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Abstract

The survival of a unique fixed point plays a central role in metric fixed point theory and has numerous
applications in day-to-day life. However, if a self map has multiple fixed points, then looking at the
geometry of the collection of fixed points is extremely appealing and natural. As a result, it is interesting
to study the fixed figure problems utilizing interpolative techniques via S-metric spaces. In the present
work, we examine novel hypotheses to explore the geometry of the collection of fixed points by establishing
the existence of multiple fixed points via interpolative technique in S-metric spaces. Further, we exclude
the possibility of an identity map in fixed circle (disc) conclusions. We verify the established conclusions
by non-trivial illustrative examples. We conclude the work by discussing the parametric rectified linear
unit activation function which is beneficial in the study of neural networks and solving integral equations
which is beneficial in numerous mathematical models.

1 Introduction and Motivation

In 2018, Karapınar [20] embraced the interpolative technique to determine a fixed point by bringing in the
generalized Kannan-type contraction. S-metric spaces [38] have been initiated as an extension of metric
spaces which need not be a metric space. Numerous counterexamples are available in the literature to
support this fact. The reason behind this is the fact that the triangle inequality may not be verified by
elements of the underlying set. So the claim that each metric gives rise to an S-metric, is not true. A
present-day perspective to the study of metric fixed point theory is to investigate the geometry of the set
of fixed points with numerous applications. The investigation of the fixed figure, which is contained in the
collection of fixed points is equivalent to the investigation of the fixed point. In the case of metric giving
rise to an S-metric, a radius of a circle Cu0, r2 in metric space is half of the radius of the circle C

S
u0,r on the

S-metric space.
The collection of multiple fixed points may embrace some geometric figure. For instance, a circle, a

disc, an ellipse, an elliptic disc, or a hyperbola, we investigate its geometry via interpolative technique in
S-metric space (for more detail in the metric case, see [14]-[15], [35]). We look at new hypotheses which
are essential for the collection of multiple fixed points to incorporate a disc or a circle. For this, we make
some necessary amendments to well-known fixed-point techniques. Further, we establish a characterization
to exclude the possibility of an identity map in fixed circle (disc) conclusions. Established conclusions are
verified by appropriate non-trivial examples. It is interesting to observe that a self-map fixing a disc also
fixes a circle. We also provide some new illustrative examples of an S-metric which does not arise from a
metric to contradict the fact that S-metric describes a metric. Towards the end, we discuss the parametric
rectified linear unit activation function in the environment of fixed circle and fixed disc since it is interesting
to provide the real-life application of fixed circle as well as fixed disc conclusions and activation functions
perform an essential role in the study of neural networks. Also, we solve an integral equation via interpolative
conclusions which is applicable in science and engineering besides other areas. It is well-known that numerous
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day-to-day problems can be solved by utilizing techniques of metric fixed point theory (see, Tomar and Joshi
[41]) for interesting conclusions. Established fixed point and fixed circle (disc) conclusions encourage more
applications and explorations in S-metric spaces.

2 Preliminaries

First, we start by recalling the interpretation of S-metric spaces and then discuss essential concepts and
conclusions which would be applicable in the next section.

Definition 1 ([38]) An S-metric on a nonempty set U is a function S : U × U × U → [0,∞) satisfying the
subsequent postulates:

(S1) S(u, v, w) = 0 if and only if u = v = w,

(S2) S(u, v, w) ≤ S(u, u, a) + S(v, v, a) + S(w,w, a), u, v, w, a ∈ U .

The pair (U ,S) is known as an S-metric space.

Lemma 1 ([38]) In an S-metric space (U ,S), S(u, u, v) = S(v, v, u) for u, v ∈ U .

A metric and an S-metric have been compared in many works (see [9], [12], and [33] for more details).
Hieu et al. [12], provided a subsequent association between a metric and an S-metric space:

Sd(u, v, w) = d(u, w) + d(v, w) for u, v, w ∈ U .

Here Sd : U × U × U → [0,∞) is the S-metric that arises from the standard metric d [33]. However, this is
not always true. There may exist an S-metric which does not arise from a metric. The subsequent example
supports this fact.

Example 1 ([33]) Suppose the function S : U × U × U → [0,∞) is described on a set of real numbers
(U =R) as:

S(u, v,w) = |u−w|+ |u+w− 2v| for u, v,w ∈ U .

Then S is an S-metric on U which does not arise from any standard metric d.

Gupta [9], has shown that each S-metric describes a metric, that is,

dS(u, v) = S(u, u, v) + S(v, v, u) for u, v ∈ U .

However, the function dS does not essentially describe a metric since all the elements of U do not verify the
triangle inequality everywhere (see, [33] for more details) as observed in the subsequent example:

Example 2 ([33]) Suppose the function S : U × U × U → [0,∞) is described on U = {1, 2, 3} as:

S(u, v,w) =
{
1 if u 6= v 6= w,
0 if u = v = w,

for u, v,w ∈ U ,

S(1, 1, 2) = S(2, 2, 1) = 5, S(2, 2, 3) = S(3, 3, 2) = S(1, 1, 3) = S(3, 3, 1) = 2.

Then S is an S-metric on U which neither arises from any standard metric nor gives rise to any standard
metric dS.

