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Abstract

We introduce a new type of conformable fractional derivative, which generalizes the standard proper-
ties and results of the classical integer order calculus viz. the Rolle’s theorem, the Mean Value Theorems,
the inverse property, the fundamental theorem of calculus, the theorem of integration by parts and the
Taylor’s theorem with integral remainder. After this, the extant conformable fractional derivatives are
shown as the special cases of the new one. At the end, the well known Bernoulli’s differential equa-
tion is generalized in terms of our newly defined fractional derivative. Also, some well known physical
problems like Newton’s law of cooling and Kirchoff’s current law are generalized and solved in terms
of the conformable fractional sense and the importance of this newly defined operator with respect to
the flexibility in the parametric values is described via the comparison of the solutions in the graphs
using MATLAB software. At last, the image processing has been done with the aid of our newly defined
fractional derivative operator.

1 Introduction

The study of non-integer order calculus was discovered in 1695 by L’Hospital and Leibniz [13]. Due to its vast
applications in the fields like engineering, sciences etc., it has become more popular and interesting among
the researchers. The various types of fractional derivatives and integrals have been defined and investigated
through the unification of the classical integration and differentiation. Some important works have been also
carried forward in this direction as in [2, 4, 5, 6, 27, 17, 23, 25, 26].
Many varieties of fractional derivatives and integrals have been introduced, amongst which the Riemann-

Liouville, Caputo, Hadamard, Caputo-Hadamard, Grünwald-Letnikov, Riesz [18, 19] are worth mentioning.
Most of them have the background of the corresponding fractional integral in the Riemann-Liouville sense.
But they are non local and they do not have the fundamental assets of the ordinary differentiation.
To overcome this, Khalil et al. [12], Katugampola [11], Sousa and Oliveira [30] and Anastassiou [3] have

worked in this direction and gave the following fractional derivatives in terms of the conformable sense which
encompasses the classical properties of integer order calculus. Khalil et al. [12] defined the conformable
fractional derivative of order α as

Definition 1 Let f : [0,∞)→ R. Then the conformable fractional derivative of order α is given by

T (α)f(t) = lim
ξ→0

f(t+ ξt1−α)− f(t)

ξ
, (1)

for all t > 0 and α ∈ (0, 1).
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Many of the researchers have studied the conformable fractional derivative with various applications
[1, 10]. Moreover, in 2014, Katugampola [11] has proposed a new fractional derivative with classical properties
similar to the conformable fractional derivative as

Definition 2 Let f : [0,∞)→ R. Then the alternative fractional derivative of order α is defined as

Dαf(t) = lim
ξ→0

f(t eξt
−α

)− f(t)

ξ
, (2)

for all t > 0 and α ∈ (0, 1).

In 2017, Sousa and Oliveira [30] have defined a generalization of the usual definition of a derivative as
follows:

Definition 3 Let f : [0,∞)→ R. Then for all t > 0 and α ∈ (0, 1), the local M -derivative of order α of f
is defined as

Dα,βM f(t) = lim
ξ→0

f (t Eβ (ξt−α))− f(t)

ξ
, (3)

where Eβ(·), β > 0 is the Mittag-Leffl er function with one parameter [15, 16].

Sousa and Oliveira [28, 29] have defined the truncated M -fractional derivative with the aid of the trun-
cated Mittag-Leffl er function of one parameter defined by

iEβ(z) =

i∑
k=0

zk

Γ(βk + 1)
, (4)

with β > 0 and z ∈ C as follows:

Definition 4 Let f : [0,∞)→ R. Then for all t > 0 and α ∈ (0, 1), a truncated M -fractional derivative of
order α of f is defined as

iDα,βM f(t) = lim
ξ→0

f (t iEβ (ξt−α))− f(t)

ξ
, (5)

where iEβ(·), β > 0 is the truncated Mittag-Leffl er function with one parameter.

As a generalization of the truncated M -fractional derivative, Sousa and Oliveira have defined the trun-
cated ν-fractional derivative [28]. In 2019, Anastassiou [3] has defined the left local general M -fractional
derivative as

Definition 5 Let f : [a,∞)→ R and t > a, a ∈ R. For α ∈ (0, 1], left local general M -fractional derivative
of order α of f is defined as

Dα,βM,af(t) = lim
ξ→0

f (t Eβ (ξ(t− a)−α))− f(t)

ξ
, (6)

where Eβ(·), β > 0 is the Mittag-Leffl er function with one parameter.

By focusing on all these definitions, we now generalize the left local generalM -fractional derivative given
in (6) by adding a flavor of the truncated Mittag-leffl er function (4).
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2 Main Results

As described in Section 1, the well known fractional derivatives are non-local and they do not preserve
some classical properties of ordinary calculus. So to inculcate these assets, we have already generalized the
conformable derivative by taking argument as the truncated Mittag-Leffl er function in right local sense [7].
Now, we will define the operator using again truncated Mittag-Leffl er function in left local sense. With
the aid of this newly defined operator, various results having likeness to the results of classical calculus are
obtained. As an important aspects of these results, three physical problems have been extended, solved and
faster convergence rate has been observed through the graphs. Also image enhancement has been performed
for the betterment of the 4D ultrasound image of a fetal using our newly defined operator.
Now, we begin with the following definition, which is the generalization of (6).

Definition 6 Let f : [a,∞)→ R and t > a, a ∈ R. For 0 < α ≤ 1, we define the left local general truncated
M -fractional derivative of order α of f (α-LLGT M -fractional derivative) as

iD
α,β
M,af(t) := lim

ξ→0

f (t iEβ(ξ(t− a)−α))− f(t)

ξ
, (7)

where iEβ(·) is the truncated Mittag-Leffl er function of one parameter as defined in (4).

Now, if f is differentiable in some open interval (a, δ), δ ∈ R and lim
t→a+

iD
α,β
M,af(t) exists then we have

iD
α,β
M,af(a) = lim

t→a+
iD

α,β
M,af(t).

