)7 n>3

~ 4(4 + 4n + 15nx)

Ly(e1,2) =z + n—D)(n—3)2—n)’ n > 4.
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~ 6(1 4 n)(10 4+ n) +90(1 + n)(2 + n)z + 60 (4 + n + 3n?) 22

Lnfenz)=a"+ (n—5)(n—-D(n-3)2—-n) .

Lemma 2 For the operators Zn we have the following

1. If n > 4 then
. S 16(1+n) (3z+1)
n((e1 — weg); ) = (n—4)(n—3)(2—mn)) .

2. If n > 5 then

7 5+ 2(n+1)(n (3622 429z + 3) + 10 (2427 + 17z + 3))
nl(er = @eo)i2) == (n—5)(n—4)(n—3)(n—2) '

8. If n > 7 then

12(1 + n){n?’acQ(l + )2 4+ 3n2z(1 + 2)(8 + z(47 + 59z))
(=D 6 5)m— n @ m)
28(5 + 3z(18 + (71 4+ (123 + 80x))))
(n=7)(n—-6)(n—-5)(n—4)(n—3)(2—n)
(30 + 22(258 + x(1222 + 2(2225 + 1351:@)))}
(n—=T)(n—6)(n—5)(n—4)(n—3)(2—n)

L,((e1 — zeg)t;z) =

Remark 1 It follows from simple calculations that Ly ((e1 — zeg)®; ) = O (n=2), s — 1 € N. This order is
double that of the comparable classical operator in (1). However, for small values of n, the positivity is lost.
As a result, we will assume n to be large enough that L, (f,x) > 0 whenever f(x) is a positive function.

3 Convergence of Zn

We investigate several local approximation properties of the operators En using the usual modulus of conti-
nuity, the second modulus of smoothness, and Peetre’s K-functional. The K-functional is defined as follows.

K. 2y .— inf _ 20| 42 1
2.6(f,p%) geAéﬂc[o,o@{Hf gl +p*lle°g" I},

where g is differentiable and ¢’ is absolutely continuous in every closed finite subinterval interval [c, d] of RS‘ .
This fact is denoted by ¢’ € AC,c[0,00). To prove the direct theorem, we will use the relationship between
Peetre K-functional and the corresponding Ditzian-Totik modulus of smoothness defined by

wi(f.p) = sup sup  |f(z+he*(2) — 2f(2) + f(z — he(2))]
0<h<pztho(x)€[0,00)

where the step weight function ¢(x) = \/z, and z € [0,00). The equivalence of Kj 4 and w3 is well known
(see pp.11, [10]) i.e. there exist Cq,Cy > 0 such that

Clwi(fv p) S K2,cf>(f7 p2) S 02(*)3)(]07 p)

First, we have the following convergence theorem.
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Theorem 1 Let L, f(x) be the sequence (2) and z € [a,b] where 0 < a < b < oo. Then

lim L, f(z) = f().

n—oo

Moreover, the convergence is uniform.
Proof. Since lim,_,, L,(e;;x) = e;(x) for i = 0,1,2, the proof follows by an application of Bohman-
Korovkin’s theorem. ®

The following is a Voronovskaja-type convergence result.
Theorem 2 Let f € W,[0,00) and let f"(x) exist at a certain point x € [a,b]. Then

lim 72 (fnf(m) - f(q:)) = —16(1 + 32)f'(x) — 2(3 + (29 + 362)) " (x).

n——:uoQo

Proof. By the Taylor’s theorem,
Fly) = F@) + (y —2) (@) + 5y — 07" (@) + 0, ) (y — ) 3)

where, lim,_,, e(y, ) = 0. Operating equation (3) by En, we have

1 ~
Lof(2) = f(z) = f'(@) Lu((y = 2); 2) + 5" (@) Lu((y = 2)% 2) + L (e(y; 2) (y — 2)* ). (4)
Applying the Cauchy-Schwarz inequality to the last term of the equation (4), it follows that

Zn(a(y; z)(y — )% ) < (Zn(s(y, x); x)) 2 Ln(e(y —x)z)2.