The following theorem establishes the association of an S-metric with a b-metric [3].
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Theorem 1 ([39]) Let (U ,S) be an S -metric space. Let dS : U × U → R+ be the function defined by

dS(u, v) = S(u, u, v) for u, v ∈ U .

Then subsequent conclusions hold:

1. dS is a b-metric on U ,

2. un → u in (U ,S) if and only if un → u in (U , dS),

3. {un} is a Cauchy sequence in (U ,S) if and only if {un} is a Cauchy sequence in (U , dS).

The b-metric dS arises from S-metric S.

In view of the above discussion, it is significant to explore novel multiple fixed-point as well as fixed circle
(disc) conclusions on S-metric spaces. Özgür and Taş [34] and Sedghi et al. [38], introduced a circle and a
disc respectively on an S-metric space, which is described as follows:

CSu0,r = {u ∈ U : S (u, u, u0) = r, u0 ∈ U , r ∈ [0,∞)}

and
DS
u0,r = {u ∈ U : S (u, u, u0) ≤ r, u0 ∈ U , r ∈ [0,∞)} .

Definition 2 ([30, 34]) Let DS
u0,r be a disc (resp. circle C

S
u0,r) on an S-metric space (U ,S) and T : U → U

be a self-mapping. If Tu = u, u ∈ DS
u0,r (resp. u ∈ C

S
u0,r), then the disc D

S
u0,r ( resp. the circle C

S
u0,r) is the

fixed disc (resp. circle) of T .

Remark 1 To work on the geometry of a set of fixed points in M b
v -metric space we refer to Joshi et al. [13],

in partial metric space, we refer to Tomar et al. [16] and [42], in b-metric space, we refer to Joshi et al.
[17], the geometry of a set of near fixed points in metric interval space, we refer to Tomar and Joshi [43],
in b-interval metric space, we refer to Joshi and Tomar [18].

3 Main Results

First, we establish at least one fixed point of a discontinuous interpolative contraction and then explore some
new postulates to look into the geometry of the set of fixed points of a self-mapping T , that is

Fix(T ) = {u ∈ U : Tu = u} ,

as novel answers to the fixed-circle problem in [32] on an S-metric space.

Theorem 2 Let T : U → U be a self-mapping of a complete S-metric space (U ,S) and

S(Tu, Tu, Tv) ≤ λN ( u, v), λ ∈ [0, 1), (1)

where

N (u, v) = [S(u, u, Tu)]α [S(v, v, Tv)]β
[
S(u, u, Tu) + S(v, v, Tv)

2

]γ [S(u, u, Tv) + S(v, v, Tu)
2

]δ
,

for u, v ∈ U , α+ β + γ + δ < 1 and α, β, γ, δ ∈ (0, 1). Then T has a fixed point in U .
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Proof. Define a sequence {un} as un+1 = Tun, n ∈ N0 with initial point u0 ∈ U . If un = un+1 = Tun, then
un is fixed point of T . Suppose un 6= un+1 for all n. Now

S(Tun, Tun, Tun+1) ≤ λN (un, un+1), (2)

where

N (un, un+1) = [S(un, un, un+1)]α [S(un+1, un+1, un)]β
[
S(un, un, Tun) + S(un+1, un+1, Tun+1)

2

]γ
[
S(un, un, Tun+1) + S(un+1, un+1, Tun)

2

]δ
= [S(un, un, un+1)]α [S(un+1, un+1, un)]β

[
S(un, un, un+1) + S(un+1, un+1, un+2)

2

]γ
[
S(un, un, un+2) + S(un+1, un+1, un+1)

2

]δ
≤ [S(un, un, un+1)]α [S(un+1, un+1, un)]β

[
S(un, un, un+1) + S(un+1, un+1, un+2)

2

]γ
[
S(un, un, un+1) + S(un+1, un+1, un+2)

2

]δ
.

Case (i) If S(un, un, un+1) ≤ S(un+1, un+1, un+2), then

N (un, un+1) ≤ [S(un+1, un+1, un+2)]α[S(un+1, un+1, un+2)]β [S( un+1, un+1, un+2)]γ

[S(un+1, un+1, un+2)]δ

= [S(un+1, un+1, un+2)](α+β+γ+δ)

< S(un+1, un+1, un+2).

From inequality (2),

S(Tun, Tun, Tun+1) = S(un+1, un+1, un+2) ≤ λS(un+1, un+1, un+2) < S(un+1, un+1, un+2),

which is a contradiction.

Case (ii) If S(un+1, un+1, un+2) ≤ S(un, un, un+1), then

N (un, un+1) ≤ [S(un, un, un+1)]α[S(un, un, un+1)]β [S(un, un, un+1)]γ

[S(un, un, un+1)]δ

= [S(un, un, un+1)](α+β+γ+δ)

< S(un, un, un+1).

From inequality (2),

S(Tun, Tun, Tun) = S(un+1, un+1, un+2) ≤ λS(un, un, un+1).

By repeating this argument

S(un+1, un+1, un+2) ≤ λn+1S(u0, u0, u1)→ 0, as n→∞,

that is,
lim
n→∞

S(un+1, un+1, un+2) = 0.
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Furthermore, for n > m

S(um, um, un) ≤ S(um, um, um+1) + S(um+1, um+1, um+2) + · · ·+ S(un−1, un−1, un)
≤ λmS(u0, u0, u1) + λm+1S(u0, u0, u1) + · · ·+ λn−1S(u0, u0, u1)
= (λm + λm+1 + · · ·+ λn−1)S(u0, u0, u1)

=
λm(1− λn−m)

1− λ S(u0, u1, u1)→ 0, as m,n→∞,

that is, {un} is a Cauchy sequence. Now, utilizing the definition of completeness of (U ,S), we have
u∗ ∈ U so that {un} converges to u∗.