Remark 1 Note that,

t iEβ
(
ξ(t− a)−α

)
= t

i∑
k=0

(ξ(t− a)−α)
k

Γ(βk + 1)

= t+
t ξ(t− a)−α

Γ(β + 1)
+
t (ξ(t− a)−α)

2

Γ(2β + 1)
+
t (ξ(t− a)−α)

3

Γ(3β + 1)

+ · · ·+ t (ξ(t− a)−α)
i

Γ(iβ + 1)
. (8)

Now, applying limit ξ → 0 on both sides of (8), we get

lim
ξ→0

t iEβ
(
ξ(t− a)−α

)
= t.

Next, we try to establish the generalization of the result “Every differentiable function is continuous.”in
the following theorem in context of the α-LLGT M -fractional derivative.

Theorem 1 If a function f : [a,∞) → R is α-LLGT M -fractional differentiable at t0, t0 > a with β > 0,
then f is continuous at t0.

Proof. For ξ 6= 0, consider

f
(
t0 iEβ(ξ(t0 − a)−α)

)
− f(t0) =

(
f (t0 iEβ(ξ(t0 − a)−α))− f(t0)

ξ

)
ξ. (9)

Now, applying the limit ξ → 0 on both sides of (9), we have

lim
ξ→0

(
f
(
t0 iEβ(ξ(t0 − a)−α)

)
− f(t0)

)
= lim

ξ→0

(
f (t0 iEβ(ξ(t0 − a)−α))− f(t0)

ξ

)
× lim
ξ→0

ξ
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= iD
α,β
M,af(t0) lim

ξ→0
ξ

= 0.

Hence, f is continuous at t0.
In the next theorem, a relation between the α-LLGT M -fractional derivative and classical derivative is

obtained.

Theorem 2 If f : [a,∞)→ R has the α-LLGT M -fractional derivative at t, t > a with β > 0, then

iD
α,β
M,af(t) =

t(t− a)−α

Γ(β + 1)
f ′(t). (10)

Proof. For t > a and from Remark 1, we have

t iEβ
(
ξ(t− a)−α

)
= t+

t ξ(t− a)−α

Γ(β + 1)
+
t (ξ(t− a)−α)

2

Γ(2β + 1)
+
t (ξ(t− a)−α)

3

Γ(3β + 1)

+ . . .+
t (ξ(t− a)−α)

i

Γ(iβ + 1)

= t+
t ξ(t− a)−α

Γ(β + 1)
+O(ξ2). (11)

Let

h := ξt(t− a)−α
(

1

Γ(β + 1)
+O(ξ2)

)
. (12)

Then

ξ =
h

t(t− a)−α
(

1
Γ(β+1) +O(ξ2)

) =
h (t− a)α Γ(β + 1)

t
(
1 + Γ(β + 1)O(ξ2)

) . (13)

Therefore from the Definition 6 and (11), we have

iD
α,β
M,af(t) = lim

ξ→0

f
(
t+ ξt(t−a)−α

Γ(β+1) +O(ξ2)
)
− f(t)

ξ
.

Then from (12), we have

iD
α,β
M,af(t) = lim

ξ→0

f(t+ h)− f(t)

ξ

= lim
ξ→0

(f(t+ h)− f(t)) t
(
1 + Γ(β + 1)O(ξ2)

)
h(t− a)αΓ(β + 1)

=
t(t− a)−α

Γ(β + 1)

[
lim
h→0

(
f(t+ h)− f(t)

h

)
lim
ξ→0

(
1 + Γ(β + 1)O(ξ2)

)]
=

t(t− a)−α

Γ(β + 1)
f ′(t) as if ξ → 0 then h→ 0.

Remark 2 From Theorem 2, if f(t) = c, where c is any constant, then iD
α,β
M,af(t) = 0 as f ′(t) = 0, for

t ∈ [a,∞).

Remark 3 For α = 1, a = 0 and β = 0 or 1, (10) becomes iD
α,β
M,af(t) = f ′(t).

Now, we will derive the theorem that encompasses the classical properties of integer order derivatives.
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Theorem 3 Let f1, f2 : [a,∞) → R be α-LLGT M -fractional differentiable at t, t > a, µ1, µ2 ∈ R and
β > 0. Then

1. iD
α,β
M,a(µ1f1 + µ2f2)(t) = µ1 iD

α,β
M,af1(t) + µ2 iD

α,β
M,af2(t).

2. iD
α,β
M,a(f1 · f2)(t) = f1(t) iD

α,β
M,af2(t) + f2(t) iD

α,β
M,af1(t).

3. iD
α,β
M,a

(
f1

f2

)
(t) =

f2(t) iD
α,β
M,af1(t)− f1(t) iD

α,β
M,af2(t)

[f2(t)]2
.

4. iD
α,β
M,a(k) = 0, where k is a constant.

5. If f1(t) is differentiable at f2(t), then iD
α,β
M,a(f1of2)(t) = f

′

1(f2(t)) iD
α,β
M,af2(t).

Proof.

1. From Definition 6, we have

iD
α,β
M,a(µ1f1 + µ2f2)(t)

= lim
ξ→0

(µ1f1 + µ2f2)(t iEβ(ξ(t− a)−α))− (µ1f1 + µ2f2)(t)

ξ

= lim
ξ→0

µ1 f1(t iEβ(ξ(t− a)−α)) + µ2 f2(t iEβ(ξ(t− a)−α))− µ1f1(t)− µ2f2(t)

ξ

= lim
ξ→0

µ1 f1(t iEβ(ξ(t− a)−α))− µ1f1(t)

ξ

+ lim
ξ→0

µ2 f2(t iEβ(ξ(t− a)−α))− µ2f2(t)

ξ

= µ1 iD
α,β
M,af1(t) + µ2 iD

α,β
M,af2(t).

2. From Definition 6, we have

iD
α,β
M,a(f1 · f2)(t)

= lim
ξ→0

f1(t iEβ(ξ(t− a)−α)) · f2(t iEβ(ξ(t− a)−α))− f1(t) · f2(t)

ξ

= lim
ξ→0

{
f1(t iEβ(ξ(t− a)−α)) · f2(t iEβ(ξ(t− a)−α))− f1(t) · f2(t)

+f1(t)f2(t iEβ(ξ(t− a)−α))− f1(t)f2(t iEβ(ξ(t− a)−α))

}
/ξ

= lim
ξ→0

(
f1(t iEβ(ξ(t− a)−α))− f1(t)

ξ

)
lim
ξ→0

f2(t iEβ(ξ(t− a)−α))

+ lim
ξ→0

(
f2(t iEβ(ξ(t− a)−α))− f2(t)

ξ

)
lim
ξ→0

f1(t).

