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Abstract

In [4], Bor has obtained two main theorems dealing with absolute summability factors of infinite series
and Fourier series. In this paper, we have generalized these theorems for the absolute matrix summability
method. Some new and known results have also been obtained.

1 Introduction

A positive sequence (bn) is said to be an almost increasing sequence if there exist a positive increasing
sequence (cn) and two positive constants M and N such that Mcn ≤ bn ≤ Ncn (see [1]). A sequence (λn)
is said to be of bounded variation, denoted by (λn) ∈ BV , if

∑∞
n=1 | ∆λn |<∞.

Let
∑
an be a given infinite series with partial sums (sn) and let (pn) be a sequence of positive numbers

such that

Pn =

n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1).

The sequence-to-sequence transformation

σn =
1

Pn

n∑
v=0

pvsv

defines the sequence (σn) of the Riesz mean or simply the (N̄ , pn) mean of the sequence (sn), generated by
the sequence of coeffi cients (pn) (see [9]). The series

∑
an is said to be summable | N̄ , pn |k, k ≥ 1, if (see

[2])
∞∑
n=1

(
Pn
pn

)k−1
| σn − σn−1 |k<∞.

When pn = 1 for all values of n, then we get | C, 1 |k summability. Let A = (anv) be a normal
matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines the sequence-to-sequence
transformation, mapping the sequence s = (sn) to As = (An(s)), where

An(s) =

n∑
v=0

anvsv, n = 0, 1, ... .

The series
∑
an is said to be summable | A, pn; δ |k, k ≥ 1 and δ ≥ 0, if (see [11])

∞∑
n=1

(
Pn
pn

)δk+k−1
| An(s)−An−1(s) |k<∞.
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In the special case for δ = 0, the | A, pn; δ |k summability reduces to | A, pn |k summability (see [16]). If
we set δ = 0 and pn = 1 for all n, then we obtain | A |k summability (see [17]). Also if we take anv = pv

Pn
,

then we have | N̄ , pn; δ |k summability (see [3]). Finally if we take δ = 0 and anv = pv
Pn
, then we get | N̄ , pn |k

summability.
Given any sequences (un), (vn), it is customary to write vn = O(un), if there exist η and N , for every

n > N, | vnun |≤ η. For any matrix entry anv, we write that ∆vanv = anv − an,v+1. Now, we will introduce
some necessary notations for our main theorems. Given a normal matrix A = (anv), we associate two lower
semi-matrices A = (anv) and Â = (ânv) as follows:

anv =

n∑
i=v

ani, n, v = 0, 1, ...

and
â00 = a00 = a00, ânv = anv − an−1,v, n = 1, 2, ... .

It may be noted that A and Â are the well-known matrices of series-to-sequence and series-to-series trans-
formations, respectively. Then, we have

An(s) =

n∑
v=0

anvsv =

n∑
v=0

anvav, (1)

and

∆An(s) =

n∑
v=0

ânvav. (2)

2 Known Results

Recently, many authors have obtained some new theorems dealing with absolute summability factors of
infinite series and Fourier series. ([4]—[7], [12]—[13], [16]—[18]). Among them, Bor has proved the following
theorems about the | N̄ , pn |k summability methods.

Theorem 1 ([4]) Let (Xn) be an almost increasing sequence. If the sequence (Xn), (λn) and (pn) satisfy
the conditions

| λn | Xn = O(1) as n→∞, (3)

m∑
n=1

nXn | ∆2λn |= O(1) as m→∞, (4)

m∑
n=1

| tn |k

nXk−1
n

= O(Xm) as m→∞, (5)

m∑
n=1

pn
Pn

| tn |k

Xk−1
n

= O(Xm) as m→∞, (6)

and
m∑
n=1

Pn
n

= O(Pm) as m→∞, (7)

then the series
∑
anλn is summable | N̄ , pn |k, k ≥ 1.
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3 Main Results

The aim of this paper is to generalize the above theorem for the general matrix summability methods. Before
we state our main result, we show A = (anv) is said to be of class Ω if (see [15]) A is lower triangular

anv ≥ 0, n, v = 0, 1, ...;

an−1,v ≥ anv, for n ≥ v + 1,

an0 = 1, n = 0, 1, ....

Notice that A given by

A1(x) = x1 and An(x) =
xn−1 + xn

2
for n > 1

is an example of a matrix of class Ω. Now, we shall prove the following theorem.

Theorem 2 Let (Xn) be an almost increasing sequence and A be of class Ω such that

ann = O

(
pn
Pn

)
,

n−1∑
v=1

| ân,v+1 |
v

= O(ann),

m+1∑
n=v+1

(
Pn
pn

)δk
| ∆ânv |= O

(
avv

(
Pv
pv

)δk)
as m→∞,

m+1∑
n=v+1

(
Pn
pn

)δk
| ân,v+1 |= O

((
Pv
pv

)δk)
as m→∞,

m∑
n=1

(
Pn
pn

)δk | tn |k
nXk−1

n

= O(Xm) as m→∞,

m∑
n=1

ann

(
Pn
pn

)δk | tn |k
Xk−1
n

= O(Xm) as m→∞.