S(un, un, Tu∗) = S(Tun−1, Tun−1, Tu∗)

≤ λ[S(un−1, un−1, Tun−1)]α[S(u∗, u∗, Tu∗)]β
[
S(un−1, un−1, Tun−1) + S(u∗, u∗, Tu∗)

2

]γ
[
S(un−1, un−1, Tu∗) + S(u∗, u∗, Tun−1)

2

]δ
= λ[S(un−1, un−1, un)]α[S(u∗, u∗, Tu∗)]β

[
S(un−1, un−1, un) + S(u∗, u∗, Tu∗)

2

]γ
[
S(un−1, un−1, Tu∗) + S(u∗, u∗, un)

2

]δ
→ 0, as n→∞,

that is, limn→∞ S(un, un, Tu∗) = 0. So {un} converges to Tu∗. Utilizing the definition of limit Tu∗ = u∗,
that is, u∗ is a fixed point of T .

Next, we give the subsequent examples to justify Theorem 2 and to indicate the significant fact that the
fixed point of a discontinuous mapping satisfying a generalized interpolative contraction may not essentially
be unique. As a result, establishing the uniqueness of fixed points for such contractions will be an interesting
topic for subsequent works.

Example 3 Let U = [0,∞) be equipped with the S-metric S described as in Example 1. Define the self-
mapping T : U → U as

Tu =

{
2, u ∈ [0, 3),
e−u, u ∈ [3,∞),

for u ∈ U .

Then, T validates the hypotheses of Theorem 2 for λ = 2
3 , α = β = 1

6 and γ = δ = 1
5 . Consequently, 2 is a

fixed point of T.

Example 4 Let U = R be equipped with the S -metric S described as in Example 1. Define the self-mapping
T : U → U as

Tu =

{
ue−u, u ∈ (−2,∞),
1

u+1.5 , u ∈ (−∞,−2],
for u ∈ U .

Then T validates the hypotheses of Theorem 2 for λ = 0.5, α = β = 0.6 and γ = δ = 0.15. Consequently,
−2 and 0 are two fixed points of T.

Remark 2 1.

2. Selecting the values of constants α, β, and γ in an appropriate manner we attain the definitions of in-
terpolative Kannan contraction [20], interpolative Chatterjea contraction [36], and interpolative Reich-
Rus-Ćiríc type contraction [21]. Consequently, following the procedure of Theorems 2, we attain distinct
conclusions which generalize Banach [4], Chatterjea [5], Errai et al. [7], Kannan [19], and Reich [37]
in metric, S-metric as well as b-metric spaces.
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3. Theorem 2 is a generalization, extension, and improvement of celebrated and recent conclusions to
S-metric space via discontinuous interpolative contraction. See for instance, [1]-[2], [6]—[8], [20]—[29],
[36], and references therein.

Now, inspired by the reality that the collection of multiple fixed points may contain some geometrical
shapes, we frame some postulates for the survival of fixed-disc (circle) in S-metric spaces besides slightly
modifying the inequality (20).

Theorem 3 Let T : U → U be a self-mapping of an S-metric space (U ,S) and r defined as

r = inf {S(u, u, Tu) : u /∈ Fix(T )} . (3)

If there exists u0 ∈ U so that
1 ≤ S(u, u, Tu) < N1(u), (4)

where,

N1(u) = [S(u, u, u0)]α [S(u, u, Tu)]β
[
S(u, u, Tu) + S(u, u, u0)

2

]γ [S(u, u, Tu0) + S(u0, u0, Tu)
2

]δ
and

0 < S(u0, u0, Tu) ≤ r, (5)

for u ∈ U − Fix(T ), α+ β + γ + δ < 1 and α, β, γ, δ ∈ (0, 1), then DS
u0,r is a fixed disc of T . Also, C

S
u0,r is

a fixed circle of T .

Proof. At first, we show u0 ∈ Fix(T ). To demonstrate this, we suppose u0 /∈ Fix(T ), that is, u0 6= Tu0.
Using the inequality (22), we get

1 ≤ S(u0, u0, Tu0) < N1(u0)
= [S(u0, u0, u0)]α [S(u0, u0, Tu0)]β[

S(u0, u0, Tu0) + S(u0, u0, u0)
2

]γ [S(u0, u0, Tu0) + S(u0, u0, Tu0)
2

]δ
= 0,

which is a contradiction. So u0 ∈ Fix(T ), that is,

u0 = Tu0. (6)

To demonstrate that DS
u0,r is a fixed disc of T , we have the subsequent cases:

Case 1. If r = 0, then we obtain DS
u0,r = {u0} and by the equality (6 ), we say u0 ∈ Fix(T ).

