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Abstract

A perpendicularity ⊥ in a module M is a binary relation that is irreflexive (but 0 ⊥ 0), symmetric,
serial, and preserves addition and scalar multiplication. If ⊥ is not a subset of another perpendicularity
inM , then ⊥ is maximal. IfM is a finite-dimensional vector space and ⊥ is induced by an inner product,
then it is well known that ⊥ is maximal. We disprove the converse and an analogous result in the context
of Abelian groups.

1 Introduction

Perpendicularity is a geometric notion but can be investigated also algebraically. Then the most natural
setting is an inner product space and, more generally, a normed space [1], but also certain other structures
have been considered [3, 4, 5, 7]. In this note, we disprove certain conjectures [7] on perpendicularities in a
vector space and in an Abelian group.
Let M be a module over a ring R. A perpendicularity in M is a binary relation ⊥ satisfying, for all

x, y, y1, y2 ∈M , γ ∈ R,

(A1) x 6= 0 =⇒ x 6⊥ x;

(A2) x ⊥ y =⇒ y ⊥ x;

(A3) x ⊥ z for some z ∈M ;

(A4) x ⊥ y1, y2 =⇒ x ⊥ (y1 + y2);

(A5) x ⊥ y =⇒ x ⊥ γy.

We let perpM denote the set of all perpendicularities inM . We assumed previously [5, 7] thatM 6= {0}, but
we can include the trivial case M = {0}. Its only binary relation (0, 0) is a perpendicularity. In particular,
(A1) is satisfied, since its left-hand side is identically false.
Because an Abelian group is a Z-module, perpendicularity is defined also there. Then (A5) reads simply

x ⊥ y =⇒ x ⊥ −y,

cf. [5]. The trivial perpendicularity
x ⊥triv y ⇐⇒ x = 0 ∨ y = 0

always exists. A perpendicularity in M is maximal if it is not a subset of another perpendicularity in M .
An inner product f in a vector space V induces the perpendicularity

x ⊥ y ⇐⇒ f(x, y) = 0. (1)

Then we write ⊥=⊥f . The converse does not hold: all perpendicularities in V are not of this form (⊥triv is
a counterexample). But does it hold if ⊥ is maximal?
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Theorem 1 A perpendicularity in V = Rn induced by an inner product is maximal.

Proof. See [7, pp. 245—246]. Actually this theorem extends to Cn.
We conjectured [7, p. 246] the converse: if ⊥∈ perpV is maximal, then ⊥=⊥f for some inner product f .

We disprove it in Section 2.
We can study this question also in the additive Abelian group G = Zn, by defining an inner product

there. Take e1, . . . , en ∈ G such that
G = 〈e1〉 ⊕ · · · ⊕ 〈en〉,

where 〈·〉 stands for the spanned subgroup. Express x, y ∈ G as

x = ξ1e1 + · · ·+ ξnen, y = η1e1 + · · ·+ ηnen, ξ1, . . . , ξn, η1, . . . , ηn ∈ Z,

and define the inner product with respect to the basis E = {e1, . . . , en} by

fE(x, y) = ξ1η1 + · · ·+ ξnηn.

We conjectured [7, Conjecture 1] that ⊥∈ perpG is maximal if and only if ⊥=⊥f for some inner product f
in G. (In this reference, E is actually of a certain type, but any E applies.) We disprove the “only if”part
in Section 3, but the “if”part remains to be conjectured. Finally, we complete our paper with conclusions
in Section 4.

2 The Case V = R2

We consider the vector space V = R2 in this section. Let

S = {(cos θ, sin θ) : 0 ≤ θ < π}.

It is the set of unit vectors in the upper half-plane of R2, including (1, 0). If 0 6= x ∈ V , then uniquely

x = σ(x)s(x), 0 6= σ(x) ∈ R, s(x) ∈ S.

Define in S the relation

ρ =
⋃

0<θ<π
2

{
((cos θ, sin θ), (− cos θ, sin θ))

}
∪
{

((− cos θ, sin θ), (cos θ, sin θ))
}

∪
{

((1, 0), (0, 1)), ((0, 1), (1, 0))
}
.

So, u, v ∈ S satisfy u ρ v if and only if they either locate symmetrically to the y-axis or lie on different
coordinate axes. Further, define in V

x ⊥0 y ⇐⇒ x = 0 ∨ y = 0 ∨ s(x) ρ s(y).

Lemma 1 The relation ⊥0 ∈ perpV .

Proof. Clearly, (A1)—(A3) are satisfied. Since s(γx) = s(x) for all γ 6= 0, (A5) follows. To prove (A4),
assume that

x ⊥0 y1, y2. (2)

If 0 ∈ {y1, y2, y1 + y2}, then clearly
x ⊥0 (y1 + y2). (3)

So, let y1, y2, y1+y2 6= 0. If y1 and y2 are linearly dependent, then s(y1) = s(y2) = s(y1+y2), and (3) follows.
If they are linearly independent, then s(y1) 6= s(y2). But (2) implies that s(y1) = s(y2), a contradiction.
Therefore (3) again follows.
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Lemma 2 The perpendicularity ⊥0 is maximal.

