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Abstract
In this paper, we establish a formula for the exact controllability radius for a class of infinite dimen-
sional systems.

1 Introduction

Let X and U be two complex Hilbert spaces. In this paper we consider the linear control system:

&(t) = Ax(t) + Bu(t) ift >0,

_ (1)
x(0) = xo,

where A € L(X), B € L(U,X). X is called the state space, U the control space and u(.) € L2(0,T;U) the

control function. The mild solution of (1) is given by

t
x(t) = et?ag —|—/ =94 Bu(s)ds.

0
We will denote the system (1) by (A, B).

Definition 1 The system (A, B) is called exactly controllable if for every (xq,x1) € X2, there exists a control
u(.) € L*(0,T;U) and a time T > 0 such that

T
eTzy + / T4 Bu(s)ds = x1.
0

Define the following bounded linear operator
[A,B]: X xU — X
(z,u) +— Az + Bu.

Then, according to [4] the system (A, B) is exactly controllable if and only if for each A € C the linear
operator [A — AI, B] is surjective.

Since the subset of all exactly controllable pairs (A, B) is open (see [6]), it is interesting to study the
robustness of the exact controllability property. The exact controllability radius is defined as the smallest
perturbation of (A, B) that makes the system uncontrollable, that is

T(A,B) = ){H[AA, Aglll, (A+ A, B+ Ap) is not exactly controllable} . (2)

inf

(Aa,AR)EL(X)XL(U,X
The problem of estimating (2) is of great importance in mathematical systems theory, and there have been
several works in this direction over the last decades, see for example [8], [9], [1], [3] and the references therein.
However the attention has mainly been devoted to this problem for finite-dimensional systems and very little
is known for systems in infinite-dimensional spaces. Our main purpose in this paper is to derive a formula
for the exact controllability radius for a class of infinite dimensional systems described by (1), and this will
be done in Section 2. In Section one, we will recall for a later use some known results from the theory of
linear multi-valued operators, for more details see [2, 9].
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2 Preliminaries

Let X and Y be Hilbert spaces over the field K = R or C. The notation 7 : X == Y indicates that 7 is
a set valued operator, that is, for each x € 7 is a subset of Y. the inverse of 7 is the set-valued operator
T71:Y = X defined by + € T~! & y € T(x). The domain, range, the graph, and the kernel of 7 are

defined, respectively by
D(T)={ze X :T(x)#0},

Im7 =Uzep)7 (2),
Gr(T)={(z,y) e X xY :2€ D(T),y e T(x)},
ker(T) ={x € D(T):0€ 7T(z)}.
A multivalued operator 7 is called linear if for all z,y € D(7) and non zero scalars a we have

Te+Tz=T(x+2) and a7z =T (ax).

(Obviously the domain of a multivalued linear operator is a linear subspace). The norm of 7 is defined as
follows

7] = sup { inf ||y|| : x € D(T),||z| = 1} .
yeT
It follows from the definition that

inf |yl < | T||||=z]] for all z € D(T).
y€eT ()

We also assert that

ity € T(x) and y € (T(O)", then d(0,7(x)) = _inf 2] = 1|
zel (x

Indeed, if y € T (z), then 7 (z) =y = T(0). Let z € T(x). Then there exists w € T(0) such that z =y +w
and

d0,7(z)) = inf izl = inf Clly +wl = inf [yl + w]?]*

2T (x weT (0) €7(0)
=yl (0€7(0)).
(T =T, (T =T )T = Il (3)

Lemma 1 ([5]) Let X and Y be Banach spaces. If  : X — 'Y is a bounded linear operator and surjective,
then
inf {||P||: P € L(X), ¢+ P isnotsurjective} = ||¢~ ||, (4)

where ¢~ is a linear multivalued operator.

Now, we follow the approach adopted by Son and Thuan [8] to prove that ||[A™!|| = ||AT|| (where AT is
the pseudo-inverse of A) if A is a surjective bounded linear operator in a Hilbert space.

Lemma 2 Let A: X — Y be a surjective bounded linear operator where X and Y are Hilbert spaces. Then
A= = || AT|J.