Case 2. If r > 0 and u ∈ DS
u0,r, so that u /∈ Fix(T ). From the inequalities (22), (23) and the equality

(6), we find

1 ≤ S(u, u, Tu) < N1(u)
= [S(u, u, u0)]α [S(u, u, Tu)]β[

S(u, u, Tu) + S(u, u, u0)
2

]γ [S(u, u, Tu0) + S(u0, u0, Tu)
2

]δ
≤ rα [S(u, u, Tu)]β

[
S(u, u, Tu) + r

2

]γ [
r + r

2

]δ
≤ [S(u, u, Tu)]α+β+γ+δ ,

which is a contradiction with α+ β + γ + δ < 1. Hence, x ∈ Fix(T ) .
As a result, DS

u0,r is a fixed disc of T . Also, we may observe that C
S
u0,r is a fixed circle of T , since C

S
u0,r

is a boundary of DS
u0,r.
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Example 5 Let U =
{
−1, 0, 12 , 1, 3, 4

}
be equipped with the S-metric S described as in Example 1. Define

the self-mapping T : U → U as

Tu =

(
−1 0 1

2 1 3 4
−1 0 1

2 1 4 4

)
, for u ∈ U .

Then, T validates the hypotheses of Theorem 3 for u0 = 0, α = γ = δ = 1
4 and β =

1
8 . As expected, for

u = 3, we obtain
1 ≤ S(u, u, Tu) = 2 ≤ 3.88 ' N1(3)

and
r = inf {S(u, u, Tu) : u = 3} = 2.

Noticeably, T fixes the disc DS
0,2 =

{
−1, 0, 12 , 1

}
and the circle CS0,2 = {−1, 1}.

Theorem 4 Let T : U → U be a self-mapping of an S-metric space (U ,S) and satisfy the inequality (23)
and r described as in (3). If there exists u0 ∈ U so that

1 ≤ S(u, u, Tu) < N2(u), (7)

where,
N2(u) = [S(u, u, u0)]α [S(u, u, Tu)]β [S(u0, u0, Tu)]γ ,

for u ∈ U −Fix(T ), α+ β + γ < 1 and α, β, γ ∈ (0, 1) , then DS
u0,r is a fixed disc of T . Also, C

S
u0,r is a fixed

circle of T .

Proof. Firstly, we prove u0 ∈ Fix(T ). Suppose to the contrary that u0 /∈ Fix(T ). Using the inequality
(24), we get

1 ≤ S(u0, u0, Tu0) < N2(u0)
= [S(u0, u0, u0)]α [S(u0, u0, Tu0)]β [S(u0, u0, Tu0)]γ

= 0,

which is a contradiction. So u0 ∈ Fix(T ). Now, we have the subsequent cases:
Case 1. If r = 0, then we obtain DS

u0,r = {u0} and u0 = Tu0 since u0 ∈ Fix(T ).
Case 2. If r > 0 and u ∈ DS

u0,r so that u /∈ Fix(T ). From the inequalities (23) and ( 24), we attain

1 ≤ S(u, u, Tu) < N2(u)
= [S(u, u, u0)]α [S(u, u, Tu)]β [S(u0, u0, Tu)]γ

≤ rα [S(u, u, Tu)]β rγ ≤ [S(u, u, Tu)]α+β+γ ,

which is a contradiction with α+ β + γ < 1. Hence, u ∈ Fix(T ).
As a result, DS

u0,r is a fixed disc of T . Also, we may observe that C
S
u0,r is a fixed circle of T, since C

S
u0,r

is a boundary of DS
u0,r.

Example 6 Let U = R be equipped with the S-metric S described as in Example 1. Define the self-mapping
T : U → U as

Tu =

{
u if u ≤ 8,
u+ 1 if u > 8,

for u ∈ U .

Then, T validates the hypotheses of Theorem 4 for u0 = 0, α = 1
2 and β = γ = 1

8 . As expected, for u ∈ (8,∞),
we obtain

1 ≤ S(u, u, Tu) = 2 ≤ 6.23 ' N2(u)
and

r = inf {S(u, u, Tu) : u ∈ (8,∞)} = 2.
Noticeably, T fixes the disc DS

0,2 = [−1, 1] and the circle CS0,2 = {−1, 1}.
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Theorem 5 Let T : U → U be a self-mapping of an S-metric space (U ,S) and satisfy the inequality (23)
and r as described in (3). If there exists u0 ∈ U so that

1 ≤ S(u, u, Tu) < N3(u), (8)

where
N3(u) = [S(u, u, u0)]α [S(u, u, Tu0)]β [S(u0, u0, Tu)]γ ,

for u ∈ U −Fix(T ), α+ β + γ < 1 and α, β, γ ∈ (0, 1) , then DS
u0,r is a fixed disc of T . Also, C

S
u0,r is a fixed

circle of T .

Proof. At first, we demonstrate u0 ∈ Fix(T ). Suppose to the contrary that u0 /∈ Fix(T ). Using the
inequality (25), we get

1 ≤ S(u0, u0, Tu0) < N3(u0)
= [S(u0, u0, u0)]α [S(u0, u0, Tu0)]β [S(u0, u0, Tu0)]γ

= 0,

which is a contradiction and so u0 ∈ Fix(T ), that is,

u0 = Tu0. (9)

To establish DS
u0,r is the fixed disc, we have the subsequent cases:

Case 1. If r = 0, then we obtain DS
u0,r = {u0} and by the equality (9 ), we get u0 ∈ Fix(T ).