SIS

By Lemma 2 and method of [21], we have that
lim n?L,(e(t;z)(y — z)%x) = 0. (5)

Finally, by using Lemma 2 and combining (5) and (4) the proof follows. m

Remark 2 For a twice differentiable function f at x we have the order

4 Degree of Approximation by Zn

Theorem 3 (Local rate of approximation) Let L, f(z) be the operator (2), z € [a,b],0 < a < b < oc.
Then for n sufficiently large

~ L,(e1 — zeg)?
Fuf(@) — 1) <20+ r)w [ 4/ ELEZZO0) )
12

where Th = m
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Proof. We have

Enf(@) = 1)1+ 1)| £ (040 Y Fusl@) [ Goal)l10) — Sy
k=0 0
<00+ )> Fnale) [ a0l by — ol (6)
k=0 0

In view of the estimate,
w(f,A0) < A+ 1w(f,8),  A=0,

the inequality (6) becomes

Lof(x) = f(@)(1+ 1)

<w (f, ;) ((1 )t mn+ )Y pune) [ Tsly - x|dy> G

k=0
Now using Schwarz inequality and Lemma 2 we get
)
0

(n+1)S Fu(@) / Gk )y — zldy
k=0

[
W=

1

<(1 —|—rn)% (Ln(el - 3760)2)5 .

Therefore (7) implies that

LJ@)jﬁﬂ<w<ﬁ;>u+nﬂ(lHn@Aﬁx%f)).

(147r,)2

1/2
The desired result follows by choosing m = (%) . u

Z,,,(el—rceo

Theorem 4 Let f € W,[0,00), x € [%,oo). Then there exist a constant C > 0 independent of f, n and x
such that

Lnf(@) = f(@)] < Cwz (£.V/9,@)) +w(f,8) +ral f@)], asn — oo

(1an+nu+3@ )2
"\(n—4)(n—-3)(n-2) '

where

Ln((y — 2)%2)

¥, (x) = max {

Proof. Let g € AC,.[0,00) and the operator

Lnf<w>=inf<x>+f<x>—f(x— 16(n + 1)(1 + 3z) )

(n—4)(n—-3)(n—2)

Then, by smoothness of g
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By an application of L, on (9) it follows that

Tg(e) — g(&) = rag(@) + Tu((y — 2):2)g(x) + L ( / " (v — g’ () du; x)

=rng(z) + L ( u) du;

)
=rng(z) + Ly ( w) du; m)
)(

16(n+1)(1+3z)

) /z e olca <x : _(n)zr 1) 1; 3f)2) >g”(u) du
Thus
Tast@) — )] < ralo@) + [ ([ ) o)
Since 7 (/:/(y g () du;x) < |Lu((y — @) ‘ )| 9"l
and

_ _16(n+1)(143x) 2
T ) (n-3)(n—2) 16(n + 1)(1 + 3z 16(n + 1)(1 + 3z
/ (x_( (n+ 1)(1 + 30) _u> S ] < (( (n+1)( )2)> ol

n—4)(n—3)(n—2) n—4)(n—3)(n—
we have
2
Fuso) o] < o +{ [l - o750 (2220 Y .
Thus

| Lng(@) = g(2)] < ralg(@)] + 24, () 19" - (10)
By (8), we get

Lof(@) = £@)| < | —g:2)| +(f — 9)(@)
t |Lagla) - gla)] + |f (x -

16(n+ 1)(1+30) \
(n—4><n—3><n—2>> fe)|-

Since ‘fnf(x)’ < C|fll,

Tuf(e) = 1] < €IS gl + [Fuate) — )] + |1 (- 2t NI - ),

Again by (10) we have

Tuf(@) = 10| < €+ r)lf = gl + ol 5@ + vl 9] 40, g DO )

