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Abstract

In this paper, we apply Karamata’s theorem combined with majorization theory to establish a new
inequality for the upper bound of the product of two finite sums of convex functions. As applications,
we derive some new generalizations of Kantorovich’s inequality.

1 Introduction and Preliminaries

Let us start with some fundamental notations or definitions needed in this paper. The symbols R and N will
denote the set of real numbers and the set of positive integers, respectively. For convenience, let

Rn = R× R× · · · × R︸ ︷︷ ︸
n

and
Rn++ = {x = (x1, . . . , xn) ∈ Rn : xi > 0, i = 1, . . . , n}.

In particular, R1++, simply denoted by R++, is R++ := (0,∞).

Definition 1 ([14, 15, 16]) A set Ω ⊂ Rn is called convex if

(αx1 + βy1, . . . , αxn + βyn) ∈ Ω

for any α, β ∈ [0, 1] with α+ β = 1 and x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Ω.

Definition 2 ([14, 15, 16]) Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn. x is said to be majorized by
y (in symbols x ≺ y) if

k∑
i=1

x[i] ≤
k∑
i=1

y[i] for 1 ≤ k ≤ n− 1,

and
n∑
i=1

xi =

n∑
i=1

yi,

where x[1] ≥ · · · ≥ x[n] and y[1] ≥ · · · ≥ y[n] are rearrangements of x and y in descending order.

Definition 3 ([2]) Let f : I → R and g : I → R be two real-valued functions on an interval I. f and g are
said to be
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(i) similarly ordered if
(f(x)− f(y))(g(x)− g(y)) ≥ 0 for every x, y ∈ I;

(ii) oppositely ordered if
(f(x)− f(y))(g(x)− g(y)) ≤ 0 for every x, y ∈ I

or,
(f(x)− f(y))(g(y)− g(x)) ≥ 0 for every x, y ∈ I.

The estimation of the upper bound of the product of two finite sum is a long lasting mathematical subject.
Pólya-Szegö established a famous inequality as follows:

Theorem 1 (Pólya-Szegö [1, 2]) Let 0 < m1 ≤ ak ≤M1 and 0 < m2 ≤ bk ≤M2 (k = 1, . . . , n). Then

n∑
k=1

a2k

n∑
k=1

b2k ≤
1

4

(√
M1M2

m1m2
+

√
m1m2

M1M2

)2( n∑
k=1

akbk

)2
. (1)

In [3], an upper bound inequality equivalent to inequality (1) was introduced:

Theorem 2 (Kantorovich inequality) Let {xk}, k = 1, . . . , n be any real number sequence. If 0 < m ≤
xk ≤M , i = 1, . . . , n, then (

1

n

n∑
k=1

xk

)(
1

n

n∑
k=1

1

xk

)
≤ (M +m)2

4Mm
.

Kantorovich inequality is a well-known inequality, this inequality is useful in numerical analysis and
statistics, especially in the method of steepest descent. Therefore, it is valuable for its generalization and
application. Over the years, various variations and extensions of this inequality have been investigated by
many authors in several contexts. Reference [3]—[13] has many forms of generalizations and applications.
In 2005, Xu [5] proved the following generalized Kantorovich inequality.

Theorem 3 ([5]) Let α > 0. If 0 < m ≤ xk ≤M , i = 1, . . . , n, then(
1

n

n∑
i=1

xi

)(
1

n

n∑
i=1

1

xαi

)
(Mα −mα)(M −m) ≤ (Mα+1 −mα+1)2

4(Mm)α
.

The following lemmas are important and will be used for proving our main results.

Lemma 1 ([16, 17]) Let m ≤ xi ≤M, i = 1, . . . , n, n ≥ 2, and m 6= M . Then there is a unique l ∈ [m,M)
and unique integer k ∈ {0, 1, . . . , n} such that

n∑
i=1

xi = (n− k − 1)m+ l + kM,

where l, k is determined by
(x1, . . . , xn) ≺ (M, . . . ,M︸ ︷︷ ︸

k

, l,m, . . . ,m︸ ︷︷ ︸
n−k−1

).

