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Abstract

Let T be a possibly infinite set of prime numbers none of which divide an r-free number s. A simple
formula is given for the natural density of the set of r-free numbers n divisible by s with gcd(s, n/s) = 1
and not divisible by any of the primes in T .

1 Main Results

In 1885 Gegenbauer proved that the natural density of the set of square-free numbers, i.e., the proportion
of natural numbers which are square-free, is 6/π2 [2, Theorem 333; reference on page 272]. By adapting an
argument giving the natural density of the set of square-free numbers, G. J. O. Jameson in 2008 was able to
prove that one third of the square-free numbers are even [5]. (Jameson gives a more elementary argument
in [6].) This result has been recently generalized in several ways. Brown determined the proportion of
square-free numbers which are divisible by every member of a given finite set of primes and at the same time
not divisible by any of the primes in a given possibly infinite set of primes [1, Theorem 1], while Srisopha,
Srichan and Mavecha determined the proportion of r-free numbers (i.e., numbers which are divisible by no
r-th power greater than one) which are even [9, Theorem 1] and then went on in [10] to prove for r-free
numbers a generalizaton of an important special case of Brown’s work cited above (see Example 5 below).
The following theorem generalizes all of these results. In the theorem ζ denotes the Riemann zeta function;
it is known that the natural density of the set of r-free numbers is 1/ζ(r) [4, Equation 14.24].

Theorem 1 Let S and T be disjoint sets of prime numbers with S finite and let r > 1 be a positive integer.
Then the natural density of the set of r-free numbers which are divisible by all the prime numbers in S and
by none of those in T is

1

ζ(r)

∏
p∈T

pr − pr−1
pr − 1

∏
p∈S

pr−1 − 1
pr − 1 .

We will remark in Section 4 that the first product in the theorem above is well-defined even if T is not
finite.
Some comments about our notation. Throughout the paper the letter p will only be used to denote a

prime number. The term number will always refer to a positive integer (but positive real number will have
its usual meaning). Empty products, such as occur above if S or T is empty, are understood to equal 1. For
any real number x and set B of numbers, we let B{x} denote the set of elements of B less than or equal to
x and let B[x] denote the number of elements of B{x}. Recall that if limx→∞B[x]/x exists, then it is by
definition the natural density of B [7, Definition 11.1]. In case it exists we will denote the natural density of
B by B∗.

Examples 1 1. Applying Theorem 1 with r = 2, S = {2} and T empty, we see that the natural density
of the set of even square-free numbers is 6

π2
2−1
22−1 . Thus one third of square-free numbers are even and two

thirds are odd. (These are Jameson’s results of course.)
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2. Take r = 2 and let S and T be as in the theorem above. Then the natural density of the set of square-
free numbers which are divisible by all the primes in S and by none of those in T is 6

π2

∏
p∈T

p
1+p

∏
p∈S

1
1+p .

This fact is Theorem 1 of [1].
3. For all choices of r the natural density of the set O of odd r-free numbers is

1

ζ(r)

2r−1

2r − 1

(we apply the above theorem with S empty and T = {2}). Thus the natural density of the set E of of even
r-free numbers is

1

ζ(r)
− 1

ζ(r)

2r−1

2r − 1
so

O∗

E∗
=

2r−1

2r−1 − 1 =
2r

2r − 2 .

This fact is Theorem 1 of [9].
4. Again let r be arbitrary and suppose that b and m are relatively prime numbers. Let T = {p : p ≡ b

(mod m)} and let S be empty. Note that

∏
p∈T

pr − pr−1
pr − 1 ≤

∏
p∈T

p

1 + p
= 0

[1, Section 5]. Therefore the natural density of the set of r-free numbers which are not divisible by any prime
number congruent to b modulo m is zero. This fact generalizes Theorem 2 of [1].

5. Let P denote a finite set of prime numbers. We use some notation of [10]: let CP denote the set of
r-free numbers which are divisible by none of the primes of P and let C ′P denote its complement in the set of
r−free numbers, i.e., the set of r-free numbers which are divisible by at least one of the primes in P . Then
by the above theorem we have

C ′P
∗

C∗P
=

1
ζ(r) −

1
ζ(r)

∏
p∈P

pr−pr−1
pr−1

1
ζ(r)

∏
p∈P

pr−pr−1
pr−1

=
∏
p∈P

pr − 1
pr − pr−1 − 1,

which is equivalent to the assertion of Theorem 1.1 of [10].