Using Theorem 1 and now applying Definition 6, we get

iD
α,β
M,a(f1 · f2)(t) = iD

α,β
M,af1(t) f2(t) +i D

α,β
M,af2(t) f1(t)

= f1(t) iD
α,β
M,af2(t) + f2(t) iD

α,β
M,af1(t).

3. Again with the aid of the Definition 6, we have

iD
α,β
M,a

(
f1

f2

)
(t)
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= lim
ξ→0

f1(t iEβ(ξ(t−a)−α))
f2(t iEβ(ξ(t−a)−α)) −

f1(t)
f2(t)

ξ

= lim
ξ→0

f2(t) f1(t iEβ(ξ(t− a)−α))− f1(t) f2(t iEβ(ξ(t− a)−α))

ξf2(t iEβ(ξ(t− a)−α)) f2(t)

+ lim
ξ→0

f1(t)f2(t)

ξ f2(t iEβ(ξ(t− a)−α)) f2(t)
− lim
ξ→0

f1(t)f2(t)

ξ f2(t iEβ(ξ(t− a)−α)) f2(t)

=

lim
ξ→0

f2(t)(f1(t iEβ(ξ(t−a)−α))−f1(t))
ξ − lim

ξ→0

f1(t)(f2(t iEβ(ξ(t−a)−α))−f2(t))
ξ

lim
ξ→0

f2(t iEβ(ξ(t− a)−α))f2(t)

=

f2(t)

(
lim
ξ→0

(f1(t iEβ(ξ(t−a)−α))−f1(t))
ξ

)
− f1(t)

(
lim
ξ→0

(f2(t iEβ(ξ(t−a)−α))−f2(t))
ξ

)
f2(t) lim

ξ→0
f2(t iEβ(ξ(t− a)−α))

=
f2(t) iD

α,β
M,af1(t)− f1(t) iD

α,β
M,af2(t)

[f2(t)]2
,

as lim
ξ→0

f2(t iEβ(ξ(t− a)−α)) = f2(t).

4. In this case, the proof directly follows from Remark 2.

5. This result is proved in two cases: (I) f2 is constant and (II) f2 is non-constant.
Case-I: Let f2(t) = b, where b is any constant.
Then from Remark 2, we have

iD
α,β
M,a (f1of2)(b) = iD

α,β
M,a f1(f2(t)) = iD

α,β
M,a f1(b) = 0.

Case-II: f2 is not a constant in a neighborhood of b.
Since f2 is continuous at b, for ξ to be small enough, we have

iD
α,β
M,a(f1of2)(b)

= lim
ξ→0

f1(f2(b iEβ(ξ(t− a)−α)))− f1(f2(b))

ξ

= lim
ξ→0

f1(f2(b iEβ(ξ(t− a)−α)))− f1(f2(b))

ξ

f2(b iEβ(ξ(t− a)−α))− f2(b)

f2(b iEβ(ξ(t− a)−α))− f2(b)

= lim
ξ→0

f1(f2(b iEβ(ξ(t− a)−α)))− f1(f2(b))

f2(b iEβ(ξ(t− a)−α))− f2(b)
× lim
ξ→0

f2(b iEβ(ξ(t− a)−α))− f2(b)

ξ
.

Now, let
ξ1 = f2(b iEβ(ξ(t− a)−α))− f2(b).

Then
f2(b iEβ(ξ(t− a)−α)) = ξ1 + f2(b).

Also, it is observed that if ξ → 0 then ξ1 → 0. Therefore,

iD
α,β
M,a(f1of2)(b)

= lim
ξ1→0

f1(f2(b) + ξ1)− f1(f2(b))

ξ1

lim
ξ→0

f2(b iEβ(ξ(t− a)−α))− f2(b)

ξ

= f
′

1(f2(b)) iD
α,β
M,af2(b), b > 0.

Hence,
iD

α,β
M,a(f1of2)(t) = f

′

1(f2(t)) iD
α,β
M,af2(t).
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Now, using Theorem 2, we have the following α-LLGT M -fractional derivatives of the various functions.

Theorem 4 Let µ ∈ R, β > 0, α ∈ (0, 1] and t > a. Then

1. iD
α,β
M,a(1) = 0.

2. iD
α,β
M,a(eµt) =

t(t− a)−α

Γ(β + 1)
µ eµt.

3. iD
α,β
M,a(sinµt) =

t(t− a)−α

Γ(β + 1)
µ cosµt.

4. iD
α,β
M,a(cosµt) = − t(t− a)−α

Γ(β + 1)
µ sinµt.

5. iD
α,β
M,a(tµ) =

t(t− a)−α

Γ(β + 1)
µtµ−1 =

(t− a)−αµ tµ

Γ(β + 1)
.

Proof. We omit the proof here as it follows from Theorem 2.

2.1 Generalization of Fundamental Results of Calculus

Further, we have observed that the α-LLGT M -fractional derivative also has various important theorems
similar to the classical integer order calculus. We have derived the Rolle’s theorem, the Mean Value Theorem
and its extension using this newly defined fractional derivative in the next three theorems.

Theorem 5 Let f : [γ, ρ]→ R, where γ > a. If

1. f is continuous on [γ, ρ],

2. f is α-LLGT M -fractional differentiable on (γ, ρ), and

3. f(γ) = f(ρ),

then there exists c ∈ (γ, ρ) such that iD
α,β
M,af(c) = 0, β > 0.

Proof. We will prove this theorem in three cases:
Case-I: If f(x) = k on [γ, ρ] where k is any constant, then from Remark 2, iD

α,β
M,af(x) = 0 for all

x ∈ [γ, ρ]. In other words, we can say that there exists c ∈ (γ, ρ) such that

iD
α,β
M,af(c) = 0.