Remark 1 (i) Because l =
∑n
i=1 xi − (n− k − 1)m− kM ∈ [m,M), we see that∑n

i=1 xi − nm
M −m − 1 ≤ k ≤

∑n
i=1 xi − nm
M −m .

So we can determine k.
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(ii) According to the proof of Lemma 1 in reference [17], we know that l is a variable that depends on
x1, . . . , xn and m ≤ l < M .

Lemma 2 ([16, 17]) Let x = (x1, . . . , xn) ∈ Rn, y = (y1, . . . , yn) ∈ Rn and g is convex function on I ⊂ R.
If x ≺ y, then

n∑
i=1

g(xi) ≤
n∑
i=1

g(yi).

Kontenovich inequality is a famous inverse inequality of the famous Cauchy-Schwarz inequality, from
Theorem 2 and Theorem 3 we observe that the functions corresponding to the two sequences are respectively:
x and 1

x , x and
1
xα , (α > 0). They have the common oppositely ordered pproperty, and 1

x ,
1
xα is convex

function. So this tells us, for two general functions, when they are oppositely ordered and convex, there may
be results similar to Theorem 2 and Theorem 3.

2 New Inequalities for Differentiable Convex Functions

In this section, we establish the following new inequalities which will be applied to established new general-
izations of Kantorovich’s inequality and other new results.

Theorem 4 Let 0 < m ≤ xi ≤ M for i = 1, . . . , n. Let f and g be two nonnegative convex functions and
have second derivatives on [m, M ]. Suppose that

(H1) (f(M)− f(m))(g(m)− g(M)) ≥ 0, and

(H2) [kf(M) + (n− k− 1)f(m) + f(x)]g′′(x) + [kg(M) + (n− k− 1)g(m) + g(x)]f ′′(x) + 2f ′(x)g′(x) ≥ 0 for
m ≤ x ≤M and 1 ≤ k ≤ n− 1.

Then (
n∑
i=1

f(xi)

)(
n∑
i=1

g(xi)

)
(f(M)− f(m))(g(m)− g(M)) ≤

(
n [f(M)g(m)− f(m)g(M)]

2

)2
. (2)

Proof. In order to prove our conclusion, we consider the following two possible cases:
Case 1. If m = M , then (2) is obvious.
Case 2. Suppose m < M . If (f(M)−f(m))(g(m)−g(M)) = 0, then the conclusion also holds immediately.
Hence we may assume that (f(M) − f(m))(g(m) − g(M)) > 0. By Lemma 1, there exists k ∈ N with
1 ≤ k ≤ n− 1, such that

(x1, . . . , xn) ≺ (M, . . . ,M︸ ︷︷ ︸
k

, l,m, . . . ,m︸ ︷︷ ︸
n−k−1

).

According to the Remark 1, we know that l is a variable that depends on x1, . . . , xn and m ≤ l ≤ M .
Because f and g are nonnegative convex functions, by Lemma 2, we have

n∑
i=1

f(xi) ≤ kf(M) + (n− k − 1)f(m) + f(l),

and
n∑
i=1

g(xi) ≤ kg(M) + (n− k − 1)g(m) + g(l).

Let
ha(b) := [af(M) + (n− a− 1)f(m) + f(b)] · [ag(M) + (n− a− 1)g(m) + g(b)]
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for (a, b) ∈ N× [m,M ]. So, we get
n∑
i=1

f(xi)

n∑
i=1

g(xi) ≤ hk(l).

Clearly, for any fixed a, ha is a function of the variable b. Taking the derivative of ha with respect to the
variable b, we have

h′a(b) = f ′(b)[ag(M) + (n− a− 1)g(m) + g(b)] + g′(b)[af(M) + (n− a− 1)f(m) + f(b)],

and

h′′a(b) = f ′′(b)[ag(M) + (n− a− 1)g(m) + g(b)]

+g′′(b)[af(M) + (n− a− 1)f(m) + f(b)] + 2f ′(b)g′(b) ≥ 0.