The above theorem will be proven as a corollary to a more subtle theorem which we will now state using
the notion of a Steinitz number. A Steinitz number is a formal product of a possibly infinite number of
possibly infinite prime powers; such a formal product is called finite if it is a product of a finite number
of finite prime powers (such Steinitz numbers of course correspond precisely to positive integers). For a
more formal definition of a Steinitz number (and for related definitions such as that of divisibility of Steinitz
numbers) the reader might consult [8, p. 171].

Theorem 2 Let r be a number greater than 1. Suppose that s and t are relatively prime r-free Steinitz
numbers with s finite. Then the natural density of the set of r-free numbers n which are divisible by s and
have gcd(s, n/s) = 1 and which are also relatively prime to t is

1

sζ(r)

∏
p|st

pr − pr−1
pr − 1 .

The condition gcd(s, n/s) = 1 in the above theorem says roughly that the factorization of s into a product
of prime powers is part of the factorization of n into a product of prime powers. Again, in Section 4 we
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will remark that the product above is well defined. The five examples above could have been easily derived
directly from Theorem 2.
The "simple formula" referred to in the Abstract of this paper can be taken to be the formula of Theorem

2 where we let t =
∏
p∈T p.

We end this section by proving Theorem 1 while assuming Theorem 2. The proof of Theorem 2 itself will
occupy the next three sections. In this argument and in the remainder of the paper we will let A(s, t) denote
the set of r-free numbers n relatively prime to t and divisible by s with gcd(s, n/s) = 1 (for any Steinitz
numbers s and t). Thus, for example, A(1, 1) is the set of all r-free numbers.

Proof. Write S = {p1, · · · , pm} and let t be the product of the primes in T . For any r-free number divisible
by a prime p the highest power of p dividing it has the form pi where 1 ≤ i < r. Thus the set of r-free
numbers divisible by all the numbers in S and none of those in T is a disjoint union

∪r−1i1=1
· · · ∪r−1im=1

A(pi11 · · · pimm , t)

so that by Theorem 2 its natural density is

1

ζ(r)

r−1∑
i1=1

· · ·
r−1∑
im=1

1

pi11 · · · p
im
m

∏
p∈S∪T

pr − pr−1
pr − 1

=
1

ζ(r)

∏
p∈T

pr − pr−1
pr − 1

∏
p∈S

(
pr − pr−1
pr − 1

r−1∑
i=1

1

pi

)

=
1

ζ(r)

∏
p∈T

pr − pr−1
pr − 1

∏
p∈S

pr−1 − 1
pr − 1 .

2 A Basic Lemma

For the remainder of this paper r will denote a fixed number larger than 1 and s and t will denote relatively
prime r-free Steinitz numbers with s finite.
The next lemma shows how the calculation of the natural density of the sets A(s, t) reduces to the

calculation of the natural density of sets of the form A(1, t) and, when t is finite, to the calculation of the
natural density of sets of the form A(s, 1). The lemma generalizes [1, Lemma 1].

Lemma 1 Suppose that a is an r-free number relatively prime to st. Then for any positive real number x we
have A(s, at)[x] = A(as, t)[ax]. Moreover A(s, at) has a natural density if and only if A(as, t) has a natural
density, in which case we have A(s, at)∗ = aA(as, t)∗.

This lemma is trivial in the case that x ≤ 1 where the sets A(s, at){x} and A(as, t){ax} are empty unless
x = s = 1 in which case they equal {1} and {a} respectively. We have included these trivial cases in the
statement of the lemma to facilitate its application in the proof of Lemma 2.

Proof. We first claim that for any positive real number x multiplication by a gives a bijection

A(s, at){x} −→ A(as, t){ax}.

First suppose that c ∈ A(s, at){x}. Then 1 ≤ c ≤ x and ac ≤ ax. Also, gcd(c, t) = gcd(a, t) = 1, so
gcd(ac, t) = 1. Next, s|c and

gcd(s, c/s) = gcd(a, c/s) = 1,

so as|ac and gcd(as, ac/as) = 1. Hence ac is in A(as, t){ax}, so multiplication by a is a map as indicated and
it is clearly injective. Now suppose that c ∈ A(as, t){ax}. Then a|c; to prove our claim it remains to show
that a/c ∈ A(s, at){x}. Since as|c and gcd(c/(as), as) = 1, then s|(c/a) and gcd(s, (c/a)/s) = 1. Finally,

gcd(a, c/(as)) = gcd(a, s) = gcd(c/a, t) = 1,
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so gcd(at, c/a) = 1. Hence our map is indeed a bijection, which proves the first assertion of our lemma.
By the above paragraph, for any positive real number x, we have

A(s, at)[x]

x
= a

A(as, t)[ax]

ax
.