Case 2. If r > 0 and u ∈ DS
u0,r so that u /∈ Fix(T ). From the inequalities (23), (25), and equality (9),

we find

1 ≤ S(u, u, Tu) < N3(u)
= [S(u, u, u0)]α [S(u, u, Tu0)]β [S(u0, u0, Tu)]γ

≤ rαrβrγ = rα+β+γ ≤ [S(u, u, Tu)]α+β+γ ,

which is a contradiction with α+ β + γ < 1. Hence, u ∈ Fix(T ).
As a result, DS

u0,r is a fixed disc of T . Also, we may observe that C
S
u0,r is a fixed circle of T , since C

S
u0,r

is a boundary of DS
u0,r.

Theorem 6 Let T : U → U be a self-mapping of an S-metric space (U ,S) and r as described in (3). If there
exists u0 ∈ U so that

1 ≤ S(u, u, Tu) < N4(u), (10)

where
N4(u) = [S(u, u, u0)]α [S(u, u, Tu0)]β [S(u, u, Tu)]γ ,

for u ∈ U −Fix(T ), α+ β + γ < 1 and α, β, γ ∈ (0, 1) , then DS
u0,r is a fixed disc of T . Also, C

S
u0,r is a fixed

circle of T .

Proof. Now we prove u0 ∈ Fix(T ). Suppose to the contrary that u0 /∈ Fix(T ). Using the inequality (26),
we get

1 ≤ S(u0, u0, Tu0) < N4(u0)
= [S(u0, u0, u0)]α [S(u0, u0, Tu0)]β [S(u0, u0, Tu0)]γ

= 0,

which is a contradiction. Thereby, u0 ∈ Fix(T ), that is,

u0 = Tu0. (11)
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Let us consider the subsequent cases:
Case 1. If r = 0, then we obtain DS

u0,r = {u0} and by the equality (11 ), we get u0 ∈ Fix(T ).
Case 2. If r > 0 and u ∈ DS

u0,r so that u /∈ Fix(T ). From the inequality (26) and the equality (11), we
obtain

1 ≤ S(u, u, Tu) < N4(u)
= [S(u, u, u0)]α [S(u, u, Tu0)]β [S(u, u, Tu)]γ

≤ rαrβ [S(u, u, Tu)]γ ≤ [S(u, u, Tu)]α+β+γ ,

which is a contradiction with α+ β + γ < 1. So u ∈ Fix(T ) .
As a result, DS

u0,r is a fixed disc of T . Also, we may observe that C
S
u0,r is a fixed circle of T , since C

S
u0,r

is a boundary of DS
u0,r.

Example 7 Let us consider the S-metric S defined as in Example 1 and the self-mapping T : U → U
defined as in Example 6. Then, T validates the hypotheses of Theorem 5 and Theorem 6 for u0 = 0, α = 1

2 ,
β = γ = 1

8 . As expected, for u ∈ (8,∞), we obtain

1 ≤ S(u, u, Tu) = 2 ≤ 8.06 ' N3(u),

1 ≤ S(u, u, Tu) = 2 ≤ 6.14 ' N4(u),

and
r = inf {S(u, u, Tu) : u ∈ (8,∞)} = 2.

Noticeably, T fixes the disc DS
0,2 = [−1, 1] and the circle CS0,2 = {−1, 1}.

Next, following Joshi et al. [16] (see also, [41]), we frame some novel postulates to establish the greatest
fixed disc via S-metric.

Theorem 7 If in Theorems 3 or 4 or 5 or 6, self mapping T satisfy

S(Tu, Tu, Tv) ≤ [S(u, u, v)]α[S(u, u, Tu)]β [S(v, v, Tv)]γ
[S(u, u, Tv) + S(v, v, Tu)

2

]δ
, (12)

for u ∈ DS
u0,r, v ∈ U \ D

S
u0,r, α + β + γ < 1 and α, β, γ ∈ (0, 1) , then there exists no fixed disc of a self

mapping T that possesses a radius greater than r, that is, DS
u0,r is the greatest fixed disc of a self mapping

T .

Proof. Assume that there exist two fixed discs DS
u0,r and DS

u
′
0,r

′ ; r < r′ of T , that is, T validates all

postulates of Theorems 3 or 4 or 5 or 6 for both the discs DS
u0,r and D

S
u
′
0,r

′ . Let u ∈ DS
u0,r and v ∈ D

S
u
′
0,r

′ ,

that is, Tu = u and Tv = v. Then using inequality (12),

S(Tu, Tu, Tv) ≤ [S(u, u, v)]α[S(u, u, Tu)]β [S(v, v, Tv)]γ
[S(u, u, Tv) + S(v, v, Tu)

2

]δ
,

S(u, u, v) ≤ [S( u, u, v)]α[S(u, u, u)]β [S(v, v, v)]γ
[S(u, u, v) + S(v, v, u)

2

]δ
,

S(u, u, v) ≤ 0,

which is a contradiction. Hence, DS
u0,r is the greatest fixed disc of T having maximum radius r.

Following Mlaiki et al. [31], we define a common fixed circle in S-metric space.

Definition 3 Let CSu0,r be a circle on an S-metric space (U ,S) and A,B : U → U are two self-mappings. If
Au = Bu = u, u ∈ CSu0,r, then the circle C

S
u0,r is the common fixed circle of a pair of self mappings A and B.
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Theorem 8 Let A,B : U → U be self-mappings of an S-metric space (U ,S) and Au0 = Bu0 = u0 and let r
defined as

r = min{r1, r2, r3}, (13)

where

r1 = inf {S(u, u, Au) : u 6= Au} ,
r2 = inf {S(u, u, Bu) : u 6= Bu} ,
r3 = inf {S(Au, Au, Bu) : Au 6= Bu} .