(n—4)(n-3)n-2))"
By taking infimum of right hand side over all g € AC},.[0,00) we have that
|[Lnf(z) = f(2)] < Cral f(2)] + igf{llf — gl + (@) 9"} +w (f,0)
< CKy(f, ¥ (2) + w(f,6) 4+l f(2)]-
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Finally by (3), we get
Lnf (@) = F(@)] < Cw (£,v/0,(@)) +w(f,60(@) + Tl (@),

where, ( ( )
_ 16(n+1)(1+ 3z
@) = D -2

Hence the proof is completed. m
Finally, we obtain degree of approximation of a Lipschitz-type function. We consider the following

Lipschitz-type space (see [12]),
Livi(r)i= {7 € W0, 0) - 1)l < M2y e 0.0}
(y+x)>

where M is a positive constant and 0 < r < 1.
Theorem 5 Let f € Lips,(r). Then for all z € (0, 00)
Lo f(x) = f(z)| < MAZ(n,2), n— oo

- oy
where A(n,x) = W%ﬂ))

Proof. First we assume that » = 1. Then for f € Lipj,(1),
Laf@) = £ < (0 1) Y (o) [ )l 0) ~ Sl
n=0

SN ly—al
< 41 . k(Y M ——— dy.
<@rnYp #o) [ dsty) e

1 _1 < 1 1
Slnce, = NG we can write
00
0

|Lnf(z) - f(z)] < J‘ﬂnf:D ;O Bon(2) / G )My — 2| dy
= %E(Iy —zljz) <M ( M) _

The result is true for » = 1. Now suppose that r € (0,1). Considering p = %,q

= -1 and then applying

— 1-r

Holder’s inequality twice we get

|Lnf(z) = f(z)| < (n+1) Zﬁn,k(x) /Oo G| f () — F(2)| dy
k=0 0
< {kz_oﬁn,k(m) ((" + 1)/0 Gk (W) f(y) — f(l’)|dy> }

- {Zﬁn»k@)(“ D [ ) - S@ dy}
k=0 0

As f € Lip%,(r), this leads to
= oo ly—al 1T M |

This completes the proof. m
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5 Weighted Approximation

Let D,[0,00) be the class of real valued functions f on [0,00) such that |f(z)] < Msp(x), where p(z) is a
weight function. Let C,[0,00) be the sub space of D,[0, 00) consisting of of all continuous functions f such

that lim, Iﬁggl is finite. The defining norm of the normed space C,[0,00) is || f|l, := sup,e(o,5) ‘ig;‘.
The usual modulus of continuity of f on [0, k] is defined as
wi(f,0) = sup  sup [f(y) — f(z)].
ly—=| <6 z,y€[0,h]
Theorem 6 If f € C,[0,00), then
|Laf(x) = f(2)] < 4Mp(1 + h2)ip, (2) + 2wn(f, v/, (2)),
where ,,(z) = Ln((y — )% 2)
Proof. Let x € [0,h] and y > h + 1. Since y — x > 1, we have
[f(y) = f(@)] < Mp(2+y* +27) < My(y — 2)*(1 + %) < 4My(y — 2)*(1+ 1?). (11)
If x € [0,h] and y € [0, h + 1], then for any § > 0
- < qy—a) < (144 =2 . 12
[f(y) = f@)l S wnia(fily —2f) < [ 1+ Z—— Jwnsa(f30). (12)
Now by the estimates (11) and (12), for all y > 0 and = € [0, h],
—x
0) = @) < bty - 220412+ (14 255 ) i0), (13)
An application of the Cauchy—Schwarz inequality in (13) leads to
- - 1~ 3
|Lnf(2) = f(2)] < 4M§(1+h*)La((y — 2)%2) + ( 1+ wna1(f10) s La((y — 2)*)s2
)
Finally, by choosing 6 = ,,(x) we get our result. m
Theorem 7 Let f € C,[0,00). Then we have
im_|Luf ~ ], = 0. (14)

Proof. By Korovkin type theorem (see [13]), it is sufficient to verify that lim, e ||Lne; — eill, = 0 for
1 =20,1,2. Since L,(eg;x) < 1, for n > 5, (14) holds for ¢ = 0. Now for i = 1 we make use of the Lemma 1.