The lemma follows by taking limits as x (and hence ax) goes to infinity.

The reader may have noted that A(s, t) = A(s,
∏
p|t p); we will often use this fact below. Allowing t

to be a Steinitz number which is not necessarily square-free simplifies the statement, the proof, and the
applications of Lemma 1.

3 Proof of Theorem 2 When t is Finite

Lemma 2 Let p be a prime number not dividing s. If the set A(s, 1) has a natural density, then so does
A(s, p) and

A(s, p)∗ =
pr − pr−1
pr − 1 A(s, 1)∗.

Proof. Pick a positive real number ε and a number k with 1/prk < ε/6. It will be convenient to write
D = A(s, 1)∗ and A = A(s, p). Recall from Lemma 1 that for any number i < r and any positive real
number x we have

A(pis, 1)[x] = A(s, p)[x/pi] = A[x/pi].
Note that A(s, 1) can be written as a disjoint union

A(s, 1) = A(s, p) ∪A(ps, 1) ∪A(p2s, 1) ∪ · · · ∪A(pr−1s, 1)

so that for any positive real number x,

A(s, 1)[x] = A[x] +A[x/p] + · · ·+A[x/pr−1].

But then we also have
A(s, 1)[x/p] = A[x/p] +A[x/p2] + · · ·+A[x/pr]

and hence
A(s, 1)[x]−A(s, 1)[x/p] = A[x]−A[x/pr]

so
A(s, 1)[x]

x
− A(s, 1)[x/p]

x/p

1

p
=
A[x]
x
− A[x/p

r]

x
.

Therefore, by our hypothesis that A(s, 1)∗ = D, we see that D − 1
pD is the limit as x goes to ∞ of

A[x]
x −

A[x/pr]
x , and hence that there exists a number M > 0 such that if x > M then∣∣∣∣D(1− 1p )− A[x]x +

A[x/pr]
x

∣∣∣∣ < ε

6
.

If x > prkM , then x/pri > M whenever 0 ≤ i ≤ k and so∣∣∣∣D(1− 1p ) xpri −A[x/pri] +A[x/pr(i+1)]
∣∣∣∣ < ε

6

x

pri
. (1)

Using the triangle inequality to combine all the inequalities in (1) for 0 ≤ i < k and dividing through by x
we obtain the inequality∣∣∣∣∣D(1− 1p )

k−1∑
i=0

1

pri
− A[x]

x
+
A[x/prk]

x

∣∣∣∣∣ < ε

6

k−1∑
i=0

1

pri
<

ε/6

1− (1/pr) <
ε

3
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(the last inequality above follows from the fact that pr ≥ 2). Recalling the choice of k at the beginning of
this proof we deduce that ∣∣∣∣−A[x/prk]x

∣∣∣∣ ≤ x

prk
1

x
=

1

prk
<
ε

6

and that ∣∣∣∣∣D(1− 1p ) pr

pr − 1 −D(1−
1

p
)

k−1∑
i=0

1

pri

∣∣∣∣∣ = D(1− 1
p
)

pr

pr − 1
1

prk
< D

pr − pr−1
pr − 1

ε

6
<
ε

6
.

Again combining inequalities with the triangle inequality we have∣∣∣∣D(1− 1p ) pr

pr − 1 −
A[x]
x

∣∣∣∣ < ε.

Hence

A(s, p)∗ = A∗ = D(1− 1
p
)

pr

pr − 1 =
pr − pr−1
pr − 1 A(s, 1)∗.

We now turn directly to the proof of Theorem 2 in the case that t is finite.
Let u = p1p2 · · · pm be the product of the distinct primes dividing st. Then by Lemma 1,

A(s, t)∗ =
1

s
A(1, st)∗ =

1

s
A(1, u)∗ =

u

s
A(u, 1)∗ =

u

s

1

p1
A(

u

p1
, p1)

∗

which by Lemma 2 equals
u

s

1

p1

pr1 − pr−11

pr1 − 1
A(

u

p1
, 1)∗.

Proceeding by induction on m we have

A(s, t)∗ =
u

s
A(

u

p1 · · · pm
, 1)∗

∏
i≤m

1

pi

∏
i≤m

pri − pr−1i

pri − 1
=

1

sζ(r)

∏
p|st

pr − pr−1
pr − 1 .