If there exists u0 ∈ U so that
1 ≤ S(Au, Au, Bu) < N5(u), (14)

where

N5(u) = [S(Au, Au, Bu0)]α [S(Bu, Bu, Au0)]β
[
S(Au, Au, Bu0) + S(Bu, Bu, Au0)

2

]γ
×
[
S(u, u, Au0) + S(u, u, Tu0)

2

]δ
and

0 < S(u0, u0, Au) ≤ r and 0 < S(u0, u0, Bu) ≤ r, (15)

for α + β + γ + δ < 1, α, β, γ, δ ∈ (0, 1), and mapping A (or B) satisfies the postulates of Theorems 3 or 4
or 5 or 6, then DS

u0,r is a common fixed disc of self-mappings A and B. Also, C
S
u0,r is a common fixed circle

of pair of self mappings A and B.

Proof. To show that DS
u0,r is a common fixed disc of A and B, we have the subsequent cases:

Case 1. If r = 0, then DS
u0,r = {u0} and Au0 = Bu0 = u0.

Case 2. If r > 0 and u ∈ DS
u0,r be any point with Au 6= Bu, that is, S(Au, Au, Bu) > r. From the

inequality (14), we find

1 ≤ S(Au, Au, Bu) < N5(u)
= [S(Au, Au, Bu0)]α [S(Bu, Bu, Au0)]β[

S(Au, Au, Bu0) + S(Bu, Bu, Au0)
2

]γ [S(u, u, Au0) + S(u, u, Bu0)
2

]δ
= [S(Au, Au, u0)]α [S(Bu, Bu, u0)]β[

S(Au, Au, u0) + S(Bu, Bu, u0)
2

]γ [S(u, u, u0) + S(u, u, u0)
2

]δ
≤ rαrβrγrδ

= rα+β+γ+δ,

which is a contradiction with α+ β + γ + δ < 1. Hence,

Au = Bu. (16)

Since, A (or B) satisfies the postulates of Theorems 3 or 4 or 5 or 6, we get

Au = u (or Bu = u). (17)

By the equalities (16) and (17), we obtain Au = u = Bu, u ∈ DS
u0,r.

As a result, DS
u0,r is a common fixed disc of self mappings A and B. Also, we may observe that C

S
u0,r is

a common fixed circle of pair of self mappings A and B, since CSu0,r is a boundary of D
S
u0,r.
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Example 8 Let S be described as in Example 1. Define the self-mappings A,B : U → U as

Au =

{
u if u ≤ 8,
u+ 1 if u > 8,

and

Bu =

{
u if u ≤ 8,
u− 1 if u > 8,

for u ∈ U . Then, A and B validates the hypotheses of Theorem 4 for u0 = 0, α = 1
2 and β = γ = 1

8 . Indeed,
for u ∈ (8,∞), we obtain

1 ≤ S(Au, Au, Bu) = 4 ≤ N5(u),
and

r = min {S(u, u, Au), S(u, u, Bu), S(Au, Au, Bu) : u ∈ (8,∞)} = min{2, 2, 4} = 2.
Thus, A,B fix the disc DS

0,2 = [−1, 1] and the circle CS0,2 = {−1, 1}.

Since, the identity map IU : U → U , defined as IU (u) = u, u ∈ U , fixes every disc (resp. circle). Hence,
we explore a new contraction that excludes the identity map IU .

Theorem 9 Let T : U → U be a self-mapping on an S-metric space (U ,S) and u0 ∈ U satisfying

S(u, u, Tu) < N6(u), (18)

where
N6(u) = [S(u, u, u0)]α [S(u, u, Tu)]β [S(u0, u0, Tu0)]γ ,

u ∈ U and α+ β + γ < 1, α, β, γ ∈ (0, 1) if and only if T = IU .

Proof. At first, we demonstrate u0 ∈ Fix(T ). For this, assume that u0 /∈ Fix(T ). Using the inequality
(18), we get

S(u0, u0, Tu0) < N 6(u0)

= [S(u0, u0, u0)]α [S(u0, u0, Tu0)]β [S(u0, u0, Tu0)]γ

= 0,

a contradiction with u0 /∈ Fix(T ). So
u0 = Tu0. (19)

Let u ∈ U with u /∈ Fix(T ). Using the inequality (18) and the equality (19), we find

S(u, u, Tu) < 0,

which is a contradiction. Hence, u ∈ Fix(T ). As a result, we get T = IU . The reverse statement can be
easily seen using similar approaches.