Proof. Since A is surjective, we see that AA* is invertible and we have
At = A*(AA")

Let u = Af(y) for y € Y. Then Au = AATy = (AA*)(AA*)"ly = y. Therefore u € A~1(y). It follows that
A71(y) = u+A~1(0). An easy computation shows that u € (A71(0))*. Sinceu € A~1(y) and u € (A71(0))*,
we conclude that d(0, A=1(y)) = ||lu|| = ||AT(y)||. By definition, then

1AT] = sup [ AT(y)].
lyll=1
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3 Main Result

Theorem 1 Assume that the system (A, B) is exactly contollable. Then

1
"AB) = Suprec A= AL BJT|

Proof. If the system (A, B) is exactly controllable, then
[A—A,BlU=X, VYxeC.
Assume that the perturbed control system is not exactly controllable for some [A%, A%]. Then there exists
X €C

such that
[A+ AY — NI, B+ A% = [A — \oI, B] + [AY, AY]

is not surjective. So by (4) we have

1
I[A=Xol, BI7!

= inf{||[A4, AB]|l,[4A — XoI, B] + [A4, Aplis not surjective}

> inf{||[Aa, AB]|l, (A + A4, B+ Aglis not exactly contollable }
2> T(A,B)-
It follows that L
supycc [|[[A — AL, B]
To prove the converse, we first note that for any operator A € £(X x U, X), there exists A; € £L(X) and
Ay € L(U, X) such that A = [Aq, As].
For any small € > 0, we have

=Y 2> T(A,B)-

sup ||[[A — M, B]7!|| — 2¢ > 0.
AeC
Then there exists A\, € C such that

A= AL, Bl = [A = A, B]"|| > sup A =ALB ™| —e
S

Since [A — A1, B]* " is single-valued (because [A — A.I, B] is surjective) its norm is the operator norm and
thus there exists (z,u.) € X x U with ||(ze, ue)||xxv = 1 and

I[A = A, B]* " (ze, ue)|| > sup ||[[A — A, B]* || — 2e.
AeC

Let 2* = —[A — A1, B " (2c, uc). Then [A — A1, B]*(2¥) = —(2c,uc). By the Hahn-Banach theorem,
there exists z. € X such that ||zc]| = 1, (z¢,z¥) = |||, by setting

A u) = @«x,u), (e, ue))a?

it is clear that A, is a bounded linear map with norm

1 1

[Adl = 7 = = :
er” ||[A—)\€I, B] (xsvue)”

On the other hand,
[A—=Acl, B]*(x) + Al(x) = 0
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or equivalently [A — A1, B] + A, is not surjective. It follows that the perturbed system (A, B) + A, is not
exactly controllable. Thus by definition

1
supyec [|[[A — M, B]7'|| — 2

ra,B) < A <

By letting € — 0 we obtain the converse inequality. The proof is finished. =

Remark 1 (Extension to fractional systems) From a combination of the theorem in [{] page 537 and
Theorem 2.1 in [7], we can show in the same way that this result remains valid for time fractional systems
described by

Dy, = Axz(t) + Bu(t) ift >0,
x(0) = xo,

where % <a<l1l,A:X — X, B:U — X are bounded linear operators, and u € L*(0,T;U).

Example 1 It is proved in [10] that the system (A, B) defined by

f(x), $<x<1, 0, f<az<iu,
(Bf)(z) = 2~ and (Af)(z) = ° 1
Oa OSI<§7 f(l—fE), O§1'<§7
where f € X = Ly(0,1) is exactely controllable on X with control space U = X. Then
Hyf
[A— AL B]f =
H3f
where ,
A 3 Al
1 1+ |\ (1+\,\|2 —)\)f(a:)—&—(l—l‘ﬂiw)f(l—x), i1<x<l,
O = NEE T | iy 1
M) - e fl—2), 0<z<g,
A
) 1+ |A]2 f@)+ e fl-2), <2<,
B3I @) = Rre 1
AP +1 0, 0<a<t,
< 1 1 1
T(AvB) — 2 = ~ .
Srce IR gup, o ot /14 [l 1 0%
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