4 Proof of Theorem 2 When t is not Finite

We suppose in this section that t is a Steinitz number which is not finite, say with prime divisors p1, p2, · · · .
(We may suppose of course without loss of generality that t has an infinite number of prime divisors.) Let

us set α =
∏∞
i=1

pri−p
r−1
i

pri−1
. Since each factor p

r
i−p

r−1
i

pri−1
is positive and less than one, the partial products of the

infinite product α form a decreasing sequence bounded below by 0, and hence the infinite product converges,
and indeed its limit is independent of the order of the factors. (The independence can be shown in detail by
the argument at the beginning of [1, Section 4].) Similar remarks are valid for the product in Theorem 1.
We first consider the case that α = 0. Let ε > 0. Then by hypothesis there exists a number M such that

if k > M then

1

ζ(r)

k∏
i=1

pr − pr−1
pr − 1 < ε/2.

Fix a number k > M . Then by the case of the theorem proved in Section 3 there exists a number M ′ such
that if x > M ′ then

A(1, p1 · · · pk)[x]
x

≤ A(1, p1 · · · pk)∗ + ε/2
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and therefore

A(1, p1p2 · · · )[x]
x

≤ A(1, p1 · · · pk)[x]
x

≤ A(1, p1p2 · · · pk)∗ + ε/2 =
1

ζ(r)

k∏
i=1

pr − pr−1
pr − 1 + ε/2 < ε/2 + ε/2 = ε.

Thus A(1, p1p2 · · · )∗ exists and equals 0.
Next let us suppose that α > 0. We begin by proving the theorem in the case that s = 1. It will be

convenient to set

ψ(j) =
prj − pr−1j

prj − 1

for all j, so that α is the product of the ψ(j).

Note that for any prime p we have (pr − 1)/(pr − pr−1) ≥ (p+ 1)/p. Then

∞ > −2 log(α) = 2
∞∑
k=1

− log(ψ(k)) ≥ 2
∞∑
k=1

log(1 +
1

pk
) ≥

∞∑
k=1

1

pk
.

For any i < r we have

∞∑
k=1

A(pik, p1p2 · · · pk−1)[n]
n

≤
∞∑
k=1

n/pik
n

=

∞∑
k=1

1

pik
,

which is finite for all i < r (using the previous paragraph when i = 1). This fact will allow us to apply
Tannery’s Theorem [3, 11] in the next paragraph.

If β is an r-free number not in A(1, p1p2 · · · ), then there exists a least number k with pk dividing β. It
follows that we have a disjoint union

A(1, 1) \A(1, p1p2 · · · ) = ∪r−1i=1 ∪∞k=1 A(pik, p1p2 · · · pk−1).

Therefore

(A(1, 1) \A(1, p1p2 · · · ))∗ = lim
n→∞

∞∑
k=1

r−1∑
i=1

A(pik, p1 · · · pk−1)[n]
n

which by Tannery’s theorem and the case of our theorem proven in the last section is equal to

∞∑
k=1

r−1∑
i=1

lim
n→∞

A(pik, p1 · · · pk−1)[n]
n

=

∞∑
k=1

r−1∑
i=1

A(pik, p1 · · · pk−1)∗ =
∞∑
k=1

r−1∑
i=1

1

ζ(r)pik

k∏
j=1

ψ(j).

Observing that for each k ≥ 1 we have

ψ(k)

r−1∑
i=1

1

pik
= 1− ψ(k),
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we deduce that

(A(1, 1) \A(1, p1p2 · · · ))∗ =
1

ζ(r)

(
1− ψ(1) +

∞∑
k=2

(1− ψ(k))
k−1∏
i=1

ψ(i)

)

=
1

ζ(r)

(
1− ψ(1) +

∞∑
k=2

(

k−1∏
i=1

ψ(i)−
k∏
i=1

ψ(i))

)

=
1

ζ(r)

1− ψ(1) + lim
L→∞

(

1∏
j=1

ψ(j)−
L∏
j=1

ψ(j))


=

1

ζ(r)
(1−

∞∏
j=1

ψ(j)),

so that we have

A(1, p1p2 · · · )∗ =
1

ζ(r)
− 1

ζ(r)
(1−

∞∏
j=1

ψ(j)) =
1

ζ(r)

∞∏
j=1

ψ(j).

This proves the theorem in the case that s = 1. Applying Lemma 1 and the proof of the theorem in the case
that s = 1, we see that in general we have

A(s, t)∗ =
1

s
A(1, st)∗ =

1

s
A(1,

∏
p|st

p)∗ =
1

sζ(r)

∏
p|st

pr − pr−1
pr − 1 ,

which completes the proof of Theorem 2.
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