Remark 3

1. If the S-metric arises from a metric d, then the established conclusions can be considered on a metric
space.

2. Since each b-metric arise from an S-metric, the established conclusions can be considered on a b-metric
space.

Remark 4 As seen in Examples 1 and 2, it is not always possible to generate S-metric from a metric or a
b-metric. Hence our conclusions proved utilizing interpolative technique are more general than the existing
conclusions proved in metric, S-metric, and b-metric spaces (see, [14], [15], [17], [32], and references therein).
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Remark 5 Examples 5, 6, 7, and 8 demonstrate that a circle (disc) in an S-metric space may not be similar
to a circle (disc) in an Euclidean space. The fixed circle and fixed disc conclusions are comparable to fixed-
point conclusions if the set of fixed points is a singleton set. Also, TCSu0,r = CSu0,r (TD

S
u0,r = DS

u0,r) does
not suggest that CSu0,r (D

S
u0,r) is a fixed circle (disc) of T . It is clear from Examples 5, 6, 7, and 8 that if a

set of fixed points of a self-mapping includes a disc, then it also includes a circle. However, the reverse may
not hold true. The fixed disc is not unique, that is, all the discs in the interior of a fixed disc in an S-metric
space are also fixed discs, (see, Examples 5, 6, 7, and 8). A disc having a maximum radius is called the
greatest disc [16].

4 Some Multiple Fixed Point Results on b-Metric Spaces

In this section, inspired by the used technique in [40] with Theorem 1, we give the following theorems:

Theorem 10 Let T : U → U be a self-mapping of a complete b-metric space (U , dS) and

dS(Tu, Tv) ≤ λNdS ( u, v), λ ∈ [0, 1), (20)

where,

NdS (u, v) =
[
dS(u, Tu)

]α [
dS(v, Tv)

]β [dS(u, Tu) + dS(v, Tv)
2

]γ [
dS(u, Tv) + dS(v, Tu)

2

]δ
,

for u, v ∈ U , α+ β + γ + δ < 1 and α, β, γ, δ ∈ (0, 1). Then T has a fixed point in U .

Theorem 11 Let T : U → U be a self-mapping of a b-metric space (U , dS) and r defined as

µ = inf
{
dS(u, Tu) : u /∈ Fix(T )

}
. (21)

If there exists u0 ∈ U so that
1 ≤ dS(u, Tu) < NdS1(u), (22)

where,

NdS1(u) =
[
dS(u, u0)

]α [
dS( u, Tu)

]β [dS(u, Tu) + dS(u, u0)
2

]γ [
dS(u, Tu0) + d

S(u0, Tu)

2

]δ
and

0 < dS(u0, Tu) ≤ µ, (23)

for u ∈ U − Fix(T ), α+ β + γ + δ < 1 and α, β, γ, δ ∈ (0, 1), then DdS

u0,µ = {u ∈ U : d
S(u, u0) ≤ µ} is a fixed

disc of T . Also, Cd
S

u0,µ = {u ∈ U : d
S(u, u0) = µ} is a fixed circle of T .

Theorem 12 Let T : U → U be a self-mapping of a b-metric space (U , dS) and satisfy the inequality (23)
and µ described as in (21). If there exists u0 ∈ U so that

1 ≤ dS(u, Tu) < NdS2(u), (24)

where,

NdS2(u) =
[
dS(u, u0)

]α [
dS( u, Tu)

]β [
dS(u0, Tu)

]γ
,

for u ∈ U − Fix(T ), α + β + γ < 1 and α, β, γ ∈ (0, 1) . Then DdS

u0,µ is a fixed disc of T . Also, C
dS

u0,µ is a
fixed circle of T .
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Theorem 13 Let T : U → U be a self-mapping of a b-metric space (U , dS) and satisfy the inequality (23)
and µ as described in (21). If there exists u0 ∈ U so that

1 ≤ dS(u, Tu) < NdS3(u), (25)

where,
NdS3(u) =

[
dS(u, u0)

]α [
dS(u, Tu0)

]β [
dS(u0, Tu)

]γ
,

for u ∈ U −Fix(T ), α+ β+ γ < 1 and α, β, γ ∈ (0, 1) , then DdS

u0,µ is a fixed disc of T . Also, C
dS

u0,µ is a fixed
circle of T .

Theorem 14 Let T : U → U be a self-mapping of a b-metric space (U , dS) and µ as described in (21). If
there exists u0 ∈ U so that

1 ≤ dS(u, Tu) < NdS4(u), (26)

where,
NdS4(u) =

[
dS(u, u0)

]α [
dS( u, Tu0)

]β [
dS(u, Tu)

]γ
,

for u ∈ U −Fix(T ), α+ β+ γ < 1 and α, β, γ ∈ (0, 1) , then DdS

u0,µ is a fixed disc of T . Also, C
dS

u0,µ is a fixed
circle of T .

The proofs of Theorems 10, 11, 12, 13, and 14 are clear from the proved theorems in the previous section.

5 An Application to PReLU

Activation functions are very important in neural networks. There are many examples of activation functions.
Some of them are partitioned. One of these partitioned activation functions is a “Parametric Rectified Linear
Unit (PReLU)”(see [11] for more details) be described as follows:

PReLU(u) =

{
λu if u < 0,
u if u ≥ 0, for u ∈ U .

Now, let U = [0,∞) ∪ {−2} and λ = 1
2 . Then we have

PReLU(u) =

{
u
2 if u < 0,
u if u ≥ 0, =

{
−1 if u = −2,
u if u ∈ [0,∞).

Let S-metric S be described as in Example 1. The function PReLU verifies the hypotheses of Theorem 3
with u0 = 0, α = 1

4 and β = γ = δ = 1
4 . As a matter of fact, for u = −2, we have

1 ≤ S(u, u, Tu) = 2 ≤ 2.01 ' N1(−2).