Thus for any a, ha is a convex function on [m,M ]. Since l ∈ [m,M ], we see that hk(l) ≤ hk(m) or
hk(l) ≤ hk(M), where

hk(m) = [kf(M) + (n− k − 1)f(m) + f(m)][kg(M) + (n− k − 1)g(m) + g(m)]

= [kf(M) + (n− k)f(m)] · [kg(M) + (n− k)g(m)]

= f(M)g(M)k2 + k(n− k)f(M)g(m) + k(n− k)f(m)g(M) + (n− k)2f(m)g(m)

= ϕ(k),

and

ϕ(k) = (f(M)− f(m))(g(M)− g(m))k2 + n(f(M)g(m) + f(m)g(M)− 2f(m)g(m))k + n2f(m)g(m).

Next, we will find the maximum value of ϕ. (f(M)− f(m))(g(m)− g(M)) ≥ 0, ϕ has a maximum value.
Since

ϕ
′
(k) = 2(f(M)− f(m)) · (g(M)− g(m))k + n(f(M)g(m) + f(m)g(M)− 2f(m)g(m)),

if ϕ
′
(w) = 0, then we obtain

w =
2nf(m)g(m)− n(f(M)g(m) + f(m)g(M))

2(f(M)− f(m))(g(M)− g(m))
=

A

2B
.

Hence ϕ has maximum value

ϕ(w) = ϕ

(
A

2B

)
= B

(
A

2B

)2
−A A

2B
+ C =

4BC −A2
4B

,

where
A = 2nf(m)g(m)− n(f(M)g(m) + f(m)g(M)),

B = (f(M)− f(m))(g(M)− g(m)),

C = n2f(m)g(m).

On the other hand, since

hk(M) = [kf(M) + (n− k − 1)f(m) + f(M)] · [kg(M) + (n− k − 1)g(m) + g(M)]

= [(k + 1)f(M) + (n− k − 1)f(m)] · [(k + 1)g(M) + (n− k − 1)g(m)]

= hk+1(m),

the maximum value of hk(M) is the same as that of hk(m). So, we have

n∑
i=1

f(xi)

n∑
i=1

g(xi) ≤ hk(l) ≤ hk(m) ≤ 4BC −A2
4B

.
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Since

4BC = 4(f(M)g(M)− f(M)g(m)− f(m)g(M) + f(m)g(m))n2f(m)g(m)

= 4n2f(m)g(m)f(M)g(M)− 4n2f(m)f(M)g2(m)

− 4n2f2(m)g(m)g(M) + 4n2f2(m)g2(m),

and

A2 = 4n2f2(m)g2(m)− 4n2f(m)f(M)g2(m)− 4n2f2(m)g(m)g(M)

+ n2f2(M)g2(m) + n2f2(m)g2(M) + 2n2f(m)f(M)g(m)g(M),

we get
4BC −A2 = −n2(f(M)g(m)− f(m)g(M))2

and hence
4BC −A2

4B
=
−n2(f(M)g(m)− f(m)g(M))2

4(f(M)− f(m))(g(M)− g(m))
≥ 0.

Therefore we show that
n∑
i=1

f(xi)

n∑
i=1

g(xi) ≤
−n2(f(M)g(m)− f(m)g(M))2

4(f(M)− f(m))(g(M)− g(m))
,

or, equivalence,(
n∑
i=1

f(xi)

)(
n∑
i=1

g(xi)

)
(f(M)− f(m))(g(m)− g(M)) ≤

(
n (f(M)g(m)− f(m)g(M))

2

)2
.

The proof is completed.
As a consequence of Theorem 4, we can obtain the following generalized Kantorovich’s inequality.

Corollary 1 Let 0 < m ≤ xi ≤ M for i = 1, . . . , n, and let f and g be two nonnegative convex functions
and have second derivatives on [m, M ]. If f, g are oppositely ordered on [m, M ] and (fg)′′ ≥ 0 on [m, M ],
then (

n∑
i=1

f(xi)

)(
n∑
i=1

g(xi)

)
(f(M)− f(m))(g(m)− g(M)) ≤

(
n (f(M)g(m)− f(m)g(M))

2

)2
.