Case-II: Let f be non-constant. In this case, suppose that there is some d in (γ, ρ) such that f(d) > f(γ).
Since f is continuous on [γ, ρ], by the extreme value theorem [22], f(x) has maximum in [γ, ρ]. Also, as
f(γ) = f(ρ) and f(d) > f(γ), we have the maximum value of f at some c in (γ, ρ). Here, c occurs in the
interior of the interval means that f(x) has relative maximum at x = c and by the second hypothesis, we
have iD

α,β
M,af(x) exists. Therefore, iD

α,β
M,af(c) = 0.

Case-III: Let f be non-constant, but in this case, suppose that there is some d in (γ, ρ) such that
f(d) < f(γ). Now, similar to Case-II, by extreme value theorem [22], f(x) has minimum in [γ, ρ]. Also, as
f(γ) = f(ρ) and f(d) < f(γ), we have the minimum value of f at some c in (γ, ρ). Hence, iD

α,β
M,af(c) = 0.

Theorem 6 Let f : [γ, ρ]→ R, where γ > a, 0 /∈ [γ, ρ]. If

1. f is continuous on [γ, ρ], and
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2. f is α-LLGT M -fractional differentiable on (γ, ρ),

then there exists c ∈ (γ, ρ) such that

f(ρ)− f(γ) =
(
iD

α,β
M,af(c)

) Γ(β + 1)(c− a)α

c
(ρ− γ).

Proof. For x ∈ [γ, ρ], consider

g(x) := f(x)− f(γ)−
(
f(ρ)− f(γ)

ρ− γ

)
(x− γ). (14)

Since f is continuous on [ρ, γ], g is continuous on [ρ, γ] too. Also, it can be easily verified that g(γ) = 0 = g(ρ).
Therefore from Theorem 3, we can say that f is the α-LLGT M -fractional differentiable on (γ, ρ).
Now, from Theorem 5, there exists c ∈ (γ, ρ) such that

iD
α,β
M,ag(c) = 0. (15)

Taking iD
α,β
M,a on both sides of (14), we get

iD
α,β
M,ag(x) =i D

α,β
M,af(x)− iD

α,β
M,af(γ)−

(
f(ρ)− f(γ)

ρ− γ

)
iD

α,β
M,a(x− γ).

Applying Theorem 2 by taking f to be linear function, we obtain

iD
α,β
M,ag(x) =i D

α,β
M,af(x)− iD

α,β
M,af(γ)−

(
f(ρ)− f(γ)

ρ− γ

)
x(x− a)−α

Γ(β + 1)
.

Whence at x = c,

iD
α,β
M,ag(c) =i D

α,β
M,af(c)− iD

α,β
M,af(γ)−

(
f(ρ)− f(γ)

ρ− γ

)
c(c− a)−α

Γ(β + 1)
.

Then using (15), we get

iD
α,β
M,af(c)− 0−

(
f(ρ)− f(γ)

ρ− γ

)
c(c− a)−α

Γ(β + 1)
= 0.

Hence,

iD
α,β
M,af(c) =

(
f(ρ)− f(γ)

ρ− γ

)
c(c− a)−α

Γ(β + 1)
.

Theorem 7 Let γ > a, 0 /∈ [γ, ρ] and f1, f2 : [γ, ρ]→ R. If

1. f1, f2 are continuous on [γ, ρ] and f2(γ) 6= f2(ρ), and

2. f is the α-LLGT M -fractional differentiable on (γ, ρ),

then there exists c ∈ (γ, ρ) such that

iD
α,β
M,af1(c)

iD
α,β
M,af2(c)

=
f1(ρ)− f1(γ)

f2(ρ)− f2(γ)
with β > 0.
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Proof. For x ∈ [γ, ρ], consider

G(x) := f1(x)− f2(γ)−
(
f1(ρ)− f1(γ)

f2(ρ)− f2(γ)

)
(f2(x)− f2(γ)). (16)

Since f1, f2 are continuous on [ρ, γ], G is continuous on [ρ, γ] too. Also, it can be easily seen that G(γ) = 0 =
G(ρ). Therefore from Theorem 3, we can say that f1, f2 are α-LLGT M -fractional differentiable functions
on (γ, ρ).
Now, from Theorem 5, there exists c ∈ (γ, ρ) such that

iD
α,β
M,aG(c) = 0. (17)

Taking iD
α,β
M,a on both sides of (16), we get

iD
α,β
M,aG(x) =i D

α,β
M,af1(x)− iD

α,β
M,af2(γ)−

(
f1(ρ)− f1(γ)

f2(ρ)− f2(γ)

)
iD

α,β
M,a(f2(x)− f2(γ)).

Applying Remark 2 and then writing the expression at x = c, we obtain

iD
α,β
M,aG(c) =i D

α,β
M,af1(c)− 0−

(
f1(ρ)− f1(γ)

f2(ρ)− f2(γ)

)
iD

α,β
M,af2(c)− 0,

which implies from (17),

iD
α,β
M,af1(c)−

(
f1(ρ)− f1(γ)

f2(ρ)− f2(γ)

)
iD

α,β
M,af2(c) = 0.

Therefore,
iD

α,β
M,af1(c)

iD
α,β
M,af2(c)

=
f1(ρ)− f1(γ)

f2(ρ)− f2(γ)
.

Definition 7 Let f be analytic at t, t > a, β > 0, and α ∈ (n, n+ 1], n ∈ N ∪ {0}. Then the general form
of the α-LLGT M -fractional derivative of function f at t is defined by

iD
α,β;n
M,a f(t) := lim

ξ→0

f (n) (t iEβ(ξ(t− a)n−α))− f (n)(t)

ξ
, (18)

if the limit exists.

Now, from the above definition, Theorem 2 and by the principle of mathematical induction on n, we have
for t > a

iD
α,β;n
M,a f(t) =

t(t− a)n−α

Γ(β + 1)
f (n+1)(t),

for f to be an analytic function. Further, this α-LLGT M -fractional derivative has a corresponding left
M -integral, which is defined below:

Definition 8 Let t ≥ a, f be a continuous function defined on (a, t], 0 /∈ (a, t] and α ∈ (0, 1]. Then the left
M -integral of order α of f is defined as

Iα,βM,af(t) = Γ(β + 1)

t∫
a

f(x)

x(x− a)−α
dx, with β > 0.