Proof. Suppose that there is ⊥∈ perpV satisfying

⊥⊃⊥0 (4)

(strictly). Then there are x, y ∈ V such that

x ⊥ y, x 6⊥0 y. (5)

Moreover, x, y 6= 0 (otherwise x ⊥0 y). Let z ∈ V satisfy

x ⊥0 z, z 6= 0. (6)

(It exists by the definition of ⊥0.)
If y and z are linearly dependent, then (since they are nonzero) z = γy for some γ 6= 0. So, (6) reads

x ⊥0 γy,

which implies by (A5) that x ⊥0 y, contradicting (5).
If y and z are linearly independent, then x = λy + µz for some λ, µ ∈ R. But x ⊥ y by (5), and x ⊥ z

by (6) and (4). Now (A4) and (A5) imply x ⊥ x, contradicting (A1).
We let Rn×n (respectively, Rn×n+ ) denote the set of real (real and positive definite) n× n matrices.

Lemma 3 A function f : Rn → R is an inner product if and only if there is Q ∈ Rn×n+ such that

f(x, y) = xTQy.

Here xT is the transpose of x, and x and y are considered as column vectors.

Proof. See [6, Problem 7.2.P32].

Lemma 4 The perpendicularity ⊥0 is not induced by an inner product.

Proof. Suppose that

x ⊥0 y ⇐⇒ yTQx = 0,

where

Q =

(
γ11 γ12
γ12 γ22

)
∈ R2×2+ .

Let x = (cos θ, sin θ) and y = (− cos θ, sin θ), where 0 < θ < π
2 . Since x ⊥0 y, we have

xTQy = −γ11 cos2 θ + γ22 sin2 θ = 0,

which cannot hold for all possible θ.

Theorem 2 There is a maximal perpendicularity in V = R2 that is not induced by an inner product.

Proof. Apply Lemmas 2 and 4.



462 A Note on Perpendicularities and Inner Products

3 The Case G = Z2

We consider the additive Abelian group (in other words, the Z-module) G = Z2 in this section. Define

Γ = {〈(i, j)〉 : i, j ∈ Z, j ≥ 0, gcd (i, j) = 1}.

It is convenient to write
G(i, j) = 〈(i, j)〉.

Lemma 5 Let 0 6= x ∈ G. There is exactly one G(i, j) ∈ Γ such that x ∈ G(i, j).

Proof. Let x = (ξ, η) 6= (0, 0) and δ = gcd (ξ, η). Clearly, x ∈ G(ξ/δ, η/δ). If x ∈ G(i, j), then ξ = γi and
η = γj for some γ(6= 0). Since gcd (i, j) = 1, we have γ = ±δ. Therefore (ξ, η) = ±δ(i, j), implying that
G(ξ/δ, η/δ) = G(i, j).

We define in G the relation

x ⊥0 y ⇐⇒ x = 0 ∨ y = 0

∨ ∃G(a, b) ∈ Γ : (a, b) 6= (1, 1) ∧ x ∈ G(a, b) ∧ y ∈ G(b, a).

Lemma 6 The relation ⊥0 ∈ perpG.

Proof. Easy and omitted.

Lemma 7 The perpendicularity ⊥0 is maximal.

Proof. Suppose that there is ⊥∈ perpG satisfying

⊥⊃⊥0 (7)

(strictly). Then there are x, y ∈ G such that

x ⊥ y, x 6⊥0 y. (8)

Moreover, x, y 6= 0 (otherwise x ⊥0 y). Let z ∈ G satisfy

x ⊥0 z, z 6= 0. (9)

(It exists by the definition of ⊥0.) Then
x ⊥ z (10)

by (7).
By (9) and Lemma 5, there is a unique G(a, b) ∈ Γ such that a 6= b, x ∈ G(a, b), and z ∈ G(b, a). Also

there is a unique G(i, j) ∈ Γ such that y ∈ G(i, j). Since (i, j) 6= (a, b), (b, a) by (8), it follows from Lemma 5
that

G(a, b) ∩ 〈y〉 = G(b, a) ∩ 〈y〉 = {0}. (11)

Let µ, ν, κ ∈ Z satisfy
µx+ νy + κz = 0.

(At least µ = ν = κ = 0 applies.) If µ = 0, then νy = −κz, which implies ν = κ = 0 by (11). But now the
set {x, y, z} is linearly independent, which is impossible in Z2. If µ 6= 0, then µx = −νy − κz ⊥ x by (8)
and (10). Now µx ⊥ µx, contradicting (A1).