Proof. Since f, g are oppositely ordered on [m,M ], we have (f(M)−f(m))(g(m)−g(M)) ≥ 0 and condition
(H1) as in Theorem 4 is proved. We conclude that condition (H2) as in Theorem 4 holds. In fact note that

(fg)′′ ≥ 0 on [m,M ]

if and only if
f(x)g′′(x) + f ′′(x)g(x) + 2f ′(x)g′(x) ≥ 0 for x ∈ [m,M ].

For m ≤ x ≤M and 1 ≤ k ≤ n− 1, we obtain

[kf(M) + (n− k − 1)f(m) + f(x)]g′′(x)

+[kg(M) + (n− k − 1)g(m) + g(x)]f ′′(x) + 2f ′(x)g′(x)

= [kf(M) + (n− k − 1)f(m)]g′′(x) + [kg(M) + (n− k − 1)g(m)]f ′′(x)

+f(x)g′′(x) + g(x)f ′′(x) + 2f ′(x)g′(x) ≥ 0.

Therefore all the conditions of Theorem 4 are satisfied and the conclusion follows from Theorem 4 imme-
diately.
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3 New generalizations of Kantorovich’s inequality

Applying Theorem 4 or Corollary 1, we can obtain new exponential generalizations of Kantorovich’s inequal-
ity.

Theorem 5 Let 0 < m ≤ xi ≤M for i = 1, . . . , n. If one of the following conditions is satisfied:

(i) α = 1 and β < 0;

(ii) α > 1 and β < 0 with α+ β ≥ 1 or α+ β ≤ 0,

then (
1

n

n∑
i=1

xαi

)(
1

n

n∑
i=1

xβi

)
(Mα −mα)(mβ −Mβ) ≤

(
Mαmβ −mαMβ

2

)2
. (3)

Proof. (i) Suppose that α = 1 and β < 0. Let f(x) = x and g(x) = xβ for x > 0. Then f(x) is an increasing
convex function and g(x) is a decreasing convex function. Clearly, (f(M) − f(m))(g(m) − g(M)) ≥ 0. Let
m ≤ x ≤M and 1 ≤ k ≤ n− 1. Set u = kM + (n− k − 1)m. Thus u ≥M . Since

[kf(M) + (n− k − 1)f(m) + f(x)]g′′(x)

+[kg(M) + (n− k − 1)g(m) + g(x)]f ′′(x) + 2f ′(x)g′(x)

= [kM + (n− k − 1)m+ x]β(β − 1)lβ−2 + 2βxβ−1

= (u+ x)β(β − 1)xβ−2 + 2βxβ−1

= −βxβ−2[(u+ x)(1− β)− 2x]

= −βxβ−2[u(−β + 1) + (−β − 1)x]

and m ≤ x ≤M ≤ u, we get

[kf(M) + (n− k − 1)f(m) + f(x)]g′′(x)

+ [kg(M) + (n− k − 1)g(m) + g(x)]f ′′(x) + 2f ′(x)g′(x) ≥ 0.

Hence all the conditions of Theorem 4 are satisfied. By Theorem 4, we have(
1

n

n∑
i=1

xαi

)(
1

n

n∑
i=1

xβi

)
(Mα −mα)(mβ −Mβ) ≤

(
Mαmβ −mαMβ

2

)2
.

(ii) Let ϕ(x) = xγ for x > 0. Then ϕ
′′
(x) = γ(γ − 1)xγ−2 for x > 0. It is easy to see that when γ ≥ 1 or

γ < 0, h(x) is a convex function on R++. Suppose that α > 1and β < 0 with α + β ≥ 1 or α + β ≤ 0. Let
f(x) = xα and g(x) = xβ for x > 0. Then f(x) is an increasing convex function and g(x) is a decreasing
convex function. Obviously, (f(M)− f(m))(g(m)− g(M)) ≥ 0. Direct calculation gives

(f(x)g(x))′′ = f(x)g′′(x) + g(x)f ′′(x) + 2f ′(x)g′(x)

= β(β − 1)xα+β−2 + α(α− 1)xα+β−2 + 2αβxα+β−2

= (α+ β)(α+ β − 1)xα+β−2 ≥ 0.