In connection with the above definition, we have generalized the inverse property, the fundamental
theorem of calculus and the theorem of integration by parts in the upcoming theorems.
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Theorem 8 Let a ∈ R, α ∈ (0, 1]. If f is a continuous function at t, 0 6= t > a then

iD
α,β
M,a I

α,β
M,af(t) = f(t), β > 0. (19)

Proof. From Theorem 2, we have

iD
α,β
M,a

(
Iα,βM,af(t)

)
=

t(t− a)−α

Γ(β + 1)

d

dt

(
Iα,βM,af(t)

)
=

t(t− a)−α

Γ(β + 1)

d

dt

Γ(β + 1)

t∫
a

f(x)

x(x− a)−α
dx


=

t(t− a)−α

Γ(β + 1)
Γ(β + 1)

f(t)

t(t− a)−α
= f(t).

Theorem 9 Let f : [a,∞) → R be the α-LLGT M -fractional differentiable function and α ∈ (0, 1]. Then
for all t > a,

Iα,βM,a iD
α,β
M,af(t) = f(t)− f(a), with β > 0. (20)

Proof. From Definition 8 and then applying Theorem 2, we have

Iα,βM,a

(
iD

α,β
M,af(t)

)
= Γ(β + 1)

t∫
a

iD
α,β
M,af(x)

x(x− a)−α
dx

= Γ(β + 1)

t∫
a

1

x(x− a)−α
x(x− a)−α

Γ(β + 1)
f ′(x) dx

=

t∫
a

f ′(x) dx = f(t)− f(a),

by the classical fundamental theorem of calculus.
It can be easily observed that, if f(a) = 0, then by (20) for all t > a, we have

Iα,βM,a iD
α,β
M,af(t) = f(t).

Now, for the sake of brevity, we denote

Iα,βM,af(t) =

t∫
a

f(x) dα,β x, where dα,β x =
Γ(β + 1)

x(x− a)−α
dx.

In this notation, we derive the generalization of the integration by parts in the following theorem for the left
M -integral.

Theorem 10 Let f1, f2 : [c, d]→ R be continuously differentiable and α ∈ (0, 1]. Then for β > 0

d∫
c

f1(x) iD
α,β
M,a f2(x) dα,β x = [f1(x)f2(x)]dc −

d∫
c

f2(x) iD
α,β
M,a f1(x) dα,β x.
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Proof. In the stated notations,

d∫
c

f1(x) iD
α,β
M,a f2(x) dα,β x =

d∫
c

f1(x) iD
α,β
M,a f2(x)

Γ(β + 1)

x(x− a)−α
dx

=

d∫
c

f1(x)
x(x− a)−α

Γ(β + 1)
f ′2(x)

Γ(β + 1)

x(x− a)−α
dx,

by Theorem 2. Now, applying the classical integration by parts, we obtain

d∫
c

f1(x) iD
α,β
M,a f2(x) dα,β x =

d∫
c

f1(x) f ′2(x) dx

= [f1(x)f2(x)]dc −
d∫
c

f ′1(x) f2(x) dx

= [f(x)f2(x)]dc −
d∫
c

f2(x)
x(x− a)−α

Γ(β + 1)
f ′1(x)

Γ(β + 1)

x(x− a)−α
dx

= [f1(x)f2(x)]dc −
d∫
c

f2(x) iD
α,β
M,a f1(x) dα,β x,

by using Theorem 2 again .
The general form of the left M -integral is given by

Definition 9 Let t ≥ a and f be a function defined in (a, t] and α ∈ (n, n + 1], n ∈ N ∪ {0}. Then the
general form of the left M -integral of order α of f is defined as

Iα,β;n
M,a f(t) =

Γ(β + 1)

n!

t∫
a

(t− x)n

x(x− a)n−α
f(x) dx. (21)

Clearly, for n = 0, Iα,β;0
M,a f(t) = Iα,βM,af(t).

Next, we derive a left fractional Taylor’s theorem with integral remainder associated to the above defin-
ition.

Theorem 11 Let f : [a,∞) → R be (n + 1) times continuously differentiable for t, t > a with β > 0 and
α ∈ (n, n+ 1], n ∈ N ∪ {0}. Then for all t > a,

Iα,β;n
M,a

(
iD

α,β;n
M,a f(t)

)
= f(t)−

n∑
k=0

f (k)(a)(t− a)k

k!
. (22)

Proof. From Definition 9, we have

Iα,β;n
M,a

(
iD

α,β;n
M,a f(t)

)
=

Γ(β + 1)

n!

t∫
a

(t− x)n

x(x− a)n−α
iD

α,β;n
M,a f(x) dx

=
Γ(β + 1)

n!

t∫
a

(t− x)n

x(x− a)n−α
x(x− a)n−α

Γ(β + 1)
f (n+1)(x) dx
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=
1

n!

t∫
a

(t− x)n f (n+1)(x) dx.

Now, taking one by one integer order integration, we get

Iα,β;n
M,a

(
iD

α,β;n
M,a f(t)

)
= f(t)−

n∑
k=0

f (k)(a)(t− a)k

k!
.

3 Relation with Other Fractional Derivatives

Here we will show the particular cases of our newly defined α-LLGTM -fractional derivative with the various
fractional derivatives. Taking β = 1, a = 0 and i = 1 in (10), we get

1D
α,1
M,0f(t) = lim

ξ→0

f (t 1E1(ξt−α))− f(t)

ξ
.

But note that

1E1(ξt−α) =

1∑
k=0

(ξt−α)k

Γ(k + 1)
= 1 + ξt−α.