Also, the function PReLU validates the hypotheses of Theorem 4 with u0 = 0, α = 1
2 and β = δ = 1

8 . As
expected, for u = −2, we have

1 ≤ S(u, u, Tu) = 2 ≤ 2.37 ' N2(−2).
If, the function PReLU validates the hypotheses of Theorem 5 and Theorem 6 with u0 = 0, α = β = δ = 1

4 .
As a matter of fact, for u = −2, we obtain

1 ≤ S(u, u, Tu) = 2 ≤ 2.34 ' N3(−2),

1 ≤ S(u, u, Tu) = 2 ≤ 2.34 ' N4(−2),
and

r = inf {S(u, u, Tu) : u = −2} = 2.
Hence, the parametric rectified linear unit activation function PReLU fixes the disc DS

0,2 = [0, 1] and the
circle CS0,2 = {1}.
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Remark 6 A parametric rectified linear unit is a kind of leaky rectified linear unit making it a parameter
for the neural network to understand itself. It fixes the “dying rectified linear unit" problem, and speeds
up training as it does not have zero-slope parts. This activation function improves the performance of
convolutional neural networks in Image Net classification with minimum risk of overfitting. It is fascinating
to see that mappings forming a fixed circle (disc) have been exploited as activation functions in neural
networks and allow to choose the appropriate activation function in accordance with the required problem.
Consequently, our conclusions may also be significant under a suitable environment for numerous neural
networks.

6 Solution of Integral Equation

Let U = C([0, l],R) symbolizes the collection of continuous real-valued functions on [0, l]. The space U =
C([0, l],R) equipped with the norm ‖u‖∞ = maxt∈[0,l] |u(t)|, u(t) ∈ C([0, l],R) is a Banach space. Define
S : U × U × U → R+ as S(u, v,w) = |u−w| + |u+w−2v|. (U ,S) is a complete S-metric space. Next, we
solve the subsequent integral equation utilizing the interpolative fixed point technique.

u(t) =

∫ l

0

b(t, s)M(s, u(s))ds+ g(t), t ∈ [0, l]. (27)

Define T : U → U as

Tu(t) =

∫ l

0

b(t, s)M(s, u(s))ds+ g(t), t ∈ [0, l].

Consider the following hypotheses.

1. The functions M : [0, l]× U → R, b : [0, l]× [0, l]→ R and g : [0, l]→ R are continuous and

|M(s, u(s))−M(s, v(s))| ≤ |u(s)− v(s)|;

and ∫ l

0

M(s, u(s))ds ≤ ‖u(s)‖∞.

Now

S(Tu, Tu, Tv) = 2|Tu− Tv|

= 2
∣∣ ∫ l

0

b(t, s)M(s, u(s))ds−
∫ l

0

b(t, s)M(s, u(s))ds
∣∣

= 2
∣∣ ∫ l

0

b(t, s)[M(s, u(s))−M(s, u(s))]ds
∣∣

≤ 2

∫ l

0

|b(t, s)||M(s, u(s))−M(s, v(s))|ds

≤
∫ l

0

|b(t, s)|.|u(s)− v(s)|ds

≤ ‖u(s)− v(s)‖∞
∫ l

0

|b(t, s)|ds

≤ ‖u(s)− v(s)‖∞,
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S(u, u, Tu) = 2|Tu− u|

= 2|
∫ v

0

b(t, s)M(s, u(s))ds+ g(t)− u|

≤ 2
∣∣ ∫ v

0

b(t, s)M(s, u(s))ds
∣∣+ 2|g(t)− u(t)|

≤ 2‖u(s)‖∞ + 2|g(t)− u(t)|,

S(v, v, Tv) ≤ ‖v(s)‖∞ + 2|g(t)− v(t)|,
S(u, u, Tv) ≤ ‖v(s)‖∞ + 2|g(t)− u(t)|,
S(v, v, Tu) ≤ ‖u(s)‖∞ + 2|g(t)− v(t)|.

For α = β = δ = 1
6 and γ =

1
7 , mapping T validates Theorem 2. Hence, the integral equation (27) has a

solution in an S-metric space.

7 Conclusion

We have explored the geometry of the collection of fixed points via interpolative techniques in an S-metric
space by establishing multiple fixed points, fixed circle, and fixed disc conclusions. Furthermore, we have
excluded the possibility of an identity map in the existence of a fixed circle (disc) on S-metric spaces. To
establish the significance of novel fixed circle (disc) conclusions in the neural network, which permits to choose
the appropriate activation function according to the underlying problem, we have discussed the parametric
rectified linear unit activation function. In the sequel, we have presented some interesting remarks to compare
our results with the existing ones and demonstrate the significance of our outcomes. Investigations of multiple
fixed point and fixed figure problems in metric fixed point theory have been enriched to problems formulated
in terms of interpolative contractive conditions on an S-metric space which need not always arise from any
metric. Consequently, more general conclusions have been established than those existing in the literature.
It has been demonstrated by illustrative examples that these extensions, improvements, and generalizations
are genuine. We have concluded the paper by solving an integral equation utilizing interpolative fixed point
techniques. Our results provide a specific procedure and directions for further investigation in this recently
developed S-metric space.

Acknowledgement. The authors would like to express their gratitude to the referee for his valuable
remarks.

References

[1] H. Aydi, E. Karapinar, and Roldán López de Hierro, ω-interpolative Ćiríc-Reich-Rus-type contractions,
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