Therefore all the conditions of Corollary 1 are satisfied and the conclusion follows immediately from Corollary
1.
The proof is completed.

Remark 2 (a) Taking α = 1 and β < 0 in Theorem 5, we can get Theorem 3.
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(b) Let 0 < m ≤ xi ≤M for i = 1, . . . , n. For any γ > 0, by Theorem 5, we obtain

An(x)(M −m)(Mγ −mγ) ≤ (Mγ+1 −mγ+1)2

4Mγmγ
Hn(xγ),

where An(x) is the arithmetic mean of x1, · · · , xn and Hn(xγ) is the harmonic mean of xγ1 , · · · , xγn.
In particular, if we take γ = 1 in last inequality, then

An(x) ≤ (M +m)2

4Mm
Hn(x).

Theorem 6 Let 0 < m ≤ xi ≤M for i = 1, . . . , n. If one of the following conditions is satisfied:

(i) p > 1 and λ ≥ 2M
p−1 ;

(ii) p > 1 and −m < λ ≤ 0;

(iii) p ≤ −1 and λ ≥ 0,

then (
1

n

n∑
i=1

xpi

)(
1

n

n∑
i=1

1

(λ+ xi)p

)
(Mp −mp) [(λ+M)p − (λ+m)p]

≤ [Mp(λ+M)p −mp(λ+m)p]
2

4(λ+m)p(λ+M)p
.

Proof. We only verify (i) and (ii), and a similar argument could be made for proving (iii). Let f(x) = xp

and g(x) = (λ + x)−p for 0 < x ≤ M . If p > 1 and λ ≥ 2M
p−1 , or p > 1 and −m < λ ≤ 0, then direct

calculation give
f ′(x) = pxp−1 > 0, g′(x) = −p(λ+ x)−p−1 < 0,

f ′′(x) = p(p− 1)xp−2 > 0, g′′(x) = p(p+ 1)(λ+ x)−p−2 > 0,

and

(f(x)g(x))′′ = f ′′(x)g(x) + g′′(x)f(x) + 2f ′(x)g′(x)

= p(p− 1)
xp−2

(λ+ x)p
+ p(p+ 1)

xp

(λ+ x)p+2
− 2p2

xp−1

(λ+ x)p+1

= p
xp−2

(λ+ x)p+2
[
(p− 1)(λ+ x)2 + (p+ 1)x2 − 2px(λ+ x)

]
= pλ

xp−2

(λ+ x)p+2
[(p− 1)λ− 2x].

• If p > 1 and −m < λ ≤ 0, we have

(λ+ x)p+2 > 0, pλ ≤ 0 and (p− 1)λ− 2x < 0.

So, we get

(f(x)g(x))′′ = pλ
xp−2

(λ+ x)p+2
[(p− 1)λ− 2x] ≥ 0.

• If p > 1 and λ ≥ 2M
p−1 , since x ≤M , we obtain

(f(x)g(x))′′ = pλ
xp−2

(λ+ x)p+2
[(p− 1)λ− 2x] ≥ pλ xp−2

(λ+ x)p+2
(2M − 2x) ≥ 0.
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On the other hand, since

f(M) = Mp, f(m) = mp, g(M) =
1

(λ+M)p
and g(m) =

1

(λ+m)p
,

it is not hard to show that (f(M) − f(m))(g(m) − g(M)) ≥ 0. Therefore the desired conclusion follows
immediately from Corollary 1.
The proof is completed.

Remark 3 In fact, by taking p = −1 and λ = 0 in Theorem 6, we can obtain(
1

n

n∑
k=1

xk

)(
1

n

n∑
k=1

1

xk

)
≤ (M +m)2

4Mm
,

which is the original Kantorovich inequality. Hence, Theorem 6 is a real generalization of Kantorovich
inequality.

4 Conclusions

In this paper, we use Karamata’s theorem combined with majorization theory to establish an inequality for
the upper bound of the product of two finite sums about convex function. As applications, we derive some
new generalizations of Kantorovich’s inequality.
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