Therefore,

1D
α,1
M,0f(t) = lim

ξ→0

f (t (1 + ξt−α))− f(t)

ξ
= lim
ξ→0

f
(
t+ ξt1−α

)
− f(t)

ξ
= T (α)(t),

which is the conformable fractional derivative given in (1) . Now, taking β = 1, a = 0 and applying the
limit i→∞ on both sides of (10), we get

∞D
α,1
M,0f(t) = lim

ξ→0

f (t ∞E1(ξt−α))− f(t)

ξ
. (23)

But by (4)

∞E1(ξt−α) =

∞∑
k=0

(ξt−α)k

Γ(k + 1)
=

∞∑
k=0

(ξt−α)k

k!
= eξt

−α
. (24)

Thus, from (23) and (24)

∞D
α,1
M,0f(t) = lim

ξ→0

f
(
t eξt

−α
)
− f(t)

ξ
= Dαf(t),

which is the alternative fractional derivative given in (2).
Now, Taking β = 1 and a = 0 in (10), we get

iD
α,1
M,0f(t) = lim

ξ→0

f (t iE1(ξt−α))− f(t)

ξ
.

Again (4) yields

iE1(ξt−α) =

i∑
k=0

(ξt−α)k

Γ(k + 1)
= eξt

−α

i ,
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where ei denotes the truncated exponential function. Therefore, we have

iD
α,1
M,0f(t) = lim

ξ→0

f
(
t eξt

−α

i

)
− f(t)

ξ
= Dαi f(t),

which is the generalized fractional derivative [11].
Now, applying the limit i→∞ on both sides of (10) and taking a = 0, we get

∞D
α,β
M,0f(t) = lim

ξ→0

f (t ∞Eβ(ξt−α))− f(t)

ξ
, (25)

where from (4)

∞Eβ(ξt−α) =

∞∑
k=0

(ξt−α)k

Γ(βk + 1)
= Eβ

(
ξt−α

)
. (26)

Thus, by (25) and (26)

∞D
α,β
M,0f(t) = lim

ξ→0

f (t Eβ(ξt−α))− f(t)

ξ
= Dα,βM f(t),

which is the local M -fractional derivative given in (3). Taking a = 0 in (10), we get

iD
α,β
M,0f(t) = lim

ξ→0

f (t iEβ(ξt−α))− f(t)

ξ
= iDα,βM f(t),

which is the truncated M -fractional derivative as in (5).
Lastly, taking the limit i→∞ on both sides of (10), we get

∞D
α,β
M,af(t) = lim

ξ→0

f (t ∞Eβ(ξ(t− a)−α))− f(t)

ξ
.

But from (4)

∞Eβ
(
ξ(t− a)−α

)
=

∞∑
k=0

(ξ(t− a)−α)k

Γ(βk + 1)
= Eβ(ξ(t− a)−α).

Thus, we conclude that

∞D
α,β
M,af(t) = lim

ξ→0

f (t Eβ(ξ(t− a)−α))− f(t)

ξ
= Dα,βM,af(t),

which is the left local general M -fractional derivative given in (6). So, from this section, we can say that
this newly defined fractional derivative generalizes the cited conformable fractional derivatives.

4 Applications

4.1 Role of α-LLGT M-Fractional Derivative in Physical Problems

In this section, we have generalized some well known physical problems using this newly defined conformable
fractional derivative, α-LLGT M -fractional derivative.

1. First, we obtain the general solution of a differential equation with the help of α-LLGT M -fractional
derivative which is represented by

iD
α,β
M,0u(t) + P (t) u = Q(t) un, (27)
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where P (t), Q(t) are α-differentiable functions, u(t) is an unknown function to be determined and
n ∈ N ∪ {0}. Now with the use of Theorem 2, (27) becomes

t1−α

Γ(β + 1)

du

dt
+ P (t) u = Q(t) un,

which is Bernoulli’s equation whose solution is given by

u1−n = e−(1−n) Iα,βM,0P (t)
(
Iα,βM,0

(
Q(t) e(1−n) Iα,βM,0P (t)

))
+ C,

where C is an arbitrary constant.

Now, we select some particular cases for this example as follows: Take P (t) = µ, µ ∈ R, Q(t) =
0, u(0) = u0, a = 0, 0 < α ≤ 1, β > 0 and n = 0. Then (27) becomes

iD
α,β
M,0u(t) + µu = 0. (28)

Using Theorem 2 the equation (28) can be written as

t1−α

Γ(β + 1)

du

dt
+ µu = 0,

which is a linear differential equation. By taking u(0) = u0, we get the solution of (28) as

u(t) = u0 E1

(
−µ
α

Γ(β + 1)tα
)
.

It can be observed from Theorem 2, if we restrict the parameters α = 1, a = 0 and β = 1 of the α-
LLGTM -fractional derivative, then it reduces to the classical derivative operator and for this restricted
parametric values, the reduced equation of (28) becomes

du

dt
+ µu = 0, u(0) = u0,

whose solution is given by u(t) = u0e
−µt. The comparison of the α-LLGTM -fractional derivative with

the classical integer order derivative has been carried out in the following graphs in which the solid line
represents the classical solution whereas the other lines show the solution corresponds to the α-LLGT
M -fractional derivative with different values of α as shown in the Figures 1, 2 and 3.

MATLAB Code:

%%% For solution of (28) %%%

% a=\alpha, b=beta, c=u_0, d= backslash
function [U]=Rmlf(t,a,b,c,d)

K=power(t,a);

K1=gamma(b+1);

K2=-d/a;

U1=(mlf1(1,1,(K.*(K2).*(K1)),10);

U=c.*(U1);

end

2. One more well known physical problem, the Newton’s law of cooling is generalized with the help of the
α-LLGT M -fractional derivative which is represented by

iD
α,β
M,0 T = −K (T − Tm), (29)
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Figure 1: Solutions of (28) for β = 0.6, µ = 1 and u0 = 30.
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Figure 2: Solutions of (28) for β = 1.2, µ = 1 and u0 = 30.

where Tm is the temperature of the medium with T (0) = T0, which is considered to be constant and
K is the positive constant that depends on the area and nature of the body under consideration. One
can easily compute the solution of (29) which is obtained as

T (t) = Tm + E1

(
−K
α

Γ(β + 1)tα
)

(T0 − Tm).

Again, by our earlier choices of the parameters, i.e. α = 1, a = 0 and β = 1 in (29) we obtain

the classical differential equation of the Newton’s law of cooling and its solution as
dT

dt
= −K (T −

Tm), T (0) = T0 and T (t) = Tm + (T0 − Tm) e−Kt respectively.