Thus
16(n + 1)(1 + 3z) 1 4(4 +19)

m—m=-3)m-2 T+ = n—Dn-3)n—-2)

Hznel—eal: sup |z —

z€[0,00)

Thus B
lim ||L,e1 —e|, =0.

Similarly we prove for ¢ = 2. By using Lemma 1 we get

\Enes — esll, = sup 6(14+n)(10+n) +90(1 +n)(2+ n)z + 60 (4 +n+3n?)2?| 1
" P 2€[0,00) (n=5)n—-4)(n—-3)(n—2) 1+ 22
_ 6(1+n)(10 +n) +90(1 + n)(2 + n)z + 60 (4 + n + 3n?)
- (n—5)(n—4)(n—3)(n—-2) '
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Therefore,
lim |[|L,ez — ez, = 0.
n—aoQ

This completes the proof. m
Let f € C,[0,00). Then weighted modulus of continuity was defined by Yuksel and Ispir in [35]

Lo |f(z+h) — f2)]
Uf50) = xzos,(l)lghg(s 1+ (z+h)2

and satisfies the following properties.

Lemma 3 Let f € C,[0,00). Then

(1) Q(f;9) is monotone increasing function of §,
(i) Tims o+ O(f;6) =0,

(iii) for each p € N,Q(f;pd) < pQ(f;9),

(iv) for each A € RT Q(f; A0) < (A + 1D)Q(f; A\d).

Theorem 8 Let f € C,[0,00). Then there exists a positive constant R such that

Luf@ — @] <f 1)
- wlf,— -
e L T
Proof. By the definition of Q(f; Ad), Lemma 3, (see [2]) for y > 0, z € [0,00) and ¢ > 0,
1f(y) = F@)] < U+ (@ + |y — 2))*)w (£, Iy — 2l)

<2014 21+ (y — 2)?) <1+ |y;$|>w(f,5).

Therefore,

Lfle) - @) <20+ 220 (1) {1+ Lol - o) + Lo (04 -2 25 ha ) b )

Now using Lemma 2 to the equation 15, we have

~ 1+ a2
Ln((y*x)%x) < Ry 2

n

where R; is positive constant.
Next using the Cauchy-Schwarz inequality, we have

~ —z 1 /= 1 /= =
L (0 w-on 5 8e) < YL@ -am0 + 3R -0t L -am0. as)
By the Lemma 2 for some positive constant Ry there holds

~ 1+ 22
Ln((y — )% 2) < Ry——5—.

n

Combining all the above estimates we have that R = 2(1+ Ry + v/ R1 + R2+/R1). Finally, by choosing § = %,
we obtain the desired result. m
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6 Numerical Verification

We discuss numerical examples in this section to analyze the theoretical findings that were presented in the
preceding sections.

First, the function f(z) = ﬁ, z € [0,00) is compared with Zn(f,:r) at n = 5, 10, and 20. This
example explains the convergence of the sequence Ly (f;x), to the function f(x) with respect to the value

of n. The table 1 provides the values of f(z) and zn(f, x) at different nodes with step size 0.1. And, the
corresponding errors |f(x) — L, f(x)] is illustrated in Figure 2.

Table 1: Comparison of Zn(f;x) with respect to the function f(z) = ﬁ for n = 5,10,20 and the
absolute errors | f(z) — Ly f(z)]-
L f(z) [f(x) = Lnf(2)|
x f(z) n=>5 n =10 n =20 n=>5 n =10 n =20
0 0. -0.2  -0.0444444 -0.0105263 0.2 0.0444444 0.0105263

