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Abstract
By applying the Newton-Gregory expansion to the polynomial associated with the sum of powers of

integers Sk(n) = 1k + 2k + · · ·+ nk, we derive a couple of infinite families of explicit formulas for Sk(n).
One of the families involves the r-Stirling numbers of the second kind

{
k
j

}
r
, j = 0, 1, . . . , k, while the other

involves their duals
{
k
j

}
−r
, with both families of formulas being indexed by the non-negative integer r.

As a by-product, we obtain three additional formulas for Sk(n) involving the numbers
{
k
j

}
n+m

,
{
k
j

}
n−m

,

and
{
k
j

}
k−j

, where m is any given non-negative integer. Furthermore, we provide several formulas for

the Bernoulli polynomials in terms of the generalized Stirling numbers of the second kind, the harmonic
numbers, and the so-called harmonic polynomials.

1 Introduction

Following Broder [4, Equation 57] (see also Carlitz [6, Equation (3.2)]) we define the generalized (or weighted)
Stirling numbers of the second kind by{

k

j

}
x

=

k−j∑
i=0

(
k

i

){
k − i
j

}
xi, integers 0 ≤ j ≤ k,

where x stands for any arbitrary real or complex value, and where the
{
k
j

}
’s are the ordinary Stirling numbers

of the second kind. Note that
{
k
j

}
x
is a polynomial in x of degree k − j with leading coeffi cient

(
k
j

)
and

constant term
{
k
j

}
. Furthermore, we have that

{
k
j

}
1

=
{
k+1
j+1

}
. In general, when x is the non-negative integer

r,
{
k
j

}
r
becomes the r-Stirling number of the second kind

{
k+r
j+r

}
r
[4]. A combinatorial interpretation of the

polynomial
{
k
j

}
x
is given in [4, Theorem 27] (see also the definition provided by Bényi and Matsusaka in [1,

Definition 2.13]).
For convenience and notational simplicity, in this paper we employ the notation

{
k
j

}
r
to refer to Broder’s

r-Stirling numbers of the second kind
{
k+r
j+r

}
r
. The former notation has been used recently by Ma and Wang

in [21] (see also [1] and [24]). The numbers
{
k
j

}
r
are then given by

{
k

j

}
r

=

k−j∑
i=0

(
k

i

){
k − i
j

}
ri, integer r ≥ 0.

Likewise, adopting the notation in [21], we define the counterpart or dual of
{
k
j

}
r
for negative integer r as

{
k

j

}
−r

=

k−j∑
i=0

(−1)i
(
k

i

){
k − i
j

}
ri, integer r ≥ 0.
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Alternatively,
{
k
j

}
r
and

{
k
j

}
−r
can equivalently be expressed in the form

{
k

j

}
r

=
1

j!

j∑
i=0

(−1)j−i
(
j

i

)
(i+ r)k, integer r ≥ 0, (1)

{
k

j

}
−r

=
1

j!

j∑
i=0

(−1)j−i
(
j

i

)
(i− r)k, integer r ≥ 0, (2)

respectively. Clearly, both
{
k
j

}
r
and

{
k
j

}
−r
reduce to

{
k
j

}
when r = 0. It is to be noted that the numbers{

k
j

}
−r
were introduced and studied by Koutras under the name of non-central Stirling numbers of the second

kind and denoted by Sr(k, j) (see [20, Equations (2.5) and (2.6)]).
For non-negative integer k, let Sk(n) denote the sum of k-th powers of the first n positive integers

Sk(n) = 1k + 2k + · · ·+ nk,

with Sk(0) = 0 for all k. In [27], Orosi derived the classical formula for Sk(n) in terms of the Bernoulli
numbers (the so-called Faulhaber formula). Additionally, as is well known, Sk(n) can be expressed in terms
of the Stirling numbers of the second kind as (see, e.g., [29])

Sk(n) = −δk,0 +

k∑
j=0

j!

(
n+ 1

j + 1

){
k

j

}
, (3)

where δk,0 is the Kronecker delta, which ensures that S0(n) = n. Furthermore, Sk(n) admits the following
variant of (3):

Sk(n) =

k+1∑
j=1

(j − 1)!

(
n

j

){
k + 1

j

}
=

k∑
j=0

j!

(
n

j + 1

){
k + 1

j + 1

}
, (4)

(see, e.g., [7], [11, Theorem 5] and [30, Equation (9)]). We note that the first equality in (4) can be deduced
from the exponential generating function [3, Equation (11)]

∞∑
n=1

(1k + 2k + · · ·+ nk)
xn

n!
= ex

k+1∑
j=1

1

j

{
k + 1

j

}
xj .