The following graphs show the comparison of this problem in terms of our newly defined α-LLGT
M -fractional derivative with the ordinary derivative. Here, we can observe from the graph that if
we choose the value of the parameter β of the truncated Mittag-Leffl er function of our newly defined
operator wisely, then we can easily approach towards the analytical solution as shown in the Figures
4, 5 and 6.

MATLAB Code:
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Figure 3: Solutions of (28) for β = −0.5, µ = 1 and u0 = 30.
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Figure 4: Solutions of (29) for β = 2.3, K = 0.08, Tm = 65◦C and T0 = 100◦C.

%%% For solution of (29) %%%

% a=\alpha, b=beta, c=T_0, d=k, e=T_m.
function [T]=nlcmlf(t,a,b,c,d)

e=input(’Enter the value of e: ’)

K=power(t,a);

K1=gamma(b+1);

K2=-d/a;

T1=(mlf1(1,1,(K.*(K2).*(K1)),10);

T=e+(c-e).*(T1);

end

3. At last, as an another application, we generalize the Kirchoff’s voltage law in terms of the α-LLGT
M -fractional derivative which is represented by

iD
α,β
M,0 I +

R

L
I =

E

L
, (30)
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Figure 5: Solutions of (29) for β = 1.2, K = 0.08, Tm = 65◦C and T0 = 100◦C.
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Figure 6: Solutions of (29) for β = −0.5, K = 0.08, Tm = 65◦C and T0 = 100◦C.

where I is the current with I(0) = I0, R is the resistance, L is the inductance and E is the emf of the
circuit whose solution for E = 0 is obtained as

I(t) = I0 E1

(
− R

Lα
Γ(β + 1)tα

)
.

By restricting the parameters α = 1, a = 0 and β = 1 of the α-LLGT M -fractional derivative and then
applying the Theorem 2, for E = 0, (30) reduces to the classical Kirchoff’s voltage law

dI

dt
+
R

L
I = 0, I(0) = I0,

whose solution is given by I(t) = I0e
−RL t.

Again, the comparison of the solutions in terms of the α-LLGT M -fractional derivative with the
classical order derivative is shown by taking different parametric values in the following graphs, from
which we can conclude that we can obtain the solution analogous to the analytical solution if we are
allowed to choose the β parameter of the truncated Mittag-Leffl er function involved in the definition
of the α-LLGT M -fractional derivative as shown in the Figures 7, 8 and 9.
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Figure 7: Solutions of (30) for E = 0, β = 2.3, R = 3.5Ω, L = 50mH and I0 = 10.
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Figure 8: Solutions of (30) for E = 0, β = 1.2, R = 3.5Ω, L = 50mH and I0 = 10.

MATLAB Code:
%%% For solution of (\QTSN{ref}{eqn:KVL}) %%%
% a=\alpha, b=beta, c=I_0, d=R/L.
function [I]=kvlmlf(t,a,b,c,d)
K=power(t,a);
K1=gamma(b+1);
K2=-d/a;
I1=(mlf1(1,1,(K.*(K2).*(K1)),10);
I=c.*(I1);
end

4.2 Role of α-LLGT M-Fractional Derivative in the Image Processing

Texture enhancements is one of the important aspects in image processing, interpretation of image data,
signal-processing, robotics, pattern recognition and remote sensing.
The fractional derivative mask maintains high frequency marginal characteristics nonlinearly in places

where the fluctuations in grey level are negligible, while low frequency contour features are preserved in
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Figure 9: Solutions of (30) for E = 0, β = −0.5, R = 3.5Ω, L = 50mH and I0 = 10.

smooth areas by the fractional derivative mask. The Grünwald-Letnikov (G-L) derivative is used for image
enhancement in [20, 21]. Also, in [9], He et al. have used the G-L fractional differential operator to improve
denoising operator mask.
In this subsection, we introduce α-LLGT M -fractional derivative mask functioning like G-L fractional

derivative mask which enhances the evaluation index of the images. The Grünwald-Letnikov (G-L) derivative
is an extension of the ordinary derivative in fractional calculus which allows to take the non-integer number
of times the derivative and it is defined as follows:

Definition 10 The G-L derivative of fractional order q, q > 0 is defined as [8]

aD
q
t = lim

h→0

1

hq

[ t−ah ]∑
m=0

(−1)m
(
q

m

)
f(t−mh), (31)

where
(
q
m

)
is the binomial coeffi cient.

Now, from the Definition 6 for a = 0, we have

iD
α,β
M,0f(t) = lim

ξ→0

f (t iEβ(ξt)−α)− f(t)

ξ
.

Therefore, (
iD

α,β
M,0f(t)

)2

= lim
ξ1→0

iD
α,β
M,0f (t iEβ(ξ1t)

−α)− iD
α,β
M,0f(t)

ξ1

= lim
ξ1→0

lim
ξ2→0

f (t iEβ(ξ1t)
−α

iEβ(ξ2t)
−α)− f (t iEβ(ξ1t)

−α)

ξ2

ξ1

− lim
ξ1→0

lim
ξ2→0

f (t iEβ(ξ2t)
−α)− f(t)

ξ2

ξ1

.

Assuming that ξ’s converge synchronously, we get

(
iD

α,β
M,0f(t)

)2

= lim
ξ→0

f
(
t (iEβ(ξt)−α)

2
)
− 2f (t iEβ(ξt)−α) + f(t)

ξ2 .
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Similarly, we get

(
iD

α,β
M,0f(t)

)3

= lim
ξ→0

f
(
t (iEβ(ξt)−α)

3
)
− 3f

(
t (iEβ(ξt)−α)

2
)

+ 3f (t iEβ(ξt)−α)− f(t)

ξ3 .

Hence, in general for n ∈ N, we have(
iD

α,β
M,0f(t)

)n
= lim
ξ→0

1

ξn

n∑
m=0

(−1)m
(
n

m

)
f
(
t
(
iEβ(ξt)−α

)n−m)
.