Lemma 8 The perpendicularity ⊥0 is not induced by an inner product.
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Proof. Suppose that G has a basis

B = {g1, g2}, g1 = (γ11, γ12), g2 = (γ21, γ22), γ11, γ12, γ21, γ22 ∈ Z,

such that

x ⊥0 y ⇐⇒ ξ1η1 + ξ2η2 = 0, (12)

where

x = ξ1g1 + ξ2g2, y = η1g1 + η2g2, (13)

and ξ1, ξ2, η1, η2 ∈ Z.
Let x ⊥0 y, x, y 6= 0, and let G(a, b) ∈ Γ satisfy a 6= b, x ∈ G(a, b), y ∈ G(b, a). Because

x = (sa, sb), y = (tb, ta), 0 6= s, t ∈ Z,

(13) holds if and only if

γ11ξ1 + γ21ξ2 = sa, γ12ξ1 + γ22ξ2 = sb,

γ11η1 + γ21η2 = tb, γ12η1 + γ22η2 = ta.

Hence,

ξ1 =
s(γ22a− γ21b)

d
, ξ2 =

s(γ11b− γ12a)

d
, (14)

η1 =
t(γ22b− γ21a)

d
, η2 =

t(γ11a− γ12b)
d

, (15)

where

d = γ11γ22 − γ12γ21 6= 0.

(If d = 0, then B is linearly dependent and therefore is not a basis. Because we know that ξ1, ξ2, η1, η2 ∈ Z,
the denominator d cancels.)
By (14) and (15),

(dξ1)(dη1) + (dξ2)(dη2)

st
= (γ22a− γ21b)(γ22b− γ21a) + (γ11b− γ12a)(γ11a− γ12b)
= (γ211 + γ212 + γ221 + γ222)ab− (γ11γ12 + γ21γ22)(a

2 + b2).

On the other hand, x ⊥0 y implies dx ⊥0 dy. Hence, by (12),

(dξ1)(dη1) + (dξ2)(dη2) = 0.

Consequently,

(γ211 + γ212 + γ221 + γ222)ab− (γ11γ12 + γ21γ22)(a
2 + b2) = 0,

which cannot hold for all possible a and b.

Theorem 3 There is a maximal perpendicularity in G = Z2 that is not induced by an inner product.

Proof. Apply Lemmas 7 and 8.
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4 Conclusions

The following conjectures were the starting point for the present article: A perpendicularity ⊥ in the vector
space V = Rn and, respectively, in the additive Abelian group G = Zn, is maximal if and only if ⊥ is induced
by an inner product. For V , the “if”part had already been proved in [7]. Theorems 2 and 3 above disprove
the “only if”parts whenever n = 2, but the “if”part remains open for G.

Can Theorem 2 be extended to V = Rn and further to V = Cn, and can Theorem 3 be extended
to G = Zn? The answer to the first question is positive, but we do not give the proof here for the following
reason. We have not yet been able to prove (as we conjectured above) that the answer also to the second
question is positive. As these questions are closely related, it is reasonable to solve both issues in one paper.
The proof of Lemma 4 raises a few new questions. Namely, it is actually enough that Q is symmetric

and has, at least, one nonzero diagonal entry. This motivates us to study (1) in V = Rn assuming only that
f is bilinear. That is, f(x, y) = xTQy, where Q ∈ Rn×n is symmetric. Clearly, ⊥f ∈ perpV if and only if f
is nonsingular (i.e., Q is invertible).
Theorem 2 states that there is a maximal perpendicularity in V = R2 that is not induced by an inner

product. In Lemma 4, ⊥0 is induced (although not by an inner product) by the bilinear mapping

f(x, y) = xTQy, Q =

(
0 1
1 0

)
.

Hence it is reasonable to ask if a maximal perpendicularity in V = Rn is always induced by a bilinear
mapping. Further, if f is an inner product, then ⊥f is maximal by Theorem 1. This raises another question:
Is ⊥f maximal even if f is only assumed to be a nonsingular bilinear mapping? We conjecture that the
answer to both questions is positive.
For a maximal perpendicularity, a nonsingular bilinear mapping is actually a better counterpart than an

inner product. Namely, the positivity condition (x 6= 0⇒ f(x, x) > 0), which enables f to induce the norm√
f(x, x), is useless in inducing the perpendicularity (1). The above conjecture is therefore more interesting

than Theorems 1 and 2.
More generally, let V = Fn, where F is a field. Because all fields cannot be ordered [2, p. 268, Prop. 6],

we cannot define an inner product in the ordinary way. However, as remarked above, nonsingular bilinear
mappings are here more interesting. (In this context, Cohn [2, Section 8.1] defines an inner product as a
bilinear mapping.) More generally, we conjecture that a perpendicularity in V = Fn is maximal if and only
if it is induced by a nonsingular bilinear mapping.
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