Of course, (3) and (4) are equivalent formulas. Indeed, it is a simple exercise to convert (3) into (4), and
vice versa, by means of the recursion

{
k
j

}
= j

{
k−1
j

}
+
{
k−1
j−1
}
and the well-known combinatorial identity(

n
j+1

)
+
(
n
j

)
=
(
n+1
j+1

)
.

Incidentally, it is worthwhile to mention that, in their 1928 Monthly article [15], Ginsburg wrote down
explicitly the first few instances of (4) for k = 2, 3, 4, 5 in terms of the binomial coeffi cients

(
n
j+1

)
, where

j = 0, 1, . . . , k, namely

S2(n) =

(
n

1

)
+ 3

(
n

2

)
+ 2

(
n

3

)
,

S3(n) =

(
n

1

)
+ 7

(
n

2

)
+ 12

(
n

3

)
+ 6

(
n

4

)
,

S4(n) =

(
n

1

)
+ 15

(
n

2

)
+ 50

(
n

3

)
+ 60

(
n

4

)
+ 24

(
n

5

)
,

S5(n) =

(
n

1

)
+ 31

(
n

2

)
+ 180

(
n

3

)
+ 390

(
n

4

)
+ 360

(
n

5

)
+ 120

(
n

6

)
.



J. L. Cereceda 451

As noted by Ginsburg, the above formulas appeared on page 88 of the book by Schwatt, Introduction to
Operations with Series (Philadelphia, The Press of the University of Pennsylvania, 1924).

In this paper, we obtain a unifying formula for Sk(n) giving (3) and (4) as particular cases. Indeed, we
derive a couple of infinite families of explicit formulas for Sk(n), one of them involving the numbers

{
k
j

}
r

and the other the numbers
{
k
j

}
−r
, with j = 0, 1, . . . , k. Specifically, in Section 2, we prove the following

theorem which constitutes the main result of this paper.

Theorem 1 Let k and n be any non-negative integers and let
{
k
j

}
r
and

{
k
j

}
−r
be the numbers defined in

(1) and (2), respectively, where r stands for any arbitrary but fixed non-negative integer. Then

Sk(n) =

k∑
j=0

j!

[(
n+ 1− r
j + 1

)
+ (−1)j

(
r + j − 1

j + 1

)]{
k

j

}
r

, (5)

Sk(n) =

k∑
j=0

j!

[(
n+ 1 + r

j + 1

)
−
(
r + 1

j + 1

)]{
k

j

}
−r
. (6)

As a consequence of Theorem 1, we obtain three additional formulas for Sk(n) as a sum over j = 0, 1, . . . , k
involving the numbers

{
k
j

}
n+m

,
{
k
j

}
n−m

, and
{
k
j

}
k−j

(equations (19), (20), and (21), respectively), with m

being any given non-negative integer. Furthermore, in Section 3, we provide several formulas for the Bernoulli
polynomials involving the generalized Stirling numbers of the second kind, the harmonic numbers, and the
so-called harmonic polynomials, which are defined in [10, Equation (28)]. This will allow us to derive a
formula for Sk−1(n) in terms of

{
k
j

}
2
,
{
k
j

}
n+2

, and the harmonic numbers (equation (29)), and another one

in terms of
{
k
j

}
2
and the above-mentioned harmonic polynomials (equation (30)). We conclude in Section 4

with some final remarks.
Before proceeding further, a few observations are in order.

Remark 1 It should be stressed that both (5) and (6) hold irrespective of the value taken by the non-
negative integer parameter r. This means that, actually, the right-hand side of (5) and (6) provides us with
an infinite supply of explicit formulas for Sk(n), one for each choice of r. For example, for r = 2, and noting
that Sk(1) = 1 for all k, we have from (5)

Sk(n) = 1 +

k∑
j=0

j!

(
n− 1

j + 1

){
k

j

}
2

,

where {
k

j

}
2

=
1

j!

j∑
i=0

(−1)j−i
(
j

i

)
(i+ 2)k.

Analogously, for r = 2, we have from (6)

Sk(n) = −δk,0 + (−1)k+1(1 + 2k) +

k∑
j=0

j!

(
n+ 3

j + 1

){
k

j

}
−2
,

where {
k

j

}
−2

=
1

j!

j∑
i=0

(−1)j−i
(
j

i

)
(i− 2)k.
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Remark 2 It is easily seen that both (5) and (6) reduce to (3) when r = 0. Furthermore, (5) reduces to (4)
when r = 1. Moreover, setting r = n in (5) leads to

Sk(n) = nk+1 +

k∑
j=1

(−1)jj!