Now, removing the restriction that n be a positive integer, we have(
iD

α,β
M,0f(t)

)q
= lim

ξ→0

1

ξq

∞∑
m=0

(−1)m
(
q

m

)
f
(
t
(
iEβ(ξt)−α

)q−m)
= lim

ξ→0

1

ξq

∞∑
m=0

(−1)m
Γ(q + 1)

Γ(m+ 1)Γ(q −m+ 1)
f
(
t
(
iEβ(ξt)−α

)q−m)
. (32)

The numerical approximation of (32) is as follows:(
iD

α,β
M,0f(t)

)q
≈ f(t) + (−q)f

(
(t− 1)

(
iEβ(ξ(t− 1))−α

))
+

(−q)(−q + 1)

2
f
(
(t− 2)

(
iEβ(ξ(t− 2))−α

))
+ · · ·+ Γ(−q + 1)

Γ(m+ 1)Γ(−q −m+ 1)
f
(
(t−m)

(
iEβ(ξ(t−m))−α

))
. (33)

Now from (33), to generate the α-LLGTM -fractional derivative mask, the coeffi cients are obtained as follows:

1,−q, (−q)(−q + 1)

2
, . . . ,

Γ(−q + 1)

Γ(m+ 1)Γ(−q −m+ 1)
.

In the similar aspect adopted from the numerical approximation of G-L fractional derivative, we get the
following 3× 3 and 5× 5 masks for α-LLGT M -fractional derivative:

−q −q −q
−q 8 ∗ 1 −q
−q −q −q

(−q)(−q+1)
2∗ξq 0 (−q)(−q+1)

2∗ξq 0 (−q)(−q+1)
2∗ξq

0 −q −q −q 0
(−q)(−q+1)

2∗ξq −q 8 ∗ 1 −q (−q)(−q+1)
2∗ξq

0 −q −q −q 0
(−q)(−q+1)

2∗ξq 0 (−q)(−q+1)
2∗ξq 0 (−q)(−q+1)

2∗ξq

We choose an original image as the 4D ultrasound of a fetal and we select various fractional order q =
0.5, 0.8, 1.0, 1.2, 1.5 to test the effect of image enhancement as shown in the Figure 10.

When the order of α-LLGT M -fractional derivative is fractional, the brightness of the image improved
significantly. But, when the level of gray level images decreases, the local texture details also disappear.
When the order of the operator is 1, that is an integer order derivative, the brightness of the image and
texture are very weak, in fact here image processing giving void. Here, again from the Figure 10, observe that
when the order is 1.5, the brightness of the image is improved and it can preserve image texture information
well. In addition, the image gray has not been destroyed. The results are shown in the Figure 10 which
indicate that the α-LLGT M -fractional derivative mask can not only enhance the image quality, but also
can preserve weak texture and smooth area containing both global and local information in the image.
To interpretate the image data we need (i) Entropy (ii) PSNR.
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Figure 10: Comparison of 4D ultrasound of fetal images: (a) Original image (b) q = 0.5-order (c) q = 0.8-
order (d) q = 1.0-order (e) q = 1.2-order (f) q = 1.5-order.

(i) Entropy: Entropy is an important measure of the uncertainty with regard to randomness. It is a
statistical measure of randomness that can be used to characterize the texture of an image. The
formula of an entropy is given as [14]

E0 =

N∑
i=1

ρi log2(ρi),

where ρi is the probability gray value and N is the maximum gray value. Entropy represents the
average amount of information in an image. The small entropy indicates that the image has less
details, and a high value indicates that the image has more details.

(ii) PSNR: Peak Signal to Noise Ratio (PSNR) is the ratio between the maximum possible power of a
signal and the power of corresponding noise. The PSNR is defined as [14]

PSNR = 10 log10

(
Max2

MSE

)
,

where Max is the maximum possible pixel value of the image and MSE is the Mean Square Error.
The PSNR block computes the peak signal to noise ratio between two images. The higher the PSNR,
the better the quality of the compressed or reconstructed image.

The following table shows the evaluation index of the images represented in Figure 10. It can be observed
from the fourth column of the above table that the original image has Entropy 6.6770 which is lesser as
compare to the entropy of the images obtained after applying α-LLGT M -fractional derivative mask of
different orders. Also, from the third column of the table, it can be conclude that the figures (b), (c), (e)
and (f) have better quality compare to figure (d). In the second column of the Table 1, the mean values are
computed which will be useful for noise reduction.

5 Conclusion

We have established and studied a new conformable fractional derivative and its integral analogue which
we have called as the α-LLGT M -fractional derivative. We have proved that this newly defined derivative
responds well with respect to classical results of integer order calculus. Additionally, we could find the
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Figures Mean value PSNR Entropy
(a) Original image 61.1308 − 6.6770

α Mean value PSNR Entropy
(b) 0.5 62.4296 19.6096 6.9510
(c) 0.8 61.1509 23.8937 6.8685
(d) 1.0 0 8.9611 0
(e) 1.2 61.0685 26.2530 6.7262
(f) 1.5 61.0737 26.0578 6.7202

Table 1: Evaluation indices of the images

associations between the α-LLGTM -fractional derivative and leftM -integral. The well known results of the
calculus like the Rolle’s theorem, the MVT, the fundamental theorem of calculus and the theorem containing
integration by parts are also generalized for our newly defined fractional derivative.
Also, we have shown the other fractional derivatives available in the literature as the particular cases to

our new generalizations. Using the proved result in the previous sections, we have obtained and solved the
generalized versions of some of the well known physical problems Like Bernoulli type fractional differential
equation, Newton’s Law of cooling and Kirchoff’s voltage law by our newly defined α-LLGT M -fractional
derivative and with the use of MATLAB software, we have compared their solutions with the ordinary
versions of the same. From Figures 1 to 9, it can be concluded that the physical problem described by the
α-LLGT M -fractional derivative, then by assigning appropriate parametric value of the parameter β from
the truncated Mittag-Leffl er function, one can easily approach to the existing ordinary solution. Even a
faster convergence rate can be obtained.
At last, we have generalized the α-LLGT M -fractional derivative mask through which the images of the

4D ultrasound of a fetal are enhanced by different fractional value α as shown in the Figures 10 [(a), (b), (c),
(d), (f)] whereas the Figure 10 [(e)] gives a void as it is concerned about α = 1. The image quality, texture
and smooth areas are enhanced through this newly defined mask. Comparison of the evaluation indices for
this image enhancement can be observed from Table 1.
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