0.1 0.0826446 -0.0676183  0.0492529  0.0747361  0.150263  0.0333918 0.00790858
0.2  0.138889 0.023148 0.113169 0.132797  0.115741  0.0257202 0.00609162
0.3  0.177515  0.0864816 0.157285 0.172724  0.0910332  0.0202296 0.00479122
0.4  0.204082 0.131195 0.187885 0.200246 0.0728863 0.016197  0.00383612
0.5  0.222222 0.162963 0.209053 0.21910 0.0592593  0.0131687 0.00311891
0.6  0.234375 0.185547 0.223524 0.231805 0.0488281  0.0108507  0.0025699
0.7  0.242215 0.201506 0.233168 0.240072  0.0407083 0.00904629 0.00214254
0.8  0.246914 0.21262 0.239293 0.245109 0.0342936 0.00762079  0.00180492
0.9  0.249307 0.220149 0.242828 0.247773  0.0291588 0.00647973  0.00153467
1 0.25 0.225 0.244444 0.248684 0.025 0.00555556 0.00131579

— f=)

— Ls(f;)
— Lu(f;2)
— La(f; )

-0.1

-02

Figure 1: Comparison of the behavior of f(z) and L, (f;z) for n = 5,10, 20.

Our next example is the function x? exp(—z), 0 < x < oo. Here, again we take n = 5, 10, 20 and 20.
The convergence is shown in Figure 6, while the absolute errors are shown in Figure 6. And, the behavior
of f(z) = 2% exp(—z) and the operator L, (f;x) for n =5, 10 and 20 is depicted in Table 2.
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0.20 - |f(.27) - E5(f,.73)‘
— |f(@) = Luo(f;2)|
— |f(z) — Zzo(fﬂ”

X

S

Figure 2: The absolute error function |f(z) — Ly, (f; )| for n = 5, 10, 20.

4 6 8 10

Table 2: Comparison of zn(f7 x) with respect to the function f(z) = z%e~%, for n = 5,10 and 20 and the
absolute errors |f(z) — Ly, f(z)].

Ly f(x) [f(z) = Ln f ()|
3-8 x f(x) n=>5 n =10 n =20 n=>5 n =10 n =20
0 0 -0.870657 -0.210006 -0.0316959 0.870657 0.210006  0.0316959
0.1 0.367879  0.780847  0.490564 0.39126 0.412967 0.122685  0.0233805
0.2 0.541341 0.615186  0.602418 0.569141 0.0738453 0.061077  0.0278004
0.3 0.448084 0.368182 0.421251 0.438267 0.0799018 0.0268323 0.00981637
0.4 0.29305 0.212071 0.25417 0.247235 0.0809793 0.0388727  0.0458157
0.5 0.168449  0.123047  0.145799 0.104545 0.045402  0.0226497  0.0639034
0.6 0.089235 0.0727465 0.0822435 0.0360542  0.0164885 0.00699153  0.0531809

0.7 0.0446822 0.0439179  0.0462862 0.0111644 0.00076435 0.00160401  0.0335178
0.8 0.0214696 0.0270519 0.0261801  0.00331609 0.00558225 0.00471046  0.0181535
0.9 0.00999619 0.0169711  0.014945 0.000982414 0.00697495 0.00494882 0.00901378

1 0.00453999 0.0108222 0.0086332 0.000296706 0.00628222 0.0040932 0.00424329
d — f()
- zs(fNU)
- zw(fﬂ)
«  — La(f;2)

Comparison of the behaviour of f(z) = x? exp(—z) and zn(f, x) for n = 5,10, 20.
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08 - |f(.’17)—i5(f,f17)|
— |f(@) = Luo(f;2)|
— |f(z) —E20(f;2)|

0.4

X
4 6 8 10

The absolute error function |f(z) — Ly (f;z)| for n = 5,10, 20.

Conclusion

When a sufficiently smooth function f(z) is approximated by the sequence Zn( f;x), the absolute error for
|f(2) — Ln(f; 2)| is found to be of order O(n~2) whereas it is O(n~') when the operators B, f(z) or Dy, f(z)
are used to approximate the same function. To attain a higher degree of approximation, it is advisable
to use a suitable modification En( f; ) rather than raising the degree n of the operator. The error bound
|f(x) — Ln(f;z)| for the function decrease as n increases.
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