(
n+ j − 1

j + 1

){
k

j

}
n

. (7)

Similarly, setting r = n+ 1 in (5) yields

Sk(n) =

k∑
j=0

(−1)jj!

(
n+ j

j + 1

){
k

j

}
n+1

, (8)

retrieving the result obtained in [16, Equation (4.8)]. Interestingly, by performing the Stirling transform of
(8), we obtain the convolution

k∑
j=0

(−1)jQk−j(n)Sj(n) = k!

(
n+ k

k + 1

)
,

where Qk−j(n) is the following polynomial in n of degree k − j:

Qk−j(n) =

k−j∑
i=0

(
i+ j

j

)[
k + 1

i+ j + 1

]
ni,

and where the
[
k
j

]
’s are the (unsigned) Stirling numbers of the first kind.

Remark 3 By renaming r as n in equation (18) below, we find that

Sk(n) = (−1)k
(
− δk,0 +

k∑
j=0

j!

(
n+ 1

j + 1

){
k

j

}
−n

)
,

which may be compared with (3).

2 Proof of Theorem 1

The proof of Theorem 1 is based on the following lemma.

Lemma 1 For a real or complex variable x, let Sk(x) denote the unique interpolating polynomial in x of
degree k + 1 such that Sk(x) = 1k + 2k + · · ·+ xk whenever x is a positive integer (with Sk(0) = 0). Then,

Sk(x) = Sk(a− 1) +

k∑
j=0

j!

(
x+ 1− a
j + 1

){
k

j

}
a

, (9)

where a is a parameter taking any arbitrary but fixed real or complex value.

Proof. As is well known (see, e.g., [14, Equation (15]), Sk(x) can be expressed in terms of the Bernoulli
polynomials Bk(x) as follows:

Sk(x) =
1

k + 1

[
Bk+1(x+ 1)−Bk+1(1)

]
, k ≥ 0. (10)

Let us recall further that the forward difference operator ∆ acting on the function f(x) is defined by
∆f(x) = f(x+ 1)− f(x). Thus, the following elementary result

∆Sk(x) = (x+ 1)k (11)
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follows immediately from (10) and the difference equation ∆Bk+1(x) = (k + 1)xk [14, Equation (12)].
On the other hand, the Newton-Gregory expansion of the function f(x) is given by (see, e.g., [28, Equation

(A.9), p. 230])

f(x) =

∞∑
j=0

(
x− a
j

)
∆jf(a),

where, for any integer j ≥ 1, the j-th order difference operator ∆j is defined by ∆jf(x) = ∆(∆j−1f(x)) =
∆j−1(∆f(x)) and ∆0f(x) = f(x), and where ∆jf(a) = ∆jf(x)|x=a. Hence, applying the Newton-Gregory
expansion to the power sum polynomial Sk(x) and using (11) yields

Sk(x) = Sk(a) +

k∑
j=0

(
x− a
j + 1

)
∆j(a+ 1)k, (12)

where we have omitted the terms in the sum with index j greater than k because ∆j(x + 1)k = 0 for all
j ≥ k + 1 [28, Equation (6.16), p. 68].
The connection between (12) and the generalized Stirling numbers

{
k
j

}
x
stems from the fact that (see,

e.g., [4, Theorem 29] and [6, Equation (3.8)]){
k

j

}
x

=
1

j!
∆jxk. (13)

Thus, we obtain (9) by combining (12) and (13), and making a→ a− 1.
When x and a are the non-negative integers n and r, respectively, (9) becomes

Sk(n) = Sk(r − 1) +

k∑
j=0

j!

(
n+ 1− r
j + 1

){
k

j

}
r

, (14)

where Sk(−1) = 0 for all k ≥ 1, and S0(−1) = −1. Now, by letting n = 0 in (14) and using the relation(
−x
k

)
= (−1)k

(
x+ k − 1

k

)
(15)

we obtain

Sk(r − 1) =

k∑
j=0

(−1)jj!

(
r + j − 1

j + 1

){
k

j

}
r

. (16)

Hence, substituting (16) into (14), we obtain (5).
Moreover, by setting r → −r in (14) and invoking the symmetry property of the power sum polynomials

(see, e.g., [26, Theorem 10])
Sk(−r − 1) = −δk,0 + (−1)k+1Sk(r),

we obtain

Sk(n) = −δk,0 − (−1)kSk(r) +

k∑
j=0

j!

(
n+ 1 + r

j + 1

){
k

j

}
−r
. (17)

For n = 0, the last expression can be put as

(−1)kSk(r) = −δk,0 +

k∑
j=0

j!

(
r + 1

j + 1

){
k

j

}
−r
. (18)

Hence, substituting (18) into (17), we obtain (6).
We conclude this section with the following implications of Theorem 1.
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Remark 4 By letting r = n + m in (5), where m is any given non-negative integer, and using (15), we
obtain

Sk(n) =

k∑
j=0

(−1)jj!

[(
n+m+ j − 1

j + 1

)
−
(
m+ j − 1

j + 1

)]{
k

j

}
n+m

. (19)

Of course, (19) reduces to (7) and (8) when m = 0 and m = 1, respectively. Similarly, by putting r = n−m
in (5), where m is any given non-negative integer, we obtain

Sk(n) =

k∑
j=0

j!

[(
m+ 1

j + 1

)
+ (−1)j

(
n+ j −m− 1

j + 1

)]{
k

j

}
n−m

. (20)

Note that, when m = n, (20) reduces to (3).

Remark 5 Using the relation
{
k
j

}
−r

= (−1)k−j
{
k
j

}
r−j

(see [21, Equation (2.4)]) and taking r = k in (6)

yields

Sk(n) =

k∑
j=0

(−1)k−jj!

[(
n+ k + 1

j + 1

)
−
(
k + 1

j + 1

)]{
k

j

}
k−j

. (21)

Incidentally, setting n = 1 in (21) gives the identity

k∑
j=0

(−1)k−jj!

(
k + 1

j

){
k

j

}
k−j

= 1.

3 Connection with the Bernoulli Polynomials

By using (16) in (10), we readily obtain the following formula for the Bernoulli polynomials evaluated at the
non-negative integer r:

Bk+1(r) = Bk+1(1) + (k + 1)

k∑
j=0

(−1)jj!

(
r + j − 1

j + 1

){
k

j

}
r

. (22)

Furthermore, making r → −r in (22) and using (15), we get the following formula for the Bernoulli polyno-
mials evaluated at the negative integer −r:

Bk+1(−r) = Bk+1(1)− (k + 1)

k∑
j=0

j!

(
r + 1

j + 1

){
k

j

}
−r
, r ≥ 0.

Formula (22) should be compared with the corresponding formula derived by Kargın and Çekim in [17,
p. 896], namely (in our notation)

Bk+1(r) = Bk+1 + (k + 1)

k∑
j=0

(−1)jj!

(
r + j

j + 1

){
k

j

}
r

. (23)

By equating the right-hand sides of (22) and (23), we further obtain the identity

rk =

k∑
j=1

(−1)j+1j!

(
r + j − 1

j

){
k

j

}
r

,

which holds for any integers r ≥ 0 and k ≥ 1.
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One can naturally extend the above formulas (22) and (23) in order for Bk+1(r) to apply to any real or
complex variable x as follows:

Bk+1(x) = Bk+1(1) + (k + 1)

k∑
j=0

(−1)jj!

(
x+ j − 1

j + 1

){
k

j

}
x

and

Bk+1(x) = Bk+1 + (k + 1)

k∑
j=0

(−1)jj!

(
x+ j

j + 1

){
k

j

}
x

,

respectively, where {
k

j

}
x

=
1

j!

j∑
i=0

(−1)j−i
(
j

i

)
(i+ x)k.

On the other hand, from [18, Equation (20)] (see also [25, p. 967]), it is known that, for all non-negative
integers k,m, r,

Bk(m− r) =

k∑
j=0

(−1)jj!H
(r)
j+1

{
k

j

}
m

, (24)

where H(r)
j is the j-th hyperharmonic number of order r defined recursively by (see, e.g., [12, p. 258])

H
(r)
j =

j∑
i=1

H
(r−1)
i , for r > 1, and H

(1)
j = Hj ,

where Hj = 1 + 1
2 + · · ·+ 1

j is the j-th harmonic number. Several generalizations of (24) can be found in [5],
where plenty of number theoretic and combinatoric identities involving generalized Bernoulli polynomials
and Stirling numbers of both kinds are established. Thus, taking r = 1 and letting m = x in (24) gives rise
to the following formula expressing the Bernoulli polynomials Bk(x− 1) in terms of

{
k
j

}
x
and the harmonic

numbers:

Bk(x− 1) =

k∑
j=0

(−1)jj!Hj+1

{
k

j

}
x

. (25)

Let us note at this point that (25) also arises as a specialization of the formula

Bk(x) =

k∑
j=0

(−1)jj!

{
k

j

}
r

Hj(x− r + 1), (26)

where the so-called harmonic polynomials Hj(x) are defined by the generating function (see [10, Equation
(28)])

− ln (1− t)
t(1− t)1−x =

∞∑
j=0

Hj(x)tj .

The harmonic polynomials admit, among others, the representation (see [10, Equation (33)])

Hk(x) =

k∑
j=0

(−1)k−j
(

x

k − j

)
Hj+1, (27)

from which it follows, in particular, that Hk(0) = Hk+1. Hence, making x→ x− 1 and r → x in (26) gives
(25). Note that (26) holds for any choice of r. Specifically, for r = 2, we have

Bk(x+ 1) =

k∑
j=0

(−1)jj!

{
k

j

}
2

Hj(x). (28)
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As an application of (25), we can use it, in conjunction with (10), to obtain the following formula for the
power sum Sk−1(n):

Sk−1(n) =
1

k

k∑
j=0

(−1)jj!Hj+1

({
k

j

}
n+2

−
{
k

j

}
2

)
, k ≥ 1. (29)

Likewise, using (28) together with (10) yields

Sk−1(n) =
1

k

k∑
j=0

(−1)jj!

{
k

j

}
2

(
Hj(n)−Hj+1

)
, k ≥ 1, (30)

where Hj(n) are the harmonic polynomials given in (27). Formula (30) can equally be expressed as

Sk−1(n) =
1

k

k∑
j=0

{
k

j

}
2

(
Dj(n− 1)−Dj(−1)

)
, k ≥ 1,

where the Daehee polynomials Dk(x) are defined by the generating function (see, e.g., [19])(
ln(1 + t)

t

)
(1 + t)x =

∞∑
k=0

Dk(x)
tk

k!
.

4 Concluding Remarks

Equation (14) above can be written in the equivalent form

Sk(n+ r)− Sk(r − 1) =

k∑
j=0

j!

(
n+ 1

j + 1

){
k

j

}
r

, (31)

which applies to any non-negative integers k, n, r. As it turns out, (31) can be obtained as a particular case
of [2, Theorem 2.1]. The object of this theorem concerns the sum of the k-th powers of the first (n+1)-terms
of the general arithmetic sequence

Sk,(a,d)(n) = ak + (a+ d)k + · · ·+ (a+ nd)k,

where k and n are non-negative integers and a and d are complex numbers with d 6= 0. According to [2,
Theorem 2.1], Sk,(a,d)(n) can be expressed in terms of the generalized Stirling numbers of the second kind
as follows (in our notation):

Sk,(a,d)(n) = dk
k∑
j=0

j!

(
n+ 1

j + 1

){
k

j

}
a/d

, (32)

where {
k

j

}
a/d

=
1

j!

j∑
i=0

(−1)j−i
(
j

i

)(
i+

a

d

)k
.

In particular, taking d = 1 and assuming that a is the non-negative integer r, (32) becomes

rk + (r + 1)k + · · ·+ (r + n)k =

k∑
j=0

j!

(
n+ 1

j + 1

){
k

j

}
r

,
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which is just (31). For completeness’sake, let us remind that Sk,(a,d)(n) can alternatively be expressed in
terms of the Bernoulli polynomials as follows (see, e.g., [2, Equation (2)] and [8, Equation (16)]):

Sk,(a,d)(n) =
dk

k + 1

[
Bk+1

(
n+

a

d
+ 1
)
−Bk+1

(a
d

)]
,

which reduces to (10) for a = d = 1 and n→ n− 1.
We conclude by quoting the following formula for Sk(n) involving the (unsigned) Stirling numbers of the

first and second kind
[
k
j

]
and

{
k
j

}
:

Sk(n) =

k∑
j=1

(−1)j−1j

[
n+ 1

n+ 1− j

]{
n+ k − j

n

}
, k ≥ 1. (33)

Formula (33) was derived by Merca [22] by manipulating the formal power series for the Stirling numbers.
It can also be obtained starting from the Newton-Girard identities ([9, Exercise 2]). Actually, formula
(33) is a special case of an identity connecting the power sum symmetric functions pm(x1, x2, . . . , xn) with
the elementary symmetric functions σm(x1, x2, . . . , xn) and the complete homogenous symmetric functions
hm(x1, x2, . . . , xn), namely

pk(x1, x2, . . . , xn) =

k∑
m=1

(−1)m−1mσm(x1, x2, . . . , xn)hk−m(x1, x2, . . . , xn), (34)

which holds for all k ≥ 1 (see, e.g., [13, Proposition 3.2] and [23, Lemma 2.1]). Formula (33) is then obtained
from (34) when xi = i for all i = 1, 2, . . . , n.
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