If the conditions (3)—(4) of Theorem 1 are satisfied, then the series
∑
anλn is summable | A, pn; δ |k, k ≥ 1

and 0 ≤ δ < 1/k.

We need the following lemma for the proof of our theorem.

Lemma 1 ([10]) Under the conditions of Theorem 1, we have the following

nXn | ∆λn |= O(1) as n→∞,

∞∑
n=1

Xn | ∆λn |<∞.
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4 Proof of Theorem 2

Let (Tn) denote A-transform of the series
∑
anλn. Then, by (1) and (2), we have

∆Tn =

n∑
v=0

ânvavλv.

Applying Abel’s transformation, we have that

∆Tn =

n∑
v=0

ânvλv
v

vav =

n−1∑
v=1

∆(
ânvλv
v

)

v∑
r=1

rar +
ânnλn
n

n∑
v=1

vav

=

n−1∑
v=1

∆(
ânvλv
v

)(v + 1)tv + ânnλn
n+ 1

n
tn

=

n−1∑
v=1

∆v(ânv)λvtv
v + 1

v
+

n−1∑
v=1

ân,v+1∆λvtv
v + 1

v

+

n−1∑
v=1

ân,v+1λv+1
tv
v

+ annλntn
n+ 1

n

= Tn,1 + Tn,2 + Tn,3 + Tn,4.

Since
| Tn,1 + Tn,2 + Tn,3 + Tn,4 |k≤ 4k(| Tn,1 |k + | Tn,2 |k + | Tn,3 |k + | Tn,4 |k),

to complete the proof of Theorem 2, it is suffi cient to show that

∞∑
n=1

(
Pn
pn

)δk+k−1
| Tn,r |k<∞ for r = 1, 2, 3, 4.

First, applying Hölder’s inequality with indices k and k′, where k > 1 and 1
k + 1

k′ = 1, we get that

m+1∑
n=2

(
Pn
pn

)δk+k−1
| Tn,1 |k

≤
m+1∑
n=2

(
Pn
pn

)δk+k−1{n−1∑
v=1

| v + 1

v
|| ∆v(ânv) || λv || tv |

}k

= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1(n−1∑
v=1

| ∆v(ânv) || λv |k| tv |k
)

×
(
n−1∑
v=1

| ∆v(ânv) |
)k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1
ak−1nn

(
n−1∑
v=1

| ∆v(ânv) || λv |k| tv |k
)

= O(1)

m+1∑
n=2

(
Pn
pn

)δk(n−1∑
v=1

| ∆v(ânv) || λv |k| tv |k
)

= O(1)

m∑
v=1

| λv |k−1| λv || tv |k
m+1∑
n=v+1

(
Pn
pn

)δk
| ∆v(ânv) |



356 Absolute Matrix Summability

= O(1)

m∑
v=1

(
Pv
pv

)δk
avv | λv |

| tv |k

Xk−1
v

= O(1)

m−1∑
v=1

∆ | λv |
v∑
r=1

(
Pr
pr

)δk
arr
| tr |k

Xk−1
r

+O(1) | λm |
m∑
v=1

(
Pv
pv

)δk
avv
| tv |k

Xk−1
v

= O(1)

m∑
v=1

| ∆λv | Xv +O(1) | λm | Xm

= O(1) as m→∞,

by virtue of the hypotheses of Theorem 2 and Lemma 1.
Applying Hölder’s inequality with the same indices above, we have

m+1∑
n=2

(
Pn
pn

)δk+k−1
| Tn,2 |k

≤
m+1∑
n=2

(
Pn
pn

)δk+k−1{n−1∑
v=1

| v + 1

v
|| ân,v+1 || ∆λv || tv |

}k

= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1(n−1∑
v=1

| ân,v+1 || ∆λv || tv |
)k

= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1(n−1∑
v=1

| ân,v+1 | (v | ∆λv |)k
| tv |k
v

)(
n−1∑
v=1

| ân,v+1 |
v

)k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1
ak−1nn

(
n−1∑
v=1

| ân,v+1 | (v | ∆λv |)k
| tv |k
v

)

= O(1)

m+1∑
n=2

(
Pn
pn

)δk n−1∑
v=1

| ân,v+1 | (v | ∆λv |)k−1v | ∆λv |
| tv |k
v

= O(1)

m∑
v=1

v | ∆λv |
| tv |k
v

m+1∑
n=v+1

(
Pn
pn

)δk
| ân,v+1 |

= O(1)
m∑
v=1

(
Pv
pv

)δk | tv |k
vXk−1

v

v | ∆λv |

= O(1)

m−1∑
v=1

∆(v | ∆λv |)
v∑
r=1

(
Pr
pr

)δk | tr |k
rXk−1

r

+O(1)m | ∆λm |
m∑
v=1

(
Pv
pv

)δk | tv |k
vXk−1

v

= O(1)

m−1∑
v=1

| ∆(v | ∆λv |) | Xv +O(1)m | ∆λm | Xm

= O(1)

m−1∑
v=1

v | ∆2λv | Xv +O(1)

m−1∑
v=1

| ∆λv | Xv +O(1)m | ∆λm | Xm

= O(1) as m→∞,

by virtue of the hypotheses of Theorem 2 and Lemma 1.
Again, we have that

m+1∑
n=2

(
Pn
pn

)δk+k−1
| Tn,3 |k ≤

m+1∑
n=2

(
Pn
pn

)δk+k−1{n−1∑
v=1

| ân,v+1 || λv+1 |
| tv |
v

}k
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= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1(n−1∑
v=1

| ân,v+1 || λv+1 |k
| tv |k
v

)

×
(
n−1∑
v=1

| ân,v+1 |
v

)k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1
ak−1nn

(
n−1∑
v=1

| ân,v+1 || λv+1 |
| tv |k
v

)

= O(1)

m+1∑
n=2

(
Pn
pn

)δk n−1∑
v=1

| ân,v+1 | λv+1 |
| tv |k
v

= O(1)

m∑
v=1

| λv+1 |
| tv |k
v

m+1∑
n=v+1

(
Pn
pn

)δk
| ân,v+1 |

= O(1)
m∑
v=1

(
Pv
pv

)δk
| λv+1 |

| tv |k

vXk−1
v

= O(1)

m−1∑
v=1

∆ | λv+1 |
v∑
r=1

(
Pr
pr

)δk | tr |k
rXk−1

r

+ O(1) | λm+1 |
m∑
v=1

(
Pv
pv

)δk | tv |k
vXk−1

v

= O(1)

m−1∑
v=1

| ∆(v | ∆λv |) | Xv +O(1)m | ∆λm | Xm

= O(1)

m−1∑
v=1

| ∆λv | Xv+1 +O(1) | λm+1 | Xm+1

= O(1) as m→∞,

by virtue of the hypotheses of Theorem 2 and Lemma 1.
Finally, by the similar process in Tn,1, we have that

m∑
n=1

(
Pn
pn

)δk+k−1
| Tn,4 |k = O(1)

m∑
n=

(
Pn
pn

)δk+k−1
aknn | λn |k| tn |k

= O(1)

m∑
n=1

(
Pn
pn

)δk
ann | λn |k−1| λn || tn |k

= O(1)

m∑
n=1

(
Pn
pn

)δk
ann | λn |

| tn |k

Xk−1
n

= O(1) as m→∞.

So we get
∞∑
n=1

(
Pn
pn

)δk+k−1
| Tn,r |k<∞, for r = 1, 2, 3, 4.

This completes the proof of Theorem 2.
If we take pn = 1 for all values of n, then we have a new result dealing with | A, δ |k summability factors

of infinite and Fourier series. Also, if we take δ = 0, then we get the result due to Yıldız [18]. Finally, if we
take δ = 0 and anv = pv

Pn
, then we obtain the result of Bor [4].
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5 An Application to Fourier Series

Let f be a periodic function with period 2π and integrable (L) over (−π, π). Without any loss of generality
the constant term in the Fourier series of f can be taken to be 0, so that

f(t) ∼ 1

2
a0 +

∞∑
n=1

(an cosnt+ bn sinnt) =

∞∑
n=1

Cn(t),

where

a0 =
1

π

∫ π

−π
f(t)dt, an =

1

π

∫ π

−π
f(t) cosntdt, bn =

1

π

∫ π

−π
f(t) sinntdt.

We write

φ(t) =
1

2
f(x+ t) + f(x− t) and φα(t) =

α

tα

∫ t

0

(t− u)α−1φ(u)du, (α > 0).

It is well known that if φ1(t) ∈ BV (0, π), then tn(x) = O(1), where tn(x) is the (C, 1) mean of the sequence
(nCn(x)) (see [8]). The following theorem is known dealing with | N̄ , pn |k summability factors of Fourier
series.

Theorem 3 ([4]) Let (Xn) be an almost increasing sequence. If φ1(t) ∈ BV (0, π) and the sequences
(pn), (λn) and (Xn) satisfy the conditions of Theorem 1, then the series

∑
Cn(x)λn is summable | N̄ , pn |k,

k ≥ 1.

Now, we generalize Theorem 3 for | A, pn; δ |k summability method in the following form.

Theorem 4 Let (Xn) be an almost increasing sequence and A be a matrix as in Theorem 2. If φ1(t) ∈
BV (0, π) and the sequences (pn), (λn) and (Xn) satisfy the conditions of Theorem 2, then

∑
Cn(x)λn is

summable | A, pn; δ |k, k ≥ 1 and 0 ≤ δ